1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
|
# Authors: Jaakko Leppakangas <jaeilepp@student.jyu.fi>
# Robert Luke <mail@robertluke.net>
#
# License: BSD-3-Clause
from collections import OrderedDict
from datetime import datetime, timedelta, timezone
import os.path as op
import re
from copy import deepcopy
from itertools import takewhile
import json
from collections import Counter
from collections.abc import Iterable
import warnings
from textwrap import shorten
import numpy as np
from .utils import (_pl, check_fname, _validate_type, verbose, warn, logger,
_check_pandas_installed, _mask_to_onsets_offsets,
_DefaultEventParser, _check_dt, _stamp_to_dt, _dt_to_stamp,
_check_fname, int_like, _check_option, fill_doc,
_on_missing, _is_numeric, _check_dict_keys)
from .io.write import (start_block, end_block, write_float, write_name_list,
write_double, start_file, write_string)
from .io.constants import FIFF
from .io.open import fiff_open
from .io.tree import dir_tree_find
from .io.tag import read_tag
# For testing windows_like_datetime, we monkeypatch "datetime" in this module.
# Keep the true datetime object around for _validate_type use.
_datetime = datetime
def _check_o_d_s_c(onset, duration, description, ch_names):
onset = np.atleast_1d(np.array(onset, dtype=float))
if onset.ndim != 1:
raise ValueError('Onset must be a one dimensional array, got %s '
'(shape %s).'
% (onset.ndim, onset.shape))
duration = np.array(duration, dtype=float)
if duration.ndim == 0 or duration.shape == (1,):
duration = np.repeat(duration, len(onset))
if duration.ndim != 1:
raise ValueError('Duration must be a one dimensional array, '
'got %d.' % (duration.ndim,))
description = np.array(description, dtype=str)
if description.ndim == 0 or description.shape == (1,):
description = np.repeat(description, len(onset))
if description.ndim != 1:
raise ValueError('Description must be a one dimensional array, '
'got %d.' % (description.ndim,))
_prep_name_list(description, 'check', 'description')
# ch_names: convert to ndarray of tuples
_validate_type(ch_names, (None, tuple, list, np.ndarray), 'ch_names')
if ch_names is None:
ch_names = [()] * len(onset)
ch_names = list(ch_names)
for ai, ch in enumerate(ch_names):
_validate_type(ch, (list, tuple, np.ndarray), f'ch_names[{ai}]')
ch_names[ai] = tuple(ch)
for ci, name in enumerate(ch_names[ai]):
_validate_type(name, str, f'ch_names[{ai}][{ci}]')
ch_names = _ndarray_ch_names(ch_names)
if not (len(onset) == len(duration) == len(description) == len(ch_names)):
raise ValueError(
'Onset, duration, description, and ch_names must be '
f'equal in sizes, got {len(onset)}, {len(duration)}, '
f'{len(description)}, and {len(ch_names)}.')
return onset, duration, description, ch_names
def _ndarray_ch_names(ch_names):
# np.array(..., dtype=object) if all entries are empty will give
# an empty array of shape (n_entries, 0) which is not helpful. So let's
# force it to give us an array of shape (n_entries,) full of empty
# tuples
out = np.empty(len(ch_names), dtype=object)
out[:] = ch_names
return out
@fill_doc
class Annotations(object):
"""Annotation object for annotating segments of raw data.
.. note::
To convert events to `~mne.Annotations`, use
`~mne.annotations_from_events`. To convert existing `~mne.Annotations`
to events, use `~mne.events_from_annotations`.
Parameters
----------
onset : array of float, shape (n_annotations,)
The starting time of annotations in seconds after ``orig_time``.
duration : array of float, shape (n_annotations,) | float
Durations of the annotations in seconds. If a float, all the
annotations are given the same duration.
description : array of str, shape (n_annotations,) | str
Array of strings containing description for each annotation. If a
string, all the annotations are given the same description. To reject
epochs, use description starting with keyword 'bad'. See example above.
orig_time : float | str | datetime | tuple of int | None
A POSIX Timestamp, datetime or a tuple containing the timestamp as the
first element and microseconds as the second element. Determines the
starting time of annotation acquisition. If None (default),
starting time is determined from beginning of raw data acquisition.
In general, ``raw.info['meas_date']`` (or None) can be used for syncing
the annotations with raw data if their acquisition is started at the
same time. If it is a string, it should conform to the ISO8601 format.
More precisely to this '%%Y-%%m-%%d %%H:%%M:%%S.%%f' particular case of
the ISO8601 format where the delimiter between date and time is ' '.
%(ch_names_annot)s
.. versionadded:: 0.23
See Also
--------
mne.annotations_from_events
mne.events_from_annotations
Notes
-----
Annotations are added to instance of :class:`mne.io.Raw` as the attribute
:attr:`raw.annotations <mne.io.Raw.annotations>`.
To reject bad epochs using annotations, use
annotation description starting with 'bad' keyword. The epochs with
overlapping bad segments are then rejected automatically by default.
To remove epochs with blinks you can do:
>>> eog_events = mne.preprocessing.find_eog_events(raw) # doctest: +SKIP
>>> n_blinks = len(eog_events) # doctest: +SKIP
>>> onset = eog_events[:, 0] / raw.info['sfreq'] - 0.25 # doctest: +SKIP
>>> duration = np.repeat(0.5, n_blinks) # doctest: +SKIP
>>> description = ['bad blink'] * n_blinks # doctest: +SKIP
>>> annotations = mne.Annotations(onset, duration, description) # doctest: +SKIP
>>> raw.set_annotations(annotations) # doctest: +SKIP
>>> epochs = mne.Epochs(raw, events, event_id, tmin, tmax) # doctest: +SKIP
**ch_names**
Specifying channel names allows the creation of channel-specific
annotations. Once the annotations are assigned to a raw instance with
:meth:`mne.io.Raw.set_annotations`, if channels are renamed by the raw
instance, the annotation channels also get renamed. If channels are dropped
from the raw instance, any channel-specific annotation that has no channels
left in the raw instance will also be removed.
**orig_time**
If ``orig_time`` is None, the annotations are synced to the start of the
data (0 seconds). Otherwise the annotations are synced to sample 0 and
``raw.first_samp`` is taken into account the same way as with events.
When setting annotations, the following alignments
between ``raw.info['meas_date']`` and ``annotation.orig_time`` take place:
::
----------- meas_date=XX, orig_time=YY -----------------------------
| +------------------+
|______________| RAW |
| | |
| +------------------+
meas_date first_samp
.
