1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
# -*- coding: utf-8 -*-
"""
.. _ex-publication-figure:
===================================
Make figures more publication ready
===================================
In this example, we show several use cases to take MNE plots and
customize them for a more publication-ready look.
"""
# Authors: Eric Larson <larson.eric.d@gmail.com>
# Daniel McCloy <dan.mccloy@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD-3-Clause
# %%
# Imports
# -------
# We are importing everything we need for this example:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import (make_axes_locatable, ImageGrid,
inset_locator)
import mne
# %%
# Evoked plot with brain activation
# ---------------------------------
#
# Suppose we want a figure with an evoked plot on top, and the brain activation
# below, with the brain subplot slightly bigger than the evoked plot. Let's
# start by loading some :ref:`example data <sample-dataset>`.
data_path = mne.datasets.sample.data_path()
subjects_dir = data_path / 'subjects'
fname_stc = data_path / 'MEG' / 'sample' / 'sample_audvis-meg-eeg-lh.stc'
fname_evoked = data_path / 'MEG' / 'sample' / 'sample_audvis-ave.fif'
evoked = mne.read_evokeds(fname_evoked, 'Left Auditory')
evoked.pick_types(meg='grad').apply_baseline((None, 0.))
max_t = evoked.get_peak()[1]
stc = mne.read_source_estimate(fname_stc)
# %%
# During interactive plotting, we might see figures like this:
evoked.plot()
stc.plot(views='lat', hemi='split', size=(800, 400), subject='sample',
subjects_dir=subjects_dir, initial_time=max_t,
time_viewer=False, show_traces=False)
# %%
# To make a publication-ready figure, first we'll re-plot the brain on a white
# background, take a screenshot of it, and then crop out the white margins.
# While we're at it, let's change the colormap, set custom colormap limits and
# remove the default colorbar (so we can add a smaller, vertical one later):
colormap = 'viridis'
clim = dict(kind='value', lims=[4, 8, 12])
# Plot the STC, get the brain image, crop it:
brain = stc.plot(views='lat', hemi='split', size=(800, 400), subject='sample',
subjects_dir=subjects_dir, initial_time=max_t, background='w',
colorbar=False, clim=clim, colormap=colormap,
time_viewer=False, show_traces=False)
screenshot = brain.screenshot()
brain.close()
# %%
# Now let's crop out the white margins and the white gap between hemispheres.
# The screenshot has dimensions ``(h, w, 3)``, with the last axis being R, G, B
# values for each pixel, encoded as integers between ``0`` and ``255``. ``(255,
# 255, 255)`` encodes a white pixel, so we'll detect any pixels that differ
# from that:
nonwhite_pix = (screenshot != 255).any(-1)
nonwhite_row = nonwhite_pix.any(1)
nonwhite_col = nonwhite_pix.any(0)
cropped_screenshot = screenshot[nonwhite_row][:, nonwhite_col]
# before/after results
fig = plt.figure(figsize=(4, 4))
axes = ImageGrid(fig, 111, nrows_ncols=(2, 1), axes_pad=0.5)
for ax, image, title in zip(axes, [screenshot, cropped_screenshot],
['Before', 'After']):
ax.imshow(image)
ax.set_title('{} cropping'.format(title))
# %%
# A lot of figure settings can be adjusted after the figure is created, but
# many can also be adjusted in advance by updating the
# :data:`~matplotlib.rcParams` dictionary. This is especially useful when your
# script generates several figures that you want to all have the same style:
# Tweak the figure style
plt.rcParams.update({
'ytick.labelsize': 'small',
'xtick.labelsize': 'small',
'axes.labelsize': 'small',
'axes.titlesize': 'medium',
'grid.color': '0.75',
'grid.linestyle': ':',
})
# %%
# Now let's create our custom figure. There are lots of ways to do this step.
# Here we'll create the figure and the subplot axes in one step, specifying
# overall figure size, number and arrangement of subplots, and the ratio of
# subplot heights for each row using :mod:`GridSpec keywords
# <matplotlib.gridspec>`. Other approaches (using
# :func:`~matplotlib.pyplot.subplot2grid`, or adding each axes manually) are
# shown commented out, for reference.
# sphinx_gallery_thumbnail_number = 4
# figsize unit is inches
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(4.5, 3.),
gridspec_kw=dict(height_ratios=[3, 4]))
