1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
# -*- coding: utf-8 -*-
"""
.. _ex-opm-resting-state:
======================================================================
Compute source power spectral density (PSD) of VectorView and OPM data
======================================================================
Here we compute the resting state from raw for data recorded using
a Neuromag VectorView system and a custom OPM system.
The pipeline is meant to mostly follow the Brainstorm :footcite:`TadelEtAl2011`
`OMEGA resting tutorial pipeline
<https://neuroimage.usc.edu/brainstorm/Tutorials/RestingOmega>`__.
The steps we use are:
1. Filtering: downsample heavily.
2. Artifact detection: use SSP for EOG and ECG.
3. Source localization: dSPM, depth weighting, cortically constrained.
4. Frequency: power spectral density (Welch), 4 sec window, 50% overlap.
5. Standardize: normalize by relative power for each source.
Preprocessing
-------------
"""
# Authors: Denis Engemann <denis.engemann@gmail.com>
# Luke Bloy <luke.bloy@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
# %%
import mne
from mne.filter import next_fast_len
print(__doc__)
data_path = mne.datasets.opm.data_path()
subject = 'OPM_sample'
subjects_dir = data_path / 'subjects'
bem_dir = subjects_dir / subject / 'bem'
bem_fname = bem_dir / f'{subject}-5120-5120-5120-bem-sol.fif'
src_fname = bem_dir / f'{subject}-oct6-src.fif'
vv_fname = data_path / 'MEG' / 'SQUID' / 'SQUID_resting_state.fif'
vv_erm_fname = data_path / 'MEG' / 'SQUID' / 'SQUID_empty_room.fif'
vv_trans_fname = data_path / 'MEG' / 'SQUID' / 'SQUID-trans.fif'
opm_fname = data_path / 'MEG' / 'OPM' / 'OPM_resting_state_raw.fif'
opm_erm_fname = data_path / 'MEG' / 'OPM' / 'OPM_empty_room_raw.fif'
opm_trans = mne.transforms.Transform('head', 'mri') # use identity transform
opm_coil_def_fname = data_path / 'MEG' / 'OPM' / 'coil_def.dat'
##############################################################################
# Load data, resample. We will store the raw objects in dicts with entries
# "vv" and "opm" to simplify housekeeping and simplify looping later.
raws = dict()
raw_erms = dict()
new_sfreq = 60. # Nyquist frequency (30 Hz) < line noise freq (50 Hz)
raws['vv'] = mne.io.read_raw_fif(vv_fname, verbose='error') # ignore naming
raws['vv'].load_data().resample(new_sfreq)
raws['vv'].info['bads'] = ['MEG2233', 'MEG1842']
raw_erms['vv'] = mne.io.read_raw_fif(vv_erm_fname, verbose='error')
raw_erms['vv'].load_data().resample(new_sfreq)
raw_erms['vv'].info['bads'] = ['MEG2233', 'MEG1842']
raws['opm'] = mne.io.read_raw_fif(opm_fname)
raws['opm'].load_data().resample(new_sfreq)
raw_erms['opm'] = mne.io.read_raw_fif(opm_erm_fname)
raw_erms['opm'].load_data().resample(new_sfreq)
# Make sure our assumptions later hold
assert raws['opm'].info['sfreq'] == raws['vv'].info['sfreq']
##############################################################################
# Explore data
titles = dict(vv='VectorView', opm='OPM')
kinds = ('vv', 'opm')
n_fft = next_fast_len(int(round(4 * new_sfreq)))
print('Using n_fft=%d (%0.1f sec)' % (n_fft, n_fft / raws['vv'].info['sfreq']))
for kind in kinds:
fig = raws[kind].plot_psd(n_fft=n_fft, proj=True)
fig.suptitle(titles[kind])
fig.subplots_adjust(0.1, 0.1, 0.95, 0.85)
##############################################################################
# Alignment and forward
# ---------------------
# Here we use a reduced size source space (oct5) just for speed
src = mne.setup_source_space(
subject, 'oct5', add_dist=False, subjects_dir=subjects_dir)
# This line removes source-to-source distances that we will not need.
# We only do it here to save a bit of memory, in general this is not required.
del src[0]['dist'], src[1]['dist']
bem = mne.read_bem_solution(bem_fname)
# For speed, let's just use a 1-layer BEM
bem = mne.make_bem_solution(bem['surfs'][-1:])
fwd = dict()
# check alignment and generate forward for VectorView
kwargs = dict(azimuth=0, elevation=90, distance=0.6, focalpoint=(0., 0., 0.))