. | +------+
. |_________| ANOT |
. | | |
. | +------+
. orig_time onset[0]
.
| +------+
|___________________| |
| | |
| +------+
orig_time onset[0]'
----------- meas_date=XX, orig_time=None ---------------------------
| +------------------+
|______________| RAW |
| | |
| +------------------+
. N +------+
. o_________| ANOT |
. n | |
. e +------+
.
| +------+
|________________________| |
| | |
| +------+
orig_time onset[0]'
----------- meas_date=None, orig_time=YY ---------------------------
N +------------------+
o______________| RAW |
n | |
e +------------------+
| +------+
|_________| ANOT |
| | |
| +------+
[[[ CRASH ]]]
----------- meas_date=None, orig_time=None -------------------------
N +------------------+
o______________| RAW |
n | |
e +------------------+
. N +------+
. o_________| ANOT |
. n | |
. e +------+
.
N +------+
o________________________| |
n | |
e +------+
orig_time onset[0]'
.. warning::
This means that when ``raw.info['meas_date'] is None``, doing
``raw.set_annotations(raw.annotations)`` will not alter ``raw`` if and
only if ``raw.first_samp == 0``. When it's non-zero,
``raw.set_annotations`` will assume that the "new" annotations refer to
the original data (with ``first_samp==0``), and will be re-referenced to
the new time offset!
**Specific annotation**
``BAD_ACQ_SKIP`` annotation leads to specific reading/writing file
behaviours. See :meth:`mne.io.read_raw_fif` and
:meth:`Raw.save() <mne.io.Raw.save>` notes for details.
""" # noqa: E501
def __init__(self, onset, duration, description,
orig_time=None, ch_names=None): # noqa: D102
self._orig_time = _handle_meas_date(orig_time)
self.onset, self.duration, self.description, self.ch_names = \
_check_o_d_s_c(onset, duration, description, ch_names)
self._sort() # ensure we're sorted
@property
def orig_time(self):
"""The time base of the Annotations."""
return self._orig_time
def __eq__(self, other):
"""Compare to another Annotations instance."""
if not isinstance(other, Annotations):
return False
return (np.array_equal(self.onset, other.onset) and
np.array_equal(self.duration, other.duration) and
np.array_equal(self.description, other.description) and
np.array_equal(self.ch_names, other.ch_names) and
self.orig_time == other.orig_time)
def __repr__(self):
"""Show the representation."""
counter = Counter(self.description)
kinds = ', '.join(['%s (%s)' % k for k in sorted(counter.items())])
kinds = (': ' if len(kinds) > 0 else '') + kinds
ch_specific = ', channel-specific' if self._any_ch_names() else ''
s = ('Annotations | %s segment%s%s%s' %
(len(self.onset), _pl(len(self.onset)), ch_specific, kinds))
return '<' + shorten(s, width=77, placeholder=' ...') + '>'
def __len__(self):
"""Return the number of annotations.
Returns
-------
n_annot : int
The number of annotations.
"""
return len(self.duration)
def __add__(self, other):
"""Add (concatencate) two Annotation objects."""
out = self.copy()
out += other
return out
def __iadd__(self, other):
"""Add (concatencate) two Annotation objects in-place.
Both annotations must have the same orig_time
"""
if len(self) == 0:
self._orig_time = other.orig_time
if self.orig_time != other.orig_time:
raise ValueError("orig_time should be the same to "
"add/concatenate 2 annotations "
"(got %s != %s)" % (self.orig_time,
other.orig_time))
return self.append(other.onset, other.duration, other.description,
other.ch_names)
def __iter__(self):
"""Iterate over the annotations."""
for idx in range(len(self.onset)):
yield self.__getitem__(idx)
def __getitem__(self, key):
"""Propagate indexing and slicing to the underlying numpy structure."""
if isinstance(key, int_like):
out_keys = ('onset', 'duration', 'description', 'orig_time')
out_vals = (self.onset[key], self.duration[key],
self.description[key], self.orig_time)
if self._any_ch_names():
out_keys += ('ch_names',)
out_vals += (self.ch_names[key],)
return OrderedDict(zip(out_keys, out_vals))
else:
key = list(key) if isinstance(key, tuple) else key
return Annotations(onset=self.onset[key],
duration=self.duration[key],
description=self.description[key],
orig_time=self.orig_time,
ch_names=self.ch_names[key])
@fill_doc
def append(self, onset, duration, description, ch_names=None):
"""Add an annotated segment. Operates inplace.
Parameters
----------
onset : float | array-like
Annotation time onset from the beginning of the recording in
seconds.
duration : float | array-like
Duration of the annotation in seconds.
description : str | array-like
Description for the annotation. To reject epochs, use description
starting with keyword 'bad'.
%(ch_names_annot)s
.. versionadded:: 0.23
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
The array-like support for arguments allows this to be used similarly
to not only ``list.append``, but also
`list.extend <https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types>`__.
""" # noqa: E501
onset, duration, description, ch_names = _check_o_d_s_c(
onset, duration, description, ch_names)
self.onset = np.append(self.onset, onset)
self.duration = np.append(self.duration, duration)
self.description = np.append(self.description, description)
self.ch_names = np.append(self.ch_names, ch_names)
self._sort()
return self
def copy(self):
"""Return a copy of the Annotations.
Returns
-------
inst : instance of Annotations
A copy of the object.
"""
return deepcopy(self)
def delete(self, idx):
"""Remove an annotation. Operates inplace.
Parameters
----------
idx : int | array-like of int
Index of the annotation to remove. Can be array-like to
remove multiple indices.
"""
self.onset = np.delete(self.onset, idx)
self.duration = np.delete(self.duration, idx)
self.description = np.delete(self.description, idx)
self.ch_names = np.delete(self.ch_names, idx)
def to_data_frame(self):
"""Export annotations in tabular structure as a pandas DataFrame.
Returns
-------
result : pandas.DataFrame
Returns a pandas DataFrame with onset, duration, and
description columns. A column named ch_names is added if any
annotations are channel-specific.
