File: evoked_arrowmap.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (78 lines) | stat: -rw-r--r-- 2,705 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
"""
.. _ex-arrowmap:

=============================================
Plotting topographic arrowmaps of evoked data
=============================================

Load evoked data and plot arrowmaps along with the topomap for selected time
points. An arrowmap is based upon the Hosaka-Cohen transformation and
represents an estimation of the current flow underneath the MEG sensors.
They are a poor man's MNE.

See :footcite:`CohenHosaka1976` for details.

References
----------
.. footbibliography::
"""

# Authors: Sheraz Khan <sheraz@khansheraz.com>
#
# License: BSD-3-Clause

# %%

import numpy as np
import mne
from mne.datasets import sample
from mne.datasets.brainstorm import bst_raw
from mne import read_evokeds
from mne.viz import plot_arrowmap

print(__doc__)

path = sample.data_path()
fname = path / 'MEG' / 'sample' / 'sample_audvis-ave.fif'

# load evoked data
condition = 'Left Auditory'
evoked = read_evokeds(fname, condition=condition, baseline=(None, 0))
evoked_mag = evoked.copy().pick_types(meg='mag')
evoked_grad = evoked.copy().pick_types(meg='grad')

# %%
# Plot magnetometer data as an arrowmap along with the topoplot at the time
# of the maximum sensor space activity:
max_time_idx = np.abs(evoked_mag.data).mean(axis=0).argmax()
plot_arrowmap(evoked_mag.data[:, max_time_idx], evoked_mag.info)

# Since planar gradiometers takes gradients along latitude and longitude,
# they need to be projected to the flatten manifold span by magnetometer
# or radial gradiometers before taking the gradients in the 2D Cartesian
# coordinate system for visualization on the 2D topoplot. You can use the
# ``info_from`` and ``info_to`` parameters to interpolate from
# gradiometer data to magnetometer data.

# %%
# Plot gradiometer data as an arrowmap along with the topoplot at the time
# of the maximum sensor space activity:
plot_arrowmap(evoked_grad.data[:, max_time_idx], info_from=evoked_grad.info,
              info_to=evoked_mag.info)

# %%
# Since Vectorview 102 system perform sparse spatial sampling of the magnetic
# field, data from the Vectorview (info_from) can be projected to the high
# density CTF 272 system (info_to) for visualization
#
# Plot gradiometer data as an arrowmap along with the topoplot at the time
# of the maximum sensor space activity:
path = bst_raw.data_path()
raw_fname = (path / 'MEG' / 'bst_raw' /
             'subj001_somatosensory_20111109_01_AUX-f.ds')
raw_ctf = mne.io.read_raw_ctf(raw_fname)
raw_ctf_info = mne.pick_info(
    raw_ctf.info, mne.pick_types(raw_ctf.info, meg=True, ref_meg=False))
plot_arrowmap(evoked_grad.data[:, max_time_idx], info_from=evoked_grad.info,
              info_to=raw_ctf_info, scale=6e-10)