1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
|
# -*- coding: utf-8 -*-
"""Freesurfer handling functions."""
# Authors: Alex Rockhill <aprockhill@mailbox.org>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
import os.path as op
import numpy as np
from gzip import GzipFile
from .bem import _bem_find_surface, read_bem_surfaces
from .io.constants import FIFF
from .io.meas_info import read_fiducials
from .transforms import (apply_trans, invert_transform, combine_transforms,
_ensure_trans, read_ras_mni_t, Transform)
from .surface import read_surface, _read_mri_surface
from .utils import (verbose, _validate_type, _check_fname, _check_option,
get_subjects_dir, _require_version, logger)
def _check_subject_dir(subject, subjects_dir):
"""Check that the Freesurfer subject directory is as expected."""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
for img_name in ('T1', 'brain', 'aseg'):
if not op.isfile(op.join(subjects_dir, subject, 'mri',
f'{img_name}.mgz')):
raise ValueError('Freesurfer recon-all subject folder '
'is incorrect or improperly formatted, '
f'got {op.join(subjects_dir, subject)}')
return op.join(subjects_dir, subject)
def _get_aseg(aseg, subject, subjects_dir):
"""Check that the anatomical segmentation file exists and load it."""
_require_version('nibabel', 'load aseg', '2.1.0')
import nibabel as nib
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if not aseg.endswith('aseg'):
raise RuntimeError(
f'`aseg` file path must end with "aseg", got {aseg}')
aseg = _check_fname(op.join(subjects_dir, subject, 'mri', aseg + '.mgz'),
overwrite='read', must_exist=True)
aseg = nib.load(aseg)
aseg_data = np.array(aseg.dataobj)
return aseg, aseg_data
def _import_nibabel(why='use MRI files'):
try:
import nibabel as nib
except ImportError as exp:
msg = 'nibabel is required to %s, got:\n%s' % (why, exp)
else:
msg = ''
if msg:
raise ImportError(msg)
return nib
def _reorient_image(img, axcodes='RAS'):
"""Reorient an image to a given orientation.
Parameters
----------
img : instance of SpatialImage
The MRI image.
axcodes : tuple | str
The axis codes specifying the orientation, e.g. "RAS".
See :func:`nibabel.orientations.aff2axcodes`.
Returns
-------
img_data : ndarray
The reoriented image data.
vox_ras_t : ndarray
The new transform from the new voxels to surface RAS.
Notes
-----
.. versionadded:: 0.24
"""
import nibabel as nib
orig_data = np.array(img.dataobj).astype(np.float32)
# reorient data to RAS
ornt = nib.orientations.axcodes2ornt(
nib.orientations.aff2axcodes(img.affine)).astype(int)
ras_ornt = nib.orientations.axcodes2ornt(axcodes)
ornt_trans = nib.orientations.ornt_transform(ornt, ras_ornt)
img_data = nib.orientations.apply_orientation(orig_data, ornt_trans)
orig_mgh = nib.MGHImage(orig_data, img.affine)
aff_trans = nib.orientations.inv_ornt_aff(ornt_trans, img.shape)
vox_ras_t = np.dot(orig_mgh.header.get_vox2ras_tkr(), aff_trans)
return img_data, vox_ras_t
def _mri_orientation(orientation):
"""Get MRI orientation information from an image.
Parameters
----------
orientation : str
Orientation that you want. Can be "axial", "sagittal", or "coronal".
Returns
-------
axis : int
The dimension of the axis to take slices over when plotting.
x : int
The dimension of the x axis.
y : int
The dimension of the y axis.
Notes
-----
.. versionadded:: 0.21
.. versionchanged:: 0.24
"""
_check_option('orientation', orientation, ('coronal', 'axial', 'sagittal'))
axis = dict(coronal=1, axial=2, sagittal=0)[orientation]
x, y = sorted(set([0, 1, 2]).difference(set([axis])))
return axis, x, y
def _get_mri_info_data(mri, data):
# Read the segmentation data using nibabel
if data:
_import_nibabel('load MRI atlas data')
out = dict()
_, out['vox_mri_t'], out['mri_ras_t'], dims, _, mgz = _read_mri_info(
mri, return_img=True)
out.update(
mri_width=dims[0], mri_height=dims[1],
mri_depth=dims[1], mri_volume_name=mri)
if data:
assert mgz is not None
out['mri_vox_t'] = invert_transform(out['vox_mri_t'])
out['data'] = np.asarray(mgz.dataobj)
return out
def _get_mgz_header(fname):
"""Adapted from nibabel to quickly extract header info."""
