File: ssp_projs_sensitivity_map.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (50 lines) | stat: -rw-r--r-- 1,240 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
"""
.. _ex-ssp-proj:

==================================
Sensitivity map of SSP projections
==================================

This example shows the sources that have a forward field
similar to the first SSP vector correcting for ECG.
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause

# %%

import matplotlib.pyplot as plt

from mne import read_forward_solution, read_proj, sensitivity_map

from mne.datasets import sample

print(__doc__)

data_path = sample.data_path()

subjects_dir = data_path / 'subjects'
meg_path = data_path / 'MEG' / 'sample'
fname = meg_path / 'sample_audvis-meg-eeg-oct-6-fwd.fif'
ecg_fname = meg_path / 'sample_audvis_ecg-proj.fif'

fwd = read_forward_solution(fname)

projs = read_proj(ecg_fname)
# take only one projection per channel type
projs = projs[::2]

# Compute sensitivity map
ssp_ecg_map = sensitivity_map(fwd, ch_type='grad', projs=projs, mode='angle')

# %%
# Show sensitivity map

plt.hist(ssp_ecg_map.data.ravel())
plt.show()

args = dict(clim=dict(kind='value', lims=(0.2, 0.6, 1.)), smoothing_steps=7,
            hemi='rh', subjects_dir=subjects_dir)
ssp_ecg_map.plot(subject='sample', time_label='ECG SSP sensitivity', **args)