# alternate way #1: using subplot2grid
# fig = plt.figure(figsize=(4.5, 3.))
# axes = [plt.subplot2grid((7, 1), (0, 0), rowspan=3),
# plt.subplot2grid((7, 1), (3, 0), rowspan=4)]
# alternate way #2: using figure-relative coordinates
# fig = plt.figure(figsize=(4.5, 3.))
# axes = [fig.add_axes([0.125, 0.58, 0.775, 0.3]), # left, bot., width, height
# fig.add_axes([0.125, 0.11, 0.775, 0.4])]
# we'll put the evoked plot in the upper axes, and the brain below
evoked_idx = 0
brain_idx = 1
# plot the evoked in the desired subplot, and add a line at peak activation
evoked.plot(axes=axes[evoked_idx])
peak_line = axes[evoked_idx].axvline(max_t, color='#66CCEE', ls='--')
# custom legend
axes[evoked_idx].legend(
[axes[evoked_idx].lines[0], peak_line], ['MEG data', 'Peak time'],
frameon=True, columnspacing=0.1, labelspacing=0.1,
fontsize=8, fancybox=True, handlelength=1.8)
# remove the "N_ave" annotation
for text in list(axes[evoked_idx].texts):
text.remove()
# Remove spines and add grid
axes[evoked_idx].grid(True)
axes[evoked_idx].set_axisbelow(True)
for key in ('top', 'right'):
axes[evoked_idx].spines[key].set(visible=False)
# Tweak the ticks and limits
axes[evoked_idx].set(
yticks=np.arange(-200, 201, 100), xticks=np.arange(-0.2, 0.51, 0.1))
axes[evoked_idx].set(
ylim=[-225, 225], xlim=[-0.2, 0.5])
# now add the brain to the lower axes
axes[brain_idx].imshow(cropped_screenshot)
axes[brain_idx].axis('off')
# add a vertical colorbar with the same properties as the 3D one
divider = make_axes_locatable(axes[brain_idx])
cax = divider.append_axes('right', size='5%', pad=0.2)
cbar = mne.viz.plot_brain_colorbar(cax, clim, colormap, label='Activation (F)')
# tweak margins and spacing
fig.subplots_adjust(
left=0.15, right=0.9, bottom=0.01, top=0.9, wspace=0.1, hspace=0.5)
# add subplot labels
for ax, label in zip(axes, 'AB'):
ax.text(0.03, ax.get_position().ymax, label, transform=fig.transFigure,
fontsize=12, fontweight='bold', va='top', ha='left')
# %%
# Custom timecourse with montage inset
# ------------------------------------
#
# Suppose we want a figure with some mean timecourse extracted from a number of
# sensors, and we want a smaller panel within the figure to show a head outline
# with the positions of those sensors clearly marked.
# If you are familiar with MNE, you know that this is something that
# :func:`mne.viz.plot_compare_evokeds` does, see an example output in
# :ref:`ex-hf-sef-data` at the bottom.
#
# In this part of the example, we will show you how to achieve this result on
# your own figure, without having to use :func:`mne.viz.plot_compare_evokeds`!
#
# Let's start by loading some :ref:`example data <sample-dataset>`.
data_path = mne.datasets.sample.data_path()
fname_raw = data_path / "MEG" / "sample" / "sample_audvis_raw.fif"
raw = mne.io.read_raw_fif(fname_raw)
# For the sake of the example, we focus on EEG data
raw.pick_types(meg=False, eeg=True)
# %%
# Let's make a plot.
# channels to plot:
to_plot = [f"EEG {i:03}" for i in range(1, 5)]
# get the data for plotting in a short time interval from 10 to 20 seconds
start = int(raw.info['sfreq'] * 10)
stop = int(raw.info['sfreq'] * 20)
data, times = raw.get_data(picks=to_plot,
start=start, stop=stop, return_times=True)
# Scale the data from the MNE internal unit V to µV
data *= 1e6
# Take the mean of the channels
mean = np.mean(data, axis=0)
# make a figure
fig, ax = plt.subplots(figsize=(4.5, 3))
# plot some EEG data
ax.plot(times, mean)
# %%
# So far so good. Now let's add the smaller figure within the figure to show
# exactly, which sensors we used to make the timecourse.
# For that, we use an "inset_axes" that we plot into our existing axes.
# The head outline with the sensor positions can be plotted using the
# `~mne.io.Raw` object that is the source of our data.
# Specifically, that object already contains all the sensor positions,
# and we can plot them using the ``plot_sensors`` method.
# recreate the figure (only necessary for our documentation server)
fig, ax = plt.subplots(figsize=(4.5, 3))
ax.plot(times, mean)
axins = inset_locator.inset_axes(ax, width="30%", height="30%", loc=2)
# pick_channels() edits the raw object in place, so we'll make a copy here
# so that our raw object stays intact for potential later analysis
raw.copy().pick_channels(to_plot).plot_sensors(title="", axes=axins)
# %%
# That looks nice. But the sensor dots are way too big for our taste. Luckily,
# all MNE-Python plots use Matplotlib under the hood and we can customize
# each and every facet of them.
# To make the sensor dots smaller, we need to first get a handle on them to
# then apply a ``*.set_*`` method on them.
# If we inspect our axes we find the objects contained in our plot:
print(axins.get_children())
# %%
# That's quite a a lot of objects, but we know that we want to change the
# sensor dots, and those are most certainly a "PathCollection" object.
# So let's have a look at how many "collections" we have in the axes.
print(axins.collections)
# %%
# There is only one! Those must be the sensor dots we were looking for.
# We finally found exactly what we needed. Sometimes this can take a bit of
# experimentation.
sensor_dots = axins.collections[0]
# Recreate the figure once more; shrink the sensor dots; add axis labels
fig, ax = plt.subplots(figsize=(4.5, 3))
ax.plot(times, mean)
axins = inset_locator.inset_axes(ax, width="30%", height="30%", loc=2)
raw.copy().pick_channels(to_plot).plot_sensors(title="", axes=axins)
sensor_dots = axins.collections[0]
sensor_dots.set_sizes([1])
# add axis labels, and adjust bottom figure margin to make room for them
ax.set(xlabel="Time (s)", ylabel="Amplitude (µV)")
fig.subplots_adjust(bottom=0.2)
|