fname = _check_fname(fname, overwrite='read', must_exist=True,
name='MRI image')
if not fname.endswith('.mgz'):
raise IOError('Filename must end with .mgz')
header_dtd = [('version', '>i4'), ('dims', '>i4', (4,)),
('type', '>i4'), ('dof', '>i4'), ('goodRASFlag', '>i2'),
('delta', '>f4', (3,)), ('Mdc', '>f4', (3, 3)),
('Pxyz_c', '>f4', (3,))]
header_dtype = np.dtype(header_dtd)
with GzipFile(fname, 'rb') as fid:
hdr_str = fid.read(header_dtype.itemsize)
header = np.ndarray(shape=(), dtype=header_dtype,
buffer=hdr_str)
# dims
dims = header['dims'].astype(int)
dims = dims[:3] if len(dims) == 4 else dims
# vox2ras_tkr
delta = header['delta']
ds = np.array(delta, float)
ns = np.array(dims * ds) / 2.0
v2rtkr = np.array([[-ds[0], 0, 0, ns[0]],
[0, 0, ds[2], -ns[2]],
[0, -ds[1], 0, ns[1]],
[0, 0, 0, 1]], dtype=np.float32)
# ras2vox
d = np.diag(delta)
pcrs_c = dims / 2.0
Mdc = header['Mdc'].T
pxyz_0 = header['Pxyz_c'] - np.dot(Mdc, np.dot(d, pcrs_c))
M = np.eye(4, 4)
M[0:3, 0:3] = np.dot(Mdc, d)
M[0:3, 3] = pxyz_0.T
header = dict(dims=dims, vox2ras_tkr=v2rtkr, vox2ras=M,
zooms=header['delta'])
return header
def _get_atlas_values(vol_info, rr):
# Transform MRI coordinates (where our surfaces live) to voxels
rr_vox = apply_trans(vol_info['mri_vox_t'], rr)
good = ((rr_vox >= -.5) &
(rr_vox < np.array(vol_info['data'].shape, int) - 0.5)).all(-1)
idx = np.round(rr_vox[good].T).astype(np.int64)
values = np.full(rr.shape[0], np.nan)
values[good] = vol_info['data'][tuple(idx)]
return values
def get_volume_labels_from_aseg(mgz_fname, return_colors=False,
atlas_ids=None):
"""Return a list of names and colors of segmented volumes.
Parameters
----------
mgz_fname : str
Filename to read. Typically aseg.mgz or some variant in the freesurfer
pipeline.
return_colors : bool
If True returns also the labels colors.
atlas_ids : dict | None
A lookup table providing a mapping from region names (str) to ID values
(int). Can be None to use the standard Freesurfer LUT.
.. versionadded:: 0.21.0
Returns
-------
label_names : list of str
The names of segmented volumes included in this mgz file.
label_colors : list of str
The RGB colors of the labels included in this mgz file.
See Also
--------
read_freesurfer_lut
Notes
-----
.. versionchanged:: 0.21.0
The label names are now sorted in the same order as their corresponding
values in the MRI file.
.. versionadded:: 0.9.0
"""
import nibabel as nib
if not op.isfile(mgz_fname):
raise IOError('aseg file "%s" not found' % mgz_fname)
atlas = nib.load(mgz_fname)
data = np.asarray(atlas.dataobj) # don't need float here
want = np.unique(data)
if atlas_ids is None:
atlas_ids, colors = read_freesurfer_lut()
elif return_colors:
raise ValueError('return_colors must be False if atlas_ids are '
'provided')
# restrict to the ones in the MRI, sorted by label name
keep = np.in1d(list(atlas_ids.values()), want)
keys = sorted((key for ki, key in enumerate(atlas_ids.keys()) if keep[ki]),
key=lambda x: atlas_ids[x])
if return_colors:
colors = [colors[k] for k in keys]
out = keys, colors
else:
out = keys
return out
##############################################################################
# Head to MRI volume conversion
@verbose
def head_to_mri(pos, subject, mri_head_t, subjects_dir=None, *,
kind='mri', unscale=False, verbose=None):
"""Convert pos from head coordinate system to MRI ones.