"""
pd = _check_pandas_installed(strict=True)
dt = _handle_meas_date(self.orig_time)
if dt is None:
dt = _handle_meas_date(0)
dt = dt.replace(tzinfo=None)
onsets_dt = [dt + timedelta(seconds=o) for o in self.onset]
df = dict(onset=onsets_dt, duration=self.duration,
description=self.description)
if self._any_ch_names():
df.update(ch_names=self.ch_names)
df = pd.DataFrame(df)
return df
def _any_ch_names(self):
return any(len(ch) for ch in self.ch_names)
def _prune_ch_names(self, info, on_missing):
# this prunes channel names and if a given channel-specific annotation
# no longer has any channels left, it gets dropped
keep = set(info['ch_names'])
ch_names = self.ch_names
warned = False
drop_idx = list()
for ci, ch in enumerate(ch_names):
if len(ch):
names = list()
for name in ch:
if name not in keep:
if not warned:
_on_missing(
on_missing, 'At least one channel name in '
f'annotations missing from info: {name}')
warned = True
else:
names.append(name)
ch_names[ci] = tuple(names)
if not len(ch_names[ci]):
drop_idx.append(ci)
if len(drop_idx):
self.delete(drop_idx)
return self
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save annotations to FIF, CSV or TXT.
Typically annotations get saved in the FIF file for raw data
(e.g., as ``raw.annotations``), but this offers the possibility
to also save them to disk separately in different file formats
which are easier to share between packages.
Parameters
----------
fname : str
The filename to use.
%(overwrite)s
.. versionadded:: 0.23
%(verbose)s
Notes
-----
The format of the information stored in the saved annotation objects
depends on the chosen file format. :file:`.csv` files store the onset
as timestamps (e.g., ``2002-12-03 19:01:56.676071``),
whereas :file:`.txt` files store onset as seconds since start of the
recording (e.g., ``45.95597082905339``).
"""
check_fname(fname, 'annotations', ('-annot.fif', '-annot.fif.gz',
'_annot.fif', '_annot.fif.gz',
'.txt', '.csv'))
fname = _check_fname(fname, overwrite=overwrite)
if fname.endswith(".txt"):
_write_annotations_txt(fname, self)
elif fname.endswith(".csv"):
_write_annotations_csv(fname, self)
else:
with start_file(fname) as fid:
_write_annotations(fid, self)
def _sort(self):
"""Sort in place."""
# instead of argsort here we use sorted so that it gives us
# the onset-then-duration hierarchy
vals = sorted(zip(self.onset, self.duration, range(len(self))))
order = list(list(zip(*vals))[-1]) if len(vals) else []
self.onset = self.onset[order]
self.duration = self.duration[order]
self.description = self.description[order]
self.ch_names = self.ch_names[order]
@verbose
def crop(self, tmin=None, tmax=None, emit_warning=False,
use_orig_time=True, verbose=None):
"""Remove all annotation that are outside of [tmin, tmax].
The method operates inplace.
Parameters
----------
tmin : float | datetime | None
Start time of selection in seconds.
tmax : float | datetime | None
End time of selection in seconds.
emit_warning : bool
Whether to emit warnings when limiting or omitting annotations.
Defaults to False.
use_orig_time : bool
Whether to use orig_time as an offset.
Defaults to True.
%(verbose)s
Returns
-------
self : instance of Annotations
The cropped Annotations object.
"""
if len(self) == 0:
return self # no annotations, nothing to do
if not use_orig_time or self.orig_time is None:
offset = _handle_meas_date(0)
else:
offset = self.orig_time
if tmin is None:
tmin = timedelta(seconds=self.onset.min()) + offset
if tmax is None:
tmax = timedelta(
seconds=(self.onset + self.duration).max()) + offset
for key, val in [('tmin', tmin), ('tmax', tmax)]:
_validate_type(val, ('numeric', _datetime), key,
'numeric, datetime, or None')
absolute_tmin = _handle_meas_date(tmin)
absolute_tmax = _handle_meas_date(tmax)
del tmin, tmax
if absolute_tmin > absolute_tmax:
raise ValueError('tmax should be greater than or equal to tmin '
'(%s < %s).' % (absolute_tmin, absolute_tmax))
logger.debug('Cropping annotations %s - %s' % (absolute_tmin,
absolute_tmax))
onsets, durations, descriptions, ch_names = [], [], [], []
out_of_bounds, clip_left_elem, clip_right_elem = [], [], []
for idx, (onset, duration, description, ch) in enumerate(zip(
self.onset, self.duration, self.description, self.ch_names)):
# if duration is NaN behave like a zero
if np.isnan(duration):
duration = 0.
# convert to absolute times
absolute_onset = timedelta(seconds=onset) + offset
absolute_offset = absolute_onset + timedelta(seconds=duration)
out_of_bounds.append(
absolute_onset > absolute_tmax or
absolute_offset < absolute_tmin)
if out_of_bounds[-1]:
clip_left_elem.append(False)
clip_right_elem.append(False)
logger.debug(
f' [{idx}] Dropping '
f'({absolute_onset} - {absolute_offset}: {description})')
else:
# clip the left side
clip_left_elem.append(absolute_onset < absolute_tmin)
if clip_left_elem[-1]:
absolute_onset = absolute_tmin
clip_right_elem.append(absolute_offset > absolute_tmax)
if clip_right_elem[-1]:
absolute_offset = absolute_tmax
if clip_left_elem[-1] or clip_right_elem[-1]:
durations.append(
(absolute_offset - absolute_onset).total_seconds())
else:
durations.append(duration)
onsets.append(
(absolute_onset - offset).total_seconds())
logger.debug(
f' [{idx}] Keeping '
f'({absolute_onset} - {absolute_offset} -> '
f'{onset} - {onset + duration})')
descriptions.append(description)
ch_names.append(ch)
logger.debug(f'Cropping complete (kept {len(onsets)})')
self.onset = np.array(onsets, float)
self.duration = np.array(durations, float)
assert (self.duration >= 0).all()
self.description = np.array(descriptions, dtype=str)
self.ch_names = _ndarray_ch_names(ch_names)
if emit_warning:
omitted = np.array(out_of_bounds).sum()
if omitted > 0:
warn('Omitted %s annotation(s) that were outside data'
' range.' % omitted)
limited = (np.array(clip_left_elem) |
np.array(clip_right_elem)).sum()
if limited > 0:
warn('Limited %s annotation(s) that were expanding outside the'
' data range.' % limited)
return self
@verbose
def set_durations(self, mapping, verbose=None):
"""Set annotation duration(s). Operates inplace.
Parameters
----------
mapping : dict | float
A dictionary mapping the annotation description to a duration in
seconds e.g. ``{'ShortStimulus' : 3, 'LongStimulus' : 12}``.
