File: source_power_spectrum_opm.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (199 lines) | stat: -rw-r--r-- 7,692 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# -*- coding: utf-8 -*-
"""
.. _ex-opm-resting-state:

======================================================================
Compute source power spectral density (PSD) of VectorView and OPM data
======================================================================

Here we compute the resting state from raw for data recorded using
a Neuromag VectorView system and a custom OPM system.
The pipeline is meant to mostly follow the Brainstorm :footcite:`TadelEtAl2011`
`OMEGA resting tutorial pipeline
<https://neuroimage.usc.edu/brainstorm/Tutorials/RestingOmega>`__.
The steps we use are:

1. Filtering: downsample heavily.
2. Artifact detection: use SSP for EOG and ECG.
3. Source localization: dSPM, depth weighting, cortically constrained.
4. Frequency: power spectral density (Welch), 4 sec window, 50% overlap.
5. Standardize: normalize by relative power for each source.

Preprocessing
-------------
"""
# Authors: Denis Engemann <denis.engemann@gmail.com>
#          Luke Bloy <luke.bloy@gmail.com>
#          Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause

# %%

import mne
from mne.filter import next_fast_len

print(__doc__)

data_path = mne.datasets.opm.data_path()
subject = 'OPM_sample'

subjects_dir = data_path / 'subjects'
bem_dir = subjects_dir / subject / 'bem'
bem_fname = bem_dir / f'{subject}-5120-5120-5120-bem-sol.fif'
src_fname = bem_dir / f'{subject}-oct6-src.fif'
vv_fname = data_path / 'MEG' / 'SQUID' / 'SQUID_resting_state.fif'
vv_erm_fname = data_path / 'MEG' / 'SQUID' / 'SQUID_empty_room.fif'
vv_trans_fname = data_path / 'MEG' / 'SQUID' / 'SQUID-trans.fif'
opm_fname = data_path / 'MEG' / 'OPM' / 'OPM_resting_state_raw.fif'
opm_erm_fname = data_path / 'MEG' / 'OPM' / 'OPM_empty_room_raw.fif'
opm_trans = mne.transforms.Transform('head', 'mri')  # use identity transform
opm_coil_def_fname = data_path / 'MEG' / 'OPM' / 'coil_def.dat'

##############################################################################
# Load data, resample. We will store the raw objects in dicts with entries
# "vv" and "opm" to simplify housekeeping and simplify looping later.

raws = dict()
raw_erms = dict()
new_sfreq = 60.  # Nyquist frequency (30 Hz) < line noise freq (50 Hz)
raws['vv'] = mne.io.read_raw_fif(vv_fname, verbose='error')  # ignore naming
raws['vv'].load_data().resample(new_sfreq)
raws['vv'].info['bads'] = ['MEG2233', 'MEG1842']
raw_erms['vv'] = mne.io.read_raw_fif(vv_erm_fname, verbose='error')
raw_erms['vv'].load_data().resample(new_sfreq)
raw_erms['vv'].info['bads'] = ['MEG2233', 'MEG1842']

raws['opm'] = mne.io.read_raw_fif(opm_fname)
raws['opm'].load_data().resample(new_sfreq)
raw_erms['opm'] = mne.io.read_raw_fif(opm_erm_fname)
raw_erms['opm'].load_data().resample(new_sfreq)
# Make sure our assumptions later hold
assert raws['opm'].info['sfreq'] == raws['vv'].info['sfreq']

##############################################################################
# Explore data

titles = dict(vv='VectorView', opm='OPM')
kinds = ('vv', 'opm')
n_fft = next_fast_len(int(round(4 * new_sfreq)))
print('Using n_fft=%d (%0.1f sec)' % (n_fft, n_fft / raws['vv'].info['sfreq']))
for kind in kinds:
    fig = raws[kind].plot_psd(n_fft=n_fft, proj=True)
    fig.suptitle(titles[kind])
    fig.subplots_adjust(0.1, 0.1, 0.95, 0.85)

##############################################################################
# Alignment and forward
# ---------------------

# Here we use a reduced size source space (oct5) just for speed
src = mne.setup_source_space(
    subject, 'oct5', add_dist=False, subjects_dir=subjects_dir)
# This line removes source-to-source distances that we will not need.
# We only do it here to save a bit of memory, in general this is not required.
del src[0]['dist'], src[1]['dist']
bem = mne.read_bem_solution(bem_fname)
# For speed, let's just use a 1-layer BEM
bem = mne.make_bem_solution(bem['surfs'][-1:])
fwd = dict()