fig = mne.viz.plot_alignment(
raws['vv'].info, trans=vv_trans_fname, subject=subject,
subjects_dir=subjects_dir, dig=True, coord_frame='mri',
surfaces=('head', 'white'))
mne.viz.set_3d_view(figure=fig, **kwargs)
fwd['vv'] = mne.make_forward_solution(
raws['vv'].info, vv_trans_fname, src, bem, eeg=False, verbose=True)
##############################################################################
# And for OPM:
with mne.use_coil_def(opm_coil_def_fname):
fig = mne.viz.plot_alignment(
raws['opm'].info, trans=opm_trans, subject=subject,
subjects_dir=subjects_dir, dig=False, coord_frame='mri',
surfaces=('head', 'white'))
mne.viz.set_3d_view(figure=fig, **kwargs)
fwd['opm'] = mne.make_forward_solution(
raws['opm'].info, opm_trans, src, bem, eeg=False, verbose=True)
del src, bem
##############################################################################
# Compute and apply inverse to PSD estimated using multitaper + Welch.
# Group into frequency bands, then normalize each source point and sensor
# independently. This makes the value of each sensor point and source location
# in each frequency band the percentage of the PSD accounted for by that band.
freq_bands = dict(alpha=(8, 12), beta=(15, 29))
topos = dict(vv=dict(), opm=dict())
stcs = dict(vv=dict(), opm=dict())
snr = 3.
lambda2 = 1. / snr ** 2
for kind in kinds:
noise_cov = mne.compute_raw_covariance(raw_erms[kind])
inverse_operator = mne.minimum_norm.make_inverse_operator(
raws[kind].info, forward=fwd[kind], noise_cov=noise_cov, verbose=True)
stc_psd, sensor_psd = mne.minimum_norm.compute_source_psd(
raws[kind], inverse_operator, lambda2=lambda2,
n_fft=n_fft, dB=False, return_sensor=True, verbose=True)
topo_norm = sensor_psd.data.sum(axis=1, keepdims=True)
stc_norm = stc_psd.sum() # same operation on MNE object, sum across freqs
# Normalize each source point by the total power across freqs
for band, limits in freq_bands.items():
data = sensor_psd.copy().crop(*limits).data.sum(axis=1, keepdims=True)
topos[kind][band] = mne.EvokedArray(
100 * data / topo_norm, sensor_psd.info)
stcs[kind][band] = \
100 * stc_psd.copy().crop(*limits).sum() / stc_norm.data
del inverse_operator
del fwd, raws, raw_erms
# %%
# Now we can make some plots of each frequency band. Note that the OPM head
# coverage is only over right motor cortex, so only localization
# of beta is likely to be worthwhile.
#
# Alpha
# -----
def plot_band(kind, band):
"""Plot activity within a frequency band on the subject's brain."""
title = "%s %s\n(%d-%d Hz)" % ((titles[kind], band,) + freq_bands[band])
topos[kind][band].plot_topomap(
times=0., scalings=1., cbar_fmt='%0.1f', vlim=(0, None),
cmap='inferno', time_format=title)
brain = stcs[kind][band].plot(
subject=subject, subjects_dir=subjects_dir, views='cau', hemi='both',
time_label=title, title=title, colormap='inferno',
time_viewer=False, show_traces=False,
clim=dict(kind='percent', lims=(70, 85, 99)), smoothing_steps=10)
brain.show_view(azimuth=0, elevation=0, roll=0)
return fig, brain
fig_alpha, brain_alpha = plot_band('vv', 'alpha')
# %%
# Beta
# ----
# Here we also show OPM data, which shows a profile similar to the VectorView
# data beneath the sensors. VectorView first:
fig_beta, brain_beta = plot_band('vv', 'beta')
# %%
# Then OPM:
# sphinx_gallery_thumbnail_number = 10
fig_beta_opm, brain_beta_opm = plot_band('opm', 'beta')
# %%
# References
# ----------
# .. footbibliography::
|