Parameters
----------
pos : array, shape (n_pos, 3)
The coordinates (in m) in head coordinate system.
%(subject)s
mri_head_t : instance of Transform
MRI<->Head coordinate transformation.
%(subjects_dir)s
kind : str
The MRI coordinate frame kind, can be ``'mri'`` (default) for
FreeSurfer surface RAS or ``'ras'`` (default in 1.2) to use MRI RAS
(scanner RAS).
.. versionadded:: 1.2
unscale : bool
For surrogate MRIs (e.g., scaled using ``mne coreg``), if True
(default False), use the MRI scaling parameters to obtain points in
the original/surrogate subject's MRI space.
.. versionadded:: 1.2
%(verbose)s
Returns
-------
coordinates : array, shape (n_pos, 3)
The MRI RAS coordinates (in mm) of pos.
Notes
-----
This function requires nibabel.
"""
from .coreg import read_mri_cfg
_validate_type(kind, str, 'kind')
_check_option('kind', kind, ('ras', 'mri'))
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
t1_fname = op.join(subjects_dir, subject, 'mri', 'T1.mgz')
head_mri_t = _ensure_trans(mri_head_t, 'head', 'mri')
if kind == 'ras':
_, _, mri_ras_t, _, _ = _read_mri_info(t1_fname)
head_ras_t = combine_transforms(head_mri_t, mri_ras_t, 'head', 'ras')
head_dest_t = head_ras_t
else:
assert kind == 'mri'
head_dest_t = head_mri_t
pos_dest = apply_trans(head_dest_t, pos)
# unscale if requested
if unscale:
params = read_mri_cfg(subject, subjects_dir)
pos_dest /= params['scale']
pos_dest *= 1e3 # mm
return pos_dest
##############################################################################
# Surface to MNI conversion
@verbose
def vertex_to_mni(vertices, hemis, subject, subjects_dir=None, verbose=None):
"""Convert the array of vertices for a hemisphere to MNI coordinates.
Parameters
----------
vertices : int, or list of int
Vertex number(s) to convert.
hemis : int, or list of int
Hemisphere(s) the vertices belong to.
%(subject)s
subjects_dir : str, or None
Path to SUBJECTS_DIR if it is not set in the environment.
%(verbose)s
Returns
-------
coordinates : array, shape (n_vertices, 3)
The MNI coordinates (in mm) of the vertices.
"""
singleton = False
if not isinstance(vertices, list) and not isinstance(vertices, np.ndarray):
singleton = True
vertices = [vertices]
if not isinstance(hemis, list) and not isinstance(hemis, np.ndarray):
hemis = [hemis] * len(vertices)
if not len(hemis) == len(vertices):
raise ValueError('hemi and vertices must match in length')
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
surfs = [op.join(subjects_dir, subject, 'surf', '%s.white' % h)
for h in ['lh', 'rh']]
# read surface locations in MRI space
rr = [read_surface(s)[0] for s in surfs]
# take point locations in MRI space and convert to MNI coordinates
xfm = read_talxfm(subject, subjects_dir)
xfm['trans'][:3, 3] *= 1000. # m->mm
data = np.array([rr[h][v, :] for h, v in zip(hemis, vertices)])
if singleton:
data = data[0]
return apply_trans(xfm['trans'], data)
##############################################################################
# Volume to MNI conversion
@verbose
def head_to_mni(pos, subject, mri_head_t, subjects_dir=None,
verbose=None):
"""Convert pos from head coordinate system to MNI ones.
Parameters
----------
pos : array, shape (n_pos, 3)
The coordinates (in m) in head coordinate system.
%(subject)s
mri_head_t : instance of Transform
MRI<->Head coordinate transformation.
%(subjects_dir)s
%(verbose)s
Returns
-------
coordinates : array, shape (n_pos, 3)
The MNI coordinates (in mm) of pos.
Notes
-----
This function requires either nibabel.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
# before we go from head to MRI (surface RAS)
head_mni_t = combine_transforms(
_ensure_trans(mri_head_t, 'head', 'mri'),
read_talxfm(subject, subjects_dir), 'head', 'mni_tal')
return apply_trans(head_mni_t, pos) * 1000.
@verbose
def get_mni_fiducials(subject, subjects_dir=None, verbose=None):
"""Estimate fiducials for a subject.