Alternatively, if a number is provided, then all annotations
durations are set to the single provided value.
%(verbose)s
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
.. versionadded:: 0.24.0
"""
_validate_type(mapping, (int, float, dict))
if isinstance(mapping, dict):
_check_dict_keys(mapping, self.description,
valid_key_source="data",
key_description="Annotation description(s)")
for stim in mapping:
map_idx = [desc == stim for desc in self.description]
self.duration[map_idx] = mapping[stim]
elif _is_numeric(mapping):
self.duration = np.ones(self.description.shape) * mapping
else:
raise ValueError("Setting durations requires the mapping of "
"descriptions to times to be provided as a dict. "
f"Instead {type(mapping)} was provided.")
return self
@verbose
def rename(self, mapping, verbose=None):
"""Rename annotation description(s). Operates inplace.
Parameters
----------
mapping : dict
A dictionary mapping the old description to a new description,
e.g. {'1.0' : 'Control', '2.0' : 'Stimulus'}.
%(verbose)s
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
.. versionadded:: 0.24.0
"""
_validate_type(mapping, dict)
_check_dict_keys(mapping, self.description, valid_key_source="data",
key_description="Annotation description(s)")
for old, new in mapping.items():
self.description = [d.replace(old, new) for d in self.description]
self.description = np.array(self.description)
return self
class EpochAnnotationsMixin:
"""Mixin class for Annotations in Epochs."""
@property
def annotations(self): # noqa: D102
return self._annotations
@verbose
def set_annotations(self, annotations, on_missing='raise', *,
verbose=None):
"""Setter for Epoch annotations from Raw.
This method does not handle offsetting the times based
on first_samp or measurement dates, since that is expected
to occur in Raw.set_annotations().
Parameters
----------
annotations : instance of mne.Annotations | None
Annotations to set.
%(on_missing_ch_names)s
%(verbose)s
Returns
-------
self : instance of Epochs
The epochs object with annotations.
Notes
-----
Annotation onsets and offsets are stored as time in seconds (not as
sample numbers).
If you have an ``-epo.fif`` file saved to disk created before 1.0,
annotations can be added correctly only if no decimation or
resampling was performed. We thus suggest to regenerate your
:class:`mne.Epochs` from raw and re-save to disk with 1.0+ if you
want to safely work with :class:`~mne.Annotations` in epochs.
Since this method does not handle offsetting the times based
on first_samp or measurement dates, the recommended way to add
Annotations is::
raw.set_annotations(annotations)
annotations = raw.annotations
epochs.set_annotations(annotations)
.. versionadded:: 1.0
"""
_validate_type(annotations, (Annotations, None), 'annotations')
if annotations is None:
self._annotations = None
else:
if getattr(self, '_unsafe_annot_add', False):
warn('Adding annotations to Epochs created (and saved to '
'disk) before 1.0 will yield incorrect results if '
'decimation or resampling was performed on the instance, '
'we recommend regenerating the Epochs and re-saving them '
'to disk')
new_annotations = annotations.copy()
new_annotations._prune_ch_names(self.info, on_missing)
self._annotations = new_annotations
return self
def get_annotations_per_epoch(self):
"""Get a list of annotations that occur during each epoch.
Returns
-------
epoch_annots : list
A list of lists (with length equal to number of epochs) where each
inner list contains any annotations that overlap the corresponding
epoch. Annotations are stored as a :class:`tuple` of onset,
duration, description (not as a :class:`~mne.Annotations` object),
where the onset is now relative to time=0 of the epoch, rather than
time=0 of the original continuous (raw) data.
"""
# create a list of annotations for each epoch
epoch_annot_list = [[] for _ in range(len(self.events))]
# check if annotations exist
if self.annotations is None:
return epoch_annot_list
# when each epoch and annotation starts/stops
# no need to account for first_samp here...
epoch_tzeros = self.events[:, 0] / self._raw_sfreq
epoch_starts, epoch_stops = np.atleast_2d(
epoch_tzeros) + np.atleast_2d(self.times[[0, -1]]).T
# ... because first_samp isn't accounted for here either
annot_starts = self._annotations.onset
annot_stops = annot_starts + self._annotations.duration
# the first two cases (annot_straddles_epoch_{start|end}) will both
# (redundantly) capture cases where an annotation fully encompasses
# an epoch (e.g., annot from 1-4s, epoch from 2-3s). The redundancy
# doesn't matter because results are summed and then cast to bool (all
# we care about is presence/absence of overlap).
annot_straddles_epoch_start = np.logical_and(
np.atleast_2d(epoch_starts) >= np.atleast_2d(annot_starts).T,
np.atleast_2d(epoch_starts) < np.atleast_2d(annot_stops).T)
annot_straddles_epoch_end = np.logical_and(
np.atleast_2d(epoch_stops) > np.atleast_2d(annot_starts).T,
np.atleast_2d(epoch_stops) <= np.atleast_2d(annot_stops).T)
# this captures the only remaining case we care about: annotations
# fully contained within an epoch (or exactly coextensive with it).
annot_fully_within_epoch = np.logical_and(
np.atleast_2d(epoch_starts) <= np.atleast_2d(annot_starts).T,
np.atleast_2d(epoch_stops) >= np.atleast_2d(annot_stops).T)
# combine all cases to get array of shape (n_annotations, n_epochs).
# Nonzero entries indicate overlap between the corresponding
# annotation (row index) and epoch (column index).
all_cases = (annot_straddles_epoch_start +
annot_straddles_epoch_end +
annot_fully_within_epoch)
# for each Epoch-Annotation overlap occurrence:
for annot_ix, epo_ix in zip(*np.nonzero(all_cases)):
this_annot = self._annotations[annot_ix]
this_tzero = epoch_tzeros[epo_ix]
# adjust annotation onset to be relative to epoch tzero...
annot = (this_annot['onset'] - this_tzero,
this_annot['duration'],
this_annot['description'])
# ...then add it to the correct sublist of `epoch_annot_list`
epoch_annot_list[epo_ix].append(annot)
return epoch_annot_list
def add_annotations_to_metadata(self, overwrite=False):
"""Add raw annotations into the Epochs metadata data frame.
Adds three columns to the ``metadata`` consisting of a list
in each row:
- ``annot_onset``: the onset of each Annotation within
the Epoch relative to the start time of the Epoch (in seconds).
