File: ica_comparison.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (72 lines) | stat: -rw-r--r-- 1,490 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# -*- coding: utf-8 -*-
"""
.. _ex-ica-comp:

===========================================
Compare the different ICA algorithms in MNE
===========================================

Different ICA algorithms are fit to raw MEG data, and the corresponding maps
are displayed.

"""
# Authors: Pierre Ablin <pierreablin@gmail.com>
#
# License: BSD-3-Clause

# %%

from time import time

import mne
from mne.preprocessing import ICA
from mne.datasets import sample


print(__doc__)

# %%
# Read and preprocess the data. Preprocessing consists of:
#
# - MEG channel selection
# - 1-30 Hz band-pass filter

data_path = sample.data_path()
meg_path = data_path / 'MEG' / 'sample'
raw_fname = meg_path / 'sample_audvis_filt-0-40_raw.fif'

raw = mne.io.read_raw_fif(raw_fname).crop(0, 60).pick('meg').load_data()

reject = dict(mag=5e-12, grad=4000e-13)
raw.filter(1, 30, fir_design='firwin')


# %%
# Define a function that runs ICA on the raw MEG data and plots the components


def run_ica(method, fit_params=None):
    ica = ICA(n_components=20, method=method, fit_params=fit_params,
              max_iter='auto', random_state=0)
    t0 = time()
    ica.fit(raw, reject=reject)
    fit_time = time() - t0
    title = ('ICA decomposition using %s (took %.1fs)' % (method, fit_time))
    ica.plot_components(title=title)


# %%
# FastICA
run_ica('fastica')

# %%
# Picard
run_ica('picard')

# %%
# Infomax
run_ica('infomax')

# %%
# Extended Infomax
run_ica('infomax', fit_params=dict(extended=True))