Parameters
----------
%(subject)s
%(subjects_dir)s
%(verbose)s
Returns
-------
fids_mri : list
List of estimated fiducials (each point in a dict), in the order
LPA, nasion, RPA.
Notes
-----
This takes the ``fsaverage-fiducials.fif`` file included with MNE—which
contain the LPA, nasion, and RPA for the ``fsaverage`` subject—and
transforms them to the given FreeSurfer subject's MRI space.
The MRI of ``fsaverage`` is already in MNI Talairach space, so applying
the inverse of the given subject's MNI Talairach affine transformation
(``$SUBJECTS_DIR/$SUBJECT/mri/transforms/talairach.xfm``) is used
to estimate the subject's fiducial locations.
For more details about the coordinate systems and transformations involved,
see https://surfer.nmr.mgh.harvard.edu/fswiki/CoordinateSystems and
:ref:`tut-source-alignment`.
"""
# Eventually we might want to allow using the MNI Talairach with-skull
# transformation rather than the standard brain-based MNI Talaranch
# transformation, and/or project the points onto the head surface
# (if available).
fname_fids_fs = op.join(op.dirname(__file__), 'data',
'fsaverage', 'fsaverage-fiducials.fif')
# Read fsaverage fiducials file and subject Talairach.
fids, coord_frame = read_fiducials(fname_fids_fs)
assert coord_frame == FIFF.FIFFV_COORD_MRI
if subject == 'fsaverage':
return fids # special short-circuit for fsaverage
mni_mri_t = invert_transform(read_talxfm(subject, subjects_dir))
for f in fids:
f['r'] = apply_trans(mni_mri_t, f['r'])
return fids
@verbose
def estimate_head_mri_t(subject, subjects_dir=None, verbose=None):
"""Estimate the head->mri transform from fsaverage fiducials.
A subject's fiducials can be estimated given a Freesurfer ``recon-all``
by transforming ``fsaverage`` fiducials using the inverse Talairach
transform, see :func:`mne.coreg.get_mni_fiducials`.
Parameters
----------
%(subject)s
%(subjects_dir)s
%(verbose)s
Returns
-------
%(trans_not_none)s
"""
from .channels.montage import make_dig_montage, compute_native_head_t
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
lpa, nasion, rpa = get_mni_fiducials(subject, subjects_dir)
montage = make_dig_montage(lpa=lpa['r'], nasion=nasion['r'], rpa=rpa['r'],
coord_frame='mri')
return invert_transform(compute_native_head_t(montage))
def _ensure_image_in_surface_RAS(image, subject, subjects_dir):
"""Check if the image is in Freesurfer surface RAS space."""
import nibabel as nib
if not isinstance(image, nib.spatialimages.SpatialImage):
image = nib.load(image)
image = nib.MGHImage(image.dataobj.astype(np.float32), image.affine)
fs_img = nib.load(op.join(subjects_dir, subject, 'mri', 'brain.mgz'))
if not np.allclose(image.affine, fs_img.affine, atol=1e-6):
raise RuntimeError('The `image` is not aligned to Freesurfer '
'surface RAS space. This space is required as '
'it is the space where the anatomical '
'segmentation and reconstructed surfaces are')
return image # returns MGH image for header
@verbose
def read_lta(fname, verbose=None):
"""Read a Freesurfer linear transform array file.
Parameters
----------
fname : str | None
The transform filename.
%(verbose)s
Returns
-------
affine : ndarray
The affine transformation described by the lta file.
"""
_validate_type(fname, ('path-like', None), 'fname')
_check_fname(fname, 'read', must_exist=True)
with open(fname, 'r') as fid:
affine = np.loadtxt(fid.readlines()[5:9])
return affine
@verbose
def read_talxfm(subject, subjects_dir=None, verbose=None):
"""Compute MRI-to-MNI transform from FreeSurfer talairach.xfm file.
Parameters
----------
%(subject)s
%(subjects_dir)s
%(verbose)s
Returns
-------
mri_mni_t : instance of Transform
The affine transformation from MRI to MNI space for the subject.