- ``annot_duration``: the duration of each Annotation
within the Epoch in seconds.
- ``annot_description``: the free-form text description of each
Annotation.
Parameters
----------
overwrite : bool
Whether to overwrite existing columns in metadata or not.
Default is False.
Returns
-------
self : instance of Epochs
The modified instance (instance is also modified inplace).
Notes
-----
.. versionadded:: 1.0
"""
pd = _check_pandas_installed()
# check if annotations exist
if self.annotations is None:
warn(f'There were no Annotations stored in {self}, so '
'metadata was not modified.')
return self
# get existing metadata DataFrame or instantiate an empty one
if self._metadata is not None:
metadata = self._metadata
else:
data = np.empty((len(self.events), 0))
metadata = pd.DataFrame(data=data)
if any(name in metadata.columns for name in
['annot_onset', 'annot_duration', 'annot_description']) and \
not overwrite:
raise RuntimeError(
'Metadata for Epochs already contains columns '
'"annot_onset", "annot_duration", or "annot_description".')
# get the Epoch annotations, then convert to separate lists for
# onsets, durations, and descriptions
epoch_annot_list = self.get_annotations_per_epoch()
onset, duration, description = [], [], []
for epoch_annot in epoch_annot_list:
for ix, annot_prop in enumerate((onset, duration, description)):
entry = [annot[ix] for annot in epoch_annot]
# round onset and duration to avoid IO round trip mismatch
if ix < 2:
entry = np.round(entry, decimals=12).tolist()
annot_prop.append(entry)
# Create a new Annotations column that is instantiated as an empty
# list per Epoch.
metadata['annot_onset'] = pd.Series(onset)
metadata['annot_duration'] = pd.Series(duration)
metadata['annot_description'] = pd.Series(description)
# reset the metadata
self.metadata = metadata
return self
def _combine_annotations(one, two, one_n_samples, one_first_samp,
two_first_samp, sfreq):
"""Combine a tuple of annotations."""
assert one is not None
assert two is not None
shift = one_n_samples / sfreq # to the right by the number of samples
shift += one_first_samp / sfreq # to the right by the offset
shift -= two_first_samp / sfreq # undo its offset
onset = np.concatenate([one.onset, two.onset + shift])
duration = np.concatenate([one.duration, two.duration])
description = np.concatenate([one.description, two.description])
ch_names = np.concatenate([one.ch_names, two.ch_names])
return Annotations(onset, duration, description, one.orig_time, ch_names)
def _handle_meas_date(meas_date):
"""Convert meas_date to datetime or None.
If `meas_date` is a string, it should conform to the ISO8601 format.
More precisely to this '%Y-%m-%d %H:%M:%S.%f' particular case of the
ISO8601 format where the delimiter between date and time is ' '.
Note that ISO8601 allows for ' ' or 'T' as delimiters between date and
time.
"""
if isinstance(meas_date, str):
ACCEPTED_ISO8601 = '%Y-%m-%d %H:%M:%S.%f'
try:
meas_date = datetime.strptime(meas_date, ACCEPTED_ISO8601)
except ValueError:
meas_date = None
else:
meas_date = meas_date.replace(tzinfo=timezone.utc)
elif isinstance(meas_date, tuple):
# old way
meas_date = _stamp_to_dt(meas_date)
if meas_date is not None:
if np.isscalar(meas_date):
# It would be nice just to do:
#
# meas_date = datetime.fromtimestamp(meas_date, timezone.utc)
#
# But Windows does not like timestamps < 0. So we'll use
# our specialized wrapper instead:
meas_date = np.array(np.modf(meas_date)[::-1])
meas_date *= [1, 1e6]
meas_date = _stamp_to_dt(np.round(meas_date))
_check_dt(meas_date) # run checks
return meas_date
def _sync_onset(raw, onset, inverse=False):
"""Adjust onsets in relation to raw data."""
offset = (-1 if inverse else 1) * raw._first_time
assert raw.info['meas_date'] == raw.annotations.orig_time
annot_start = onset - offset
return annot_start
def _annotations_starts_stops(raw, kinds, name='skip_by_annotation',
invert=False):
"""Get starts and stops from given kinds.
onsets and ends are inclusive.
"""
_validate_type(kinds, (str, list, tuple), name)
if isinstance(kinds, str):
kinds = [kinds]
else:
for kind in kinds:
_validate_type(kind, 'str', "All entries")
if len(raw.annotations) == 0:
onsets, ends = np.array([], int), np.array([], int)
else:
idxs = [idx for idx, desc in enumerate(raw.annotations.description)
if any(desc.upper().startswith(kind.upper())
for kind in kinds)]
# onsets are already sorted
onsets = raw.annotations.onset[idxs]
onsets = _sync_onset(raw, onsets)
ends = onsets + raw.annotations.duration[idxs]
onsets = raw.time_as_index(onsets, use_rounding=True)
ends = raw.time_as_index(ends, use_rounding=True)
assert (onsets <= ends).all() # all durations >= 0
if invert:
# We need to eliminate overlaps here, otherwise wacky things happen,
# so we carefully invert the relationship
mask = np.zeros(len(raw.times), bool)
for onset, end in zip(onsets, ends):
mask[onset:end] = True
mask = ~mask
extras = (onsets == ends)
extra_onsets, extra_ends = onsets[extras], ends[extras]
onsets, ends = _mask_to_onsets_offsets(mask)
# Keep ones where things were exactly equal
del extras
# we could do this with a np.insert+np.searchsorted, but our
# ordered-ness should get us it for free
onsets = np.sort(np.concatenate([onsets, extra_onsets]))
ends = np.sort(np.concatenate([ends, extra_ends]))
assert (onsets <= ends).all()
return onsets, ends
def _prep_name_list(lst, operation, name='description'):
if operation == 'check':
if any(['{COLON}' in val for val in lst]):
raise ValueError(
f'The substring "{{COLON}}" in {name} not supported.')
elif operation == 'write':
# take a list of strings and return a sanitized string
return ':'.join(val.replace(':', '{COLON}') for val in lst)
else:
# take a sanitized string and return a list of strings
assert operation == 'read'
assert isinstance(lst, str)
if not len(lst):
return []
return [val.replace('{COLON}', ':') for val in lst.split(':')]
def _write_annotations(fid, annotations):
"""Write annotations."""