# check alignment and generate forward for VectorView
kwargs = dict(azimuth=0, elevation=90, distance=0.6, focalpoint=(0., 0., 0.))
fig = mne.viz.plot_alignment(
    raws['vv'].info, trans=vv_trans_fname, subject=subject,
    subjects_dir=subjects_dir, dig=True, coord_frame='mri',
    surfaces=('head', 'white'))
mne.viz.set_3d_view(figure=fig, **kwargs)
fwd['vv'] = mne.make_forward_solution(
    raws['vv'].info, vv_trans_fname, src, bem, eeg=False, verbose=True)

##############################################################################
# And for OPM:

with mne.use_coil_def(opm_coil_def_fname):
    fig = mne.viz.plot_alignment(
        raws['opm'].info, trans=opm_trans, subject=subject,
        subjects_dir=subjects_dir, dig=False, coord_frame='mri',
        surfaces=('head', 'white'))
    mne.viz.set_3d_view(figure=fig, **kwargs)
    fwd['opm'] = mne.make_forward_solution(
        raws['opm'].info, opm_trans, src, bem, eeg=False, verbose=True)

del src, bem

##############################################################################
# Compute and apply inverse to PSD estimated using multitaper + Welch.
# Group into frequency bands, then normalize each source point and sensor
# independently. This makes the value of each sensor point and source location
# in each frequency band the percentage of the PSD accounted for by that band.

freq_bands = dict(alpha=(8, 12), beta=(15, 29))
topos = dict(vv=dict(), opm=dict())
stcs = dict(vv=dict(), opm=dict())

snr = 3.
lambda2 = 1. / snr ** 2
for kind in kinds:
    noise_cov = mne.compute_raw_covariance(raw_erms[kind])
    inverse_operator = mne.minimum_norm.make_inverse_operator(
        raws[kind].info, forward=fwd[kind], noise_cov=noise_cov, verbose=True)
    stc_psd, sensor_psd = mne.minimum_norm.compute_source_psd(
        raws[kind], inverse_operator, lambda2=lambda2,
        n_fft=n_fft, dB=False, return_sensor=True, verbose=True)
    topo_norm = sensor_psd.data.sum(axis=1, keepdims=True)
    stc_norm = stc_psd.sum()  # same operation on MNE object, sum across freqs
    # Normalize each source point by the total power across freqs
    for band, limits in freq_bands.items():
        data = sensor_psd.copy().crop(*limits).data.sum(axis=1, keepdims=True)
        topos[kind][band] = mne.EvokedArray(
            100 * data / topo_norm, sensor_psd.info)
        stcs[kind][band] = \
            100 * stc_psd.copy().crop(*limits).sum() / stc_norm.data
    del inverse_operator
del fwd, raws, raw_erms


# %%
# Now we can make some plots of each frequency band. Note that the OPM head
# coverage is only over right motor cortex, so only localization
# of beta is likely to be worthwhile.
#
# Alpha
# -----

def plot_band(kind, band):
    """Plot activity within a frequency band on the subject's brain."""
    title = "%s %s\n(%d-%d Hz)" % ((titles[kind], band,) + freq_bands[band])
    topos[kind][band].plot_topomap(
        times=0., scalings=1., cbar_fmt='%0.1f', vlim=(0, None),
        cmap='inferno', time_format=title)
    brain = stcs[kind][band].plot(
        subject=subject, subjects_dir=subjects_dir, views='cau', hemi='both',
        time_label=title, title=title, colormap='inferno',
        time_viewer=False, show_traces=False,
        clim=dict(kind='percent', lims=(70, 85, 99)), smoothing_steps=10)
    brain.show_view(azimuth=0, elevation=0, roll=0)
    return fig, brain


fig_alpha, brain_alpha = plot_band('vv', 'alpha')

# %%
# Beta
# ----
# Here we also show OPM data, which shows a profile similar to the VectorView
# data beneath the sensors. VectorView first:

fig_beta, brain_beta = plot_band('vv', 'beta')

# %%
# Then OPM:

# sphinx_gallery_thumbnail_number = 10
fig_beta_opm, brain_beta_opm = plot_band('opm', 'beta')

# %%
# References
# ----------
# .. footbibliography::