"""
# Adapted from freesurfer m-files. Altered to deal with Norig
# and Torig correctly
subjects_dir = get_subjects_dir(subjects_dir)
# Setup the RAS to MNI transform
ras_mni_t = read_ras_mni_t(subject, subjects_dir)
ras_mni_t['trans'][:3, 3] /= 1000. # mm->m
# We want to get from Freesurfer surface RAS ('mri') to MNI ('mni_tal').
# This file only gives us RAS (non-zero origin) ('ras') to MNI ('mni_tal').
# Se we need to get the ras->mri transform from the MRI headers.
# To do this, we get Norig and Torig
# (i.e. vox_ras_t and vox_mri_t, respectively)
path = op.join(subjects_dir, subject, 'mri', 'orig.mgz')
if not op.isfile(path):
path = op.join(subjects_dir, subject, 'mri', 'T1.mgz')
if not op.isfile(path):
raise IOError('mri not found: %s' % path)
_, _, mri_ras_t, _, _ = _read_mri_info(path)
mri_mni_t = combine_transforms(mri_ras_t, ras_mni_t, 'mri', 'mni_tal')
return mri_mni_t
def _check_mri(mri, subject, subjects_dir):
"""Check whether an mri exists in the Freesurfer subject directory."""
_validate_type(mri, 'path-like', 'mri')
if op.isfile(mri) and op.basename(mri) != mri:
return mri
if not op.isfile(mri):
if subject is None:
raise FileNotFoundError(
f'MRI file {mri!r} not found and no subject provided')
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
mri = op.join(subjects_dir, subject, 'mri', mri)
if not op.isfile(mri):
raise FileNotFoundError(f'MRI file {mri!r} not found')
if op.basename(mri) == mri:
err = (f'Ambiguous filename - found {mri!r} in current folder.\n'
'If this is correct prefix name with relative or absolute path')
raise IOError(err)
return mri
def _read_mri_info(path, units='m', return_img=False, use_nibabel=False):
# This is equivalent but 100x slower, so only use nibabel if we need to
# (later):
if use_nibabel:
import nibabel
hdr = nibabel.load(path).header
n_orig = hdr.get_vox2ras()
t_orig = hdr.get_vox2ras_tkr()
dims = hdr.get_data_shape()
zooms = hdr.get_zooms()[:3]
else:
hdr = _get_mgz_header(path)
n_orig = hdr['vox2ras']
t_orig = hdr['vox2ras_tkr']
dims = hdr['dims']
zooms = hdr['zooms']
# extract the MRI_VOXEL to RAS (non-zero origin) transform
vox_ras_t = Transform('mri_voxel', 'ras', n_orig)
# extract the MRI_VOXEL to MRI transform
vox_mri_t = Transform('mri_voxel', 'mri', t_orig)
# construct the MRI to RAS (non-zero origin) transform
mri_ras_t = combine_transforms(
invert_transform(vox_mri_t), vox_ras_t, 'mri', 'ras')
assert units in ('m', 'mm')
if units == 'm':
conv = np.array([[1e-3, 1e-3, 1e-3, 1]]).T
# scaling and translation terms
vox_ras_t['trans'] *= conv
vox_mri_t['trans'] *= conv
# just the translation term
mri_ras_t['trans'][:, 3:4] *= conv
out = (vox_ras_t, vox_mri_t, mri_ras_t, dims, zooms)
if return_img:
nibabel = _import_nibabel()
out += (nibabel.load(path),)
return out
def read_freesurfer_lut(fname=None):
"""Read a Freesurfer-formatted LUT.
Parameters
----------
fname : str | None
The filename. Can be None to read the standard Freesurfer LUT.
Returns
-------
atlas_ids : dict
Mapping from label names to IDs.
colors : dict
Mapping from label names to colors.
"""
lut = _get_lut(fname)
names, ids = lut['name'], lut['id']
colors = np.array([lut['R'], lut['G'], lut['B'], lut['A']], float).T
atlas_ids = dict(zip(names, ids))
colors = dict(zip(names, colors))
return atlas_ids, colors
def _get_lut(fname=None):
"""Get a FreeSurfer LUT."""
_validate_type(fname, ('path-like', None), 'fname')
if fname is None:
fname = op.join(op.dirname(__file__), 'data',
'FreeSurferColorLUT.txt')
_check_fname(fname, 'read', must_exist=True)
dtype = [('id', '<i8'), ('name', 'U'),
('R', '<i8'), ('G', '<i8'), ('B', '<i8'), ('A', '<i8')]
lut = {d[0]: list() for d in dtype}
with open(fname, 'r') as fid:
for line in fid:
line = line.strip()
if line.startswith('#') or not line:
continue
line = line.split()
if len(line) != len(dtype):
raise RuntimeError(f'LUT is improperly formatted: {fname}')
for d, part in zip(dtype, line):
lut[d[0]].append(part)
lut = {d[0]: np.array(lut[d[0]], dtype=d[1]) for d in dtype}
assert len(lut['name']) > 0
return lut
@verbose
def _get_head_surface(surf, subject, subjects_dir, bem=None, verbose=None):
"""Get a head surface from the Freesurfer subject directory.
