File: test_external.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (108 lines) | stat: -rw-r--r-- 4,298 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Authors: Britta Westner <britta.wstnr@gmail.com>
#
# License: BSD-3-Clause

import os.path as op

import pytest
import numpy as np
from numpy.testing import assert_array_equal, assert_allclose
from scipy.io import savemat

import mne
from mne.beamformer import make_lcmv, apply_lcmv, apply_lcmv_cov
from mne.beamformer.tests.test_lcmv import _get_data
from mne.datasets import testing
from mne.utils import requires_version

data_path = testing.data_path(download=False)
ft_data_path = op.join(data_path, 'fieldtrip', 'beamformer')
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-cov.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_fwd_vol = op.join(data_path, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-vol-7-fwd.fif')
fname_event = op.join(data_path, 'MEG', 'sample',
                      'sample_audvis_trunc_raw-eve.fif')
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', 'Aud-lh.label')

reject = dict(grad=4000e-13, mag=4e-12)


@pytest.fixture(scope='function', params=[testing._pytest_param()])
def _get_bf_data(save_fieldtrip=False):
    raw, epochs, evoked, data_cov, _, _, _, _, _, fwd = _get_data(proj=False)

    if save_fieldtrip is True:
        # raw needs to be saved with all channels and picked in FieldTrip
        raw.save(op.join(ft_data_path, 'raw.fif'), overwrite=True)

        # src (tris are not available in fwd['src'] once imported into MATLAB)
        src = fwd['src'].copy()
        mne.write_source_spaces(op.join(ft_data_path, 'src.fif'), src,
                                verbose='error', overwrite=True)

    # pick gradiometers only:
    epochs.pick_types(meg='grad')
    evoked.pick_types(meg='grad')

    # compute covariance matrix (ignore false alarm about no baseline)
    data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.145,
                                      method='empirical', verbose='error')

    if save_fieldtrip is True:
        # if the covariance matrix and epochs need resaving:
        # data covariance:
        cov_savepath = op.join(ft_data_path, 'sample_cov.mat')
        sample_cov = {'sample_cov': data_cov['data']}
        savemat(cov_savepath, sample_cov)
        # evoked data:
        ev_savepath = op.join(ft_data_path, 'sample_evoked.mat')
        data_ev = {'sample_evoked': evoked.data}
        savemat(ev_savepath, data_ev)

    return evoked, data_cov, fwd


# beamformer types to be tested: unit-gain (vector and scalar) and
# unit-noise-gain (time series and power output [apply_lcmv_cov])
@requires_version('pymatreader')
@pytest.mark.parametrize('bf_type, weight_norm, pick_ori, pwr', [
    ['ug_scal', None, 'max-power', False],
    ['ung', 'unit-noise-gain', 'max-power', False],
    ['ung_pow', 'unit-noise-gain', 'max-power', True],
    ['ug_vec', None, 'vector', False],
    ['ung_vec', 'unit-noise-gain', 'vector', False],
])
def test_lcmv_fieldtrip(_get_bf_data, bf_type, weight_norm, pick_ori, pwr):
    """Test LCMV vs fieldtrip output."""
    from pymatreader import read_mat
    evoked, data_cov, fwd = _get_bf_data

    # run the MNE-Python beamformer
    filters = make_lcmv(evoked.info, fwd, data_cov=data_cov,
                        noise_cov=None, pick_ori=pick_ori, reg=0.05,
                        weight_norm=weight_norm)
    if pwr:
        stc_mne = apply_lcmv_cov(data_cov, filters)
    else:
        stc_mne = apply_lcmv(evoked, filters)

    # load the FieldTrip output
    ft_fname = op.join(ft_data_path, 'ft_source_' + bf_type + '-vol.mat')
    stc_ft_data = read_mat(ft_fname)['stc']
    if stc_ft_data.ndim == 1:
        stc_ft_data.shape = (stc_ft_data.size, 1)

    if stc_mne.data.ndim == 2:
        signs = np.sign((stc_mne.data * stc_ft_data).sum(-1, keepdims=True))
        if pwr:
            assert_array_equal(signs, 1.)
        stc_mne.data *= signs
    assert stc_ft_data.shape == stc_mne.data.shape
    if pick_ori == 'vector':
        # compare norms first
        assert_allclose(np.linalg.norm(stc_mne.data, axis=1),
                        np.linalg.norm(stc_ft_data, axis=1), rtol=1e-6)
    assert_allclose(stc_mne.data, stc_ft_data, rtol=1e-6)