start_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, annotations.onset)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX,
annotations.duration + annotations.onset)
write_name_list(fid, FIFF.FIFF_COMMENT, _prep_name_list(
annotations.description, 'write').split(':'))
if annotations.orig_time is not None:
write_double(fid, FIFF.FIFF_MEAS_DATE,
_dt_to_stamp(annotations.orig_time))
if annotations._any_ch_names():
write_string(fid, FIFF.FIFF_MNE_EPOCHS_DROP_LOG,
json.dumps(tuple(annotations.ch_names)))
end_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS)
def _write_annotations_csv(fname, annot):
annot = annot.to_data_frame()
if 'ch_names' in annot:
annot['ch_names'] = [
_prep_name_list(ch, 'write') for ch in annot['ch_names']]
annot.to_csv(fname, index=False)
def _write_annotations_txt(fname, annot):
content = "# MNE-Annotations\n"
if annot.orig_time is not None:
# for backward compat, we do not write tzinfo (assumed UTC)
content += f"# orig_time : {annot.orig_time.replace(tzinfo=None)}\n"
content += "# onset, duration, description"
data = [annot.onset, annot.duration, annot.description]
if annot._any_ch_names():
content += ', ch_names'
data.append([_prep_name_list(ch, 'write') for ch in annot.ch_names])
content += '\n'
data = np.array(data, dtype=str).T
assert data.ndim == 2
assert data.shape[0] == len(annot.onset)
assert data.shape[1] in (3, 4)
with open(fname, 'wb') as fid:
fid.write(content.encode())
np.savetxt(fid, data, delimiter=',', fmt="%s")
def read_annotations(fname, sfreq='auto', uint16_codec=None):
r"""Read annotations from a file.
This function reads a .fif, .fif.gz, .vmrk, .amrk, .edf, .txt, .csv, .cnt,
.cef, or .set file and makes an :class:`mne.Annotations` object.
Parameters
----------
fname : str
The filename.
sfreq : float | 'auto'
The sampling frequency in the file. This parameter is necessary for
\*.vmrk, \*.amrk, and \*.cef files as Annotations are expressed in
seconds and \*.vmrk/\*.amrk/\*.cef files are in samples. For any other
file format, ``sfreq`` is omitted. If set to 'auto' then the ``sfreq``
is taken from the respective info file of the same name with according
file extension (\*.vhdr/\*.ahdr for brainvision; \*.dap for Curry 7;
\*.cdt.dpa for Curry 8). So data.vmrk/amrk looks for sfreq in
data.vhdr/ahdr, data.cef looks in data.dap and data.cdt.cef looks in
data.cdt.dpa.
uint16_codec : str | None
This parameter is only used in EEGLAB (\*.set) and omitted otherwise.
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
'latin1' or 'utf-8') should be used when reading character arrays and
can therefore help you solve this problem.
Returns
-------
annot : instance of Annotations | None
The annotations.
Notes
-----
The annotations stored in a .csv require the onset columns to be
timestamps. If you have onsets as floats (in seconds), you should use the
.txt extension.
"""
from .io.brainvision.brainvision import _read_annotations_brainvision
from .io.eeglab.eeglab import _read_annotations_eeglab
from .io.edf.edf import _read_annotations_edf
from .io.cnt.cnt import _read_annotations_cnt
from .io.curry.curry import _read_annotations_curry
from .io.ctf.markers import _read_annotations_ctf
_validate_type(fname, 'path-like', 'fname')
fname = _check_fname(
fname, overwrite='read', must_exist=True,
need_dir=str(fname).endswith('.ds'), # for CTF
name='fname')
name = op.basename(fname)
if name.endswith(('fif', 'fif.gz')):
# Read FiF files
ff, tree, _ = fiff_open(fname, preload=False)
with ff as fid:
annotations = _read_annotations_fif(fid, tree)
elif name.endswith('txt'):
orig_time = _read_annotations_txt_parse_header(fname)
onset, duration, description, ch_names = _read_annotations_txt(fname)
annotations = Annotations(onset=onset, duration=duration,
description=description, orig_time=orig_time,
ch_names=ch_names)
elif name.endswith(('vmrk', 'amrk')):
annotations = _read_annotations_brainvision(fname, sfreq=sfreq)
elif name.endswith('csv'):
annotations = _read_annotations_csv(fname)
elif name.endswith('cnt'):
annotations = _read_annotations_cnt(fname)
elif name.endswith('ds'):
annotations = _read_annotations_ctf(fname)
elif name.endswith('cef'):
annotations = _read_annotations_curry(fname, sfreq=sfreq)
elif name.endswith('set'):
annotations = _read_annotations_eeglab(fname,
uint16_codec=uint16_codec)
elif name.endswith(('edf', 'bdf', 'gdf')):
onset, duration, description = _read_annotations_edf(fname)
onset = np.array(onset, dtype=float)
duration = np.array(duration, dtype=float)
annotations = Annotations(onset=onset, duration=duration,
description=description,
orig_time=None)
elif name.startswith('events_') and fname.endswith('mat'):
annotations = _read_brainstorm_annotations(fname)
else:
raise IOError('Unknown annotation file format "%s"' % fname)
if annotations is None:
raise IOError('No annotation data found in file "%s"' % fname)
return annotations
def _read_annotations_csv(fname):
"""Read annotations from csv.
Parameters
----------
fname : str
The filename.
Returns
-------
annot : instance of Annotations
The annotations.
"""
pd = _check_pandas_installed(strict=True)
df = pd.read_csv(fname, keep_default_na=False)
orig_time = df['onset'].values[0]
try:
float(orig_time)
warn('It looks like you have provided annotation onsets as floats. '
'These will be interpreted as MILLISECONDS. If that is not what '
'you want, save your CSV as a TXT file; the TXT reader accepts '
'onsets in seconds.')
except ValueError:
pass
onset_dt = pd.to_datetime(df['onset'])
onset = (onset_dt - onset_dt[0]).dt.total_seconds()
duration = df['duration'].values.astype(float)
description = df['description'].values
ch_names = None
if 'ch_names' in df.columns:
ch_names = [_prep_name_list(val, 'read')
for val in df['ch_names'].values]
return Annotations(onset, duration, description, orig_time, ch_names)
def _read_brainstorm_annotations(fname, orig_time=None):
"""Read annotations from a Brainstorm events_ file.
Parameters
----------
fname : str
The filename
orig_time : float | int | instance of datetime | array of int | None
A POSIX Timestamp, datetime or an array containing the timestamp as the
first element and microseconds as the second element. Determines the
starting time of annotation acquisition. If None (default),
starting time is determined from beginning of raw data acquisition.
