1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
# -*- coding: utf-8 -*-
"""
.. _ex-eog:
========================
Show EOG artifact timing
========================
Compute the distribution of timing for EOG artifacts.
"""
# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
# %%
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne import io
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
# %%
# Set parameters
meg_path = data_path / 'MEG' / 'sample'
raw_fname = meg_path / 'sample_audvis_filt-0-40_raw.fif'
# Setup for reading the raw data
raw = io.read_raw_fif(raw_fname, preload=True)
events = mne.find_events(raw, 'STI 014')
eog_event_id = 512
eog_events = mne.preprocessing.find_eog_events(raw, eog_event_id)
raw.add_events(eog_events, 'STI 014')
# Read epochs
picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=True, eog=False)
tmin, tmax = -0.2, 0.5
event_ids = {'AudL': 1, 'AudR': 2, 'VisL': 3, 'VisR': 4}
epochs = mne.Epochs(raw, events, event_ids, tmin, tmax, picks=picks)
# Get the stim channel data
pick_ch = mne.pick_channels(epochs.ch_names, ['STI 014'])[0]
data = epochs.get_data()[:, pick_ch, :]
data = np.sum((data.astype(int) & eog_event_id) == eog_event_id, axis=0)
# %%
# Plot EOG artifact distribution
fig, ax = plt.subplots()
ax.stem(1e3 * epochs.times, data)
ax.set(xlabel='Times (ms)',
ylabel='Blink counts (from %s trials)' % len(epochs))
fig.tight_layout()
|