Parameters
----------
surf : str
The name of the surface 'auto', 'head', 'outer_skin', 'head-dense'
or 'seghead'.
%(subject)s
%(subjects_dir)s
bem : mne.bem.ConductorModel | None
The conductor model that stores information about the head surface.
%(verbose)s
Returns
-------
head_surf : dict | None
A dictionary with keys 'rr', 'tris', 'ntri', 'use_tris', 'np'
and 'coord_frame' that store information for mesh plotting and other
useful information about the head surface.
Notes
-----
.. versionadded: 0.24
"""
_check_option(
'surf', surf, ('auto', 'head', 'outer_skin', 'head-dense', 'seghead'))
if surf in ('auto', 'head', 'outer_skin'):
if bem is not None:
try:
return _bem_find_surface(bem, 'head')
except RuntimeError:
logger.info('Could not find the surface for '
'head in the provided BEM model, '
'looking in the subject directory.')
if subject is None:
if surf == 'auto':
return
raise ValueError('To plot the head surface, the BEM/sphere'
' model must contain a head surface '
'or "subject" must be provided (got '
'None)')
subject_dir = op.join(
get_subjects_dir(subjects_dir, raise_error=True), subject)
if surf in ('head-dense', 'seghead'):
try_fnames = [op.join(subject_dir, 'bem', f'{subject}-head-dense.fif'),
op.join(subject_dir, 'surf', 'lh.seghead')]
else:
try_fnames = [
op.join(subject_dir, 'bem', 'outer_skin.surf'),
op.join(subject_dir, 'bem', 'flash', 'outer_skin.surf'),
op.join(subject_dir, 'bem', f'{subject}-head-sparse.fif'),
op.join(subject_dir, 'bem', f'{subject}-head.fif'),
]
for fname in try_fnames:
if op.exists(fname):
logger.info(f'Using {op.basename(fname)} for head surface.')
if op.splitext(fname)[-1] == '.fif':
return read_bem_surfaces(fname, on_defects='warn')[0]
else:
return _read_mri_surface(fname)
raise IOError('No head surface found for subject '
f'{subject} after trying:\n' + '\n'.join(try_fnames))
@verbose
def _get_skull_surface(surf, subject, subjects_dir, bem=None, verbose=None):
"""Get a skull surface from the Freesurfer subject directory.
Parameters
----------
surf : str
The name of the surface 'outer' or 'inner'.
%(subject)s
%(subjects_dir)s
bem : mne.bem.ConductorModel | None
The conductor model that stores information about the skull surface.
%(verbose)s
Returns
-------
skull_surf : dict | None
A dictionary with keys 'rr', 'tris', 'ntri', 'use_tris', 'np'
and 'coord_frame' that store information for mesh plotting and other
useful information about the head surface.
Notes
-----
.. versionadded: 0.24
"""
if bem is not None:
try:
return _bem_find_surface(bem, surf + '_skull')
except RuntimeError:
logger.info('Could not find the surface for '
'skull in the provided BEM model, '
'looking in the subject directory.')
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
fname = _check_fname(op.join(subjects_dir, subject, 'bem',
surf + '_skull.surf'),
overwrite='read', must_exist=True,
name=f'{surf} skull surface')
return _read_mri_surface(fname)
def _estimate_talxfm_rigid(subject, subjects_dir):
from .coreg import fit_matched_points, _trans_from_params
xfm = read_talxfm(subject, subjects_dir)
# XYZ+origin + halfway
pts_tal = np.concatenate([np.eye(4)[:, :3], np.eye(3) * 0.5])
pts_subj = apply_trans(invert_transform(xfm), pts_tal)
# we fit with scaling enabled, but then discard it (we just need
# the rigid-body components)
params = fit_matched_points(pts_subj, pts_tal, scale=3, out='params')
rigid = _trans_from_params((True, True, False), params[:6])
return rigid
|