In general, ``raw.info['meas_date']`` (or None) can be used for syncing
the annotations with raw data if their acquisition is started at the
same time.
Returns
-------
annot : instance of Annotations | None
The annotations.
"""
from scipy import io
def get_duration_from_times(t):
return t[1] - t[0] if t.shape[0] == 2 else np.zeros(len(t[0]))
annot_data = io.loadmat(fname)
onsets, durations, descriptions = (list(), list(), list())
for label, _, _, _, times, _, _ in annot_data['events'][0]:
onsets.append(times[0])
durations.append(get_duration_from_times(times))
n_annot = len(times[0])
descriptions += [str(label[0])] * n_annot
return Annotations(onset=np.concatenate(onsets),
duration=np.concatenate(durations),
description=descriptions,
orig_time=orig_time)
def _is_iso8601(candidate_str):
ISO8601 = r'^\d{4}-\d{2}-\d{2}[ T]\d{2}:\d{2}:\d{2}\.\d{6}$'
return re.compile(ISO8601).match(candidate_str) is not None
def _read_annotations_txt_parse_header(fname):
def is_orig_time(x):
return x.startswith('# orig_time :')
with open(fname) as fid:
header = list(takewhile(lambda x: x.startswith('#'), fid))
orig_values = [h[13:].strip() for h in header if is_orig_time(h)]
orig_values = [_handle_meas_date(orig) for orig in orig_values
if _is_iso8601(orig)]
return None if not orig_values else orig_values[0]
def _read_annotations_txt(fname):
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
out = np.loadtxt(fname, delimiter=',',
dtype=np.bytes_, unpack=True)
ch_names = None
if len(out) == 0:
onset, duration, desc = [], [], []
else:
_check_option('text header', len(out), (3, 4))
if len(out) == 3:
onset, duration, desc = out
else:
onset, duration, desc, ch_names = out
onset = [float(o.decode()) for o in np.atleast_1d(onset)]
duration = [float(d.decode()) for d in np.atleast_1d(duration)]
desc = [str(d.decode()).strip() for d in np.atleast_1d(desc)]
if ch_names is not None:
ch_names = [_prep_name_list(ch.decode().strip(), 'read')
for ch in ch_names]
return onset, duration, desc, ch_names
def _read_annotations_fif(fid, tree):
"""Read annotations."""
annot_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ANNOTATIONS)
if len(annot_data) == 0:
annotations = None
else:
annot_data = annot_data[0]
orig_time = ch_names = None
onset, duration, description = list(), list(), list()
for ent in annot_data['directory']:
kind = ent.kind
pos = ent.pos
tag = read_tag(fid, pos)
if kind == FIFF.FIFF_MNE_BASELINE_MIN:
onset = tag.data
onset = list() if onset is None else onset
elif kind == FIFF.FIFF_MNE_BASELINE_MAX:
duration = tag.data
duration = list() if duration is None else duration - onset
elif kind == FIFF.FIFF_COMMENT:
description = _prep_name_list(tag.data, 'read')
elif kind == FIFF.FIFF_MEAS_DATE:
orig_time = tag.data
try:
orig_time = float(orig_time) # old way
except TypeError:
orig_time = tuple(orig_time) # new way
elif kind == FIFF.FIFF_MNE_EPOCHS_DROP_LOG:
ch_names = tuple(tuple(x) for x in json.loads(tag.data))
assert len(onset) == len(duration) == len(description)
annotations = Annotations(onset, duration, description,
orig_time, ch_names)
return annotations
def _select_annotations_based_on_description(descriptions, event_id, regexp):
"""Get a collection of descriptions and returns index of selected."""
regexp_comp = re.compile('.*' if regexp is None else regexp)
event_id_ = dict()
dropped = []
# Iterate over the sorted descriptions so that the Counter mapping
# is slightly less arbitrary
for desc in sorted(descriptions):
if desc in event_id_:
continue
if regexp_comp.match(desc) is None:
continue
if isinstance(event_id, dict):
if desc in event_id:
event_id_[desc] = event_id[desc]
else:
continue
else:
trigger = event_id(desc)
if trigger is not None:
event_id_[desc] = trigger
else:
dropped.append(desc)
event_sel = [ii for ii, kk in enumerate(descriptions)
if kk in event_id_]
if len(event_sel) == 0 and regexp is not None:
raise ValueError('Could not find any of the events you specified.')
return event_sel, event_id_
def _select_events_based_on_id(events, event_desc):
"""Get a collection of events and returns index of selected."""
event_desc_ = dict()
func = event_desc.get if isinstance(event_desc, dict) else event_desc
event_ids = events[np.unique(events[:, 2], return_index=True)[1], 2]
for e in event_ids:
trigger = func(e)
if trigger is not None:
event_desc_[e] = trigger
event_sel = [ii for ii, e in enumerate(events) if e[2] in event_desc_]
if len(event_sel) == 0:
raise ValueError('Could not find any of the events you specified.')
return event_sel, event_desc_
def _check_event_id(event_id, raw):
from .io.brainvision.brainvision import _BVEventParser
from .io.brainvision.brainvision import _check_bv_annot
from .io.brainvision.brainvision import RawBrainVision
from .io import RawFIF, RawArray
if event_id is None:
return _DefaultEventParser()
elif event_id == 'auto':
if isinstance(raw, RawBrainVision):
return _BVEventParser()
elif (isinstance(raw, (RawFIF, RawArray)) and
_check_bv_annot(raw.annotations.description)):
logger.info('Non-RawBrainVision raw using branvision markers')
return _BVEventParser()
else:
return _DefaultEventParser()
elif callable(event_id) or isinstance(event_id, dict):
return event_id
else:
raise ValueError('Invalid type for event_id (should be None, str, '
'dict or callable). Got {}'.format(type(event_id)))
def _check_event_description(event_desc, events):
"""Check event_id and convert to default format."""
if event_desc is None: # convert to int to make typing-checks happy
event_desc = list(np.unique(events[:, 2]))
if isinstance(event_desc, dict):
for val in event_desc.values():
_validate_type(val, (str, None), 'Event names')
elif isinstance(event_desc, Iterable):
event_desc = np.asarray(event_desc)
if event_desc.ndim != 1:
raise ValueError('event_desc must be 1D, got shape {}'.format(
event_desc.shape))
event_desc = dict(zip(event_desc, map(str, event_desc)))
elif callable(event_desc):
pass
else:
raise ValueError('Invalid type for event_desc (should be None, list, '
'1darray, dict or callable). Got {}'.format(
type(event_desc)))
return event_desc
@verbose
def events_from_annotations(raw, event_id="auto",
regexp=r'^(?![Bb][Aa][Dd]|[Ee][Dd][Gg][Ee]).*$',
use_rounding=True, chunk_duration=None,
verbose=None):
"""Get :term:`events` and ``event_id`` from an Annotations object.
Parameters
----------
raw : instance of Raw
The raw data for which Annotations are defined.
event_id : dict | callable | None | 'auto'
Can be:
- **dict**: map descriptions (keys) to integer event codes (values).
Only the descriptions present will be mapped, others will be ignored.
- **callable**: must take a string input and return an integer event
code, or return ``None`` to ignore the event.
- **None**: Map descriptions to unique integer values based on their
``sorted`` order.
- **'auto' (default)**: prefer a raw-format-specific parser:
- Brainvision: map stimulus events to their integer part; response
events to integer part + 1000; optic events to integer part + 2000;
'SyncStatus/Sync On' to 99998; 'New Segment/' to 99999;
all others like ``None`` with an offset of 10000.
- Other raw formats: Behaves like None.
.. versionadded:: 0.18
regexp : str | None
Regular expression used to filter the annotations whose
descriptions is a match. The default ignores descriptions beginning
``'bad'`` or ``'edge'`` (case-insensitive).
.. versionchanged:: 0.18
Default ignores bad and edge descriptions.
use_rounding : bool
If True, use rounding (instead of truncation) when converting
times to indices. This can help avoid non-unique indices.
chunk_duration : float | None
Chunk duration in seconds. If ``chunk_duration`` is set to None
(default), generated events correspond to the annotation onsets.
If not, :func:`mne.events_from_annotations` returns as many events as
they fit within the annotation duration spaced according to
``chunk_duration``. As a consequence annotations with duration shorter
than ``chunk_duration`` will not contribute events.
%(verbose)s
Returns
-------
%(events)s
event_id : dict
The event_id variable that can be passed to :class:`~mne.Epochs`.
See Also
--------
mne.annotations_from_events
Notes
-----
For data formats that store integer events as strings (e.g., NeuroScan
``.cnt`` files), passing the Python built-in function :class:`int` as the
``event_id`` parameter will do what most users probably want in those
circumstances: return an ``event_id`` dictionary that maps event ``'1'`` to
integer event code ``1``, ``'2'`` to ``2``, etc.
"""
if len(raw.annotations) == 0:
event_id = dict() if not isinstance(event_id, dict) else event_id
return np.empty((0, 3), dtype=int), event_id
annotations = raw.annotations
event_id = _check_event_id(event_id, raw)
event_sel, event_id_ = _select_annotations_based_on_description(
annotations.description, event_id=event_id, regexp=regexp)
if chunk_duration is None:
inds = raw.time_as_index(annotations.onset, use_rounding=use_rounding,
origin=annotations.orig_time)
if annotations.orig_time is not None:
inds += raw.first_samp
values = [event_id_[kk] for kk in annotations.description[event_sel]]
inds = inds[event_sel]
else:
inds = values = np.array([]).astype(int)
for annot in annotations[event_sel]:
annot_offset = annot['onset'] + annot['duration']
_onsets = np.arange(start=annot['onset'], stop=annot_offset,
step=chunk_duration)
good_events = annot_offset - _onsets >= chunk_duration
if good_events.any():
_onsets = _onsets[good_events]
_inds = raw.time_as_index(_onsets,
use_rounding=use_rounding,
origin=annotations.orig_time)
_inds += raw.first_samp
inds = np.append(inds, _inds)
_values = np.full(shape=len(_inds),
fill_value=event_id_[annot['description']],
dtype=int)
values = np.append(values, _values)
events = np.c_[inds, np.zeros(len(inds)), values].astype(int)
logger.info('Used Annotations descriptions: %s' %
(list(event_id_.keys()),))
return events, event_id_
@verbose
def annotations_from_events(events, sfreq, event_desc=None, first_samp=0,
orig_time=None, verbose=None):
"""Convert an event array to an Annotations object.
Parameters
----------
events : ndarray, shape (n_events, 3)
The events.
sfreq : float
Sampling frequency.
event_desc : dict | array-like | callable | None
Events description. Can be:
- **dict**: map integer event codes (keys) to descriptions (values).
Only the descriptions present will be mapped, others will be ignored.
- **array-like**: list, or 1d array of integers event codes to include.
Only the event codes present will be mapped, others will be ignored.
Event codes will be passed as string descriptions.
- **callable**: must take a integer event code as input and return a
string description or None to ignore it.
- **None**: Use integer event codes as descriptions.
first_samp : int
The first data sample (default=0). See :attr:`mne.io.Raw.first_samp`
docstring.
orig_time : float | str | datetime | tuple of int | None
Determines the starting time of annotation acquisition. If None
(default), starting time is determined from beginning of raw data
acquisition. For details, see :meth:`mne.Annotations` docstring.
%(verbose)s
Returns
-------
annot : instance of Annotations
The annotations.
See Also
--------
mne.events_from_annotations
Notes
-----
Annotations returned by this function will all have zero (null) duration.
Creating events from annotations via the function
`mne.events_from_annotations` takes in event mappings with
key→value pairs as description→ID, whereas `mne.annotations_from_events`
takes in event mappings with key→value pairs as ID→description.
If you need to use these together, you can invert the mapping by doing::
event_desc = {v: k for k, v in event_id.items()}
"""
event_desc = _check_event_description(event_desc, events)
event_sel, event_desc_ = _select_events_based_on_id(events, event_desc)
events_sel = events[event_sel]
onsets = (events_sel[:, 0] - first_samp) / sfreq
descriptions = [event_desc_[e[2]] for e in events_sel]
durations = np.zeros(len(events_sel)) # dummy durations
# Create annotations
annots = Annotations(onset=onsets,
duration=durations,
description=descriptions,
orig_time=orig_time)
return annots
def _adjust_onset_meas_date(annot, raw):
"""Adjust the annotation onsets based on raw meas_date."""
# If there is a non-None meas date, then the onset should take into
# account the first_samp / first_time.
if raw.info['meas_date'] is not None:
annot.onset += raw.first_time
|