File: bem.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (2441 lines) | stat: -rw-r--r-- 90,196 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
# Authors: Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Eric Larson <larson.eric.d@gmail.com>
#          Lorenzo De Santis <lorenzo.de-santis@u-psud.fr>
#
# License: BSD-3-Clause

# The computations in this code were primarily derived from Matti Hämäläinen's
# C code.

from collections import OrderedDict
from copy import deepcopy
from functools import partial
import glob
import json
import os
import os.path as op
from pathlib import Path
import shutil
import tempfile

import numpy as np

from .io.constants import FIFF, FWD
from .io._digitization import _dig_kind_dict, _dig_kind_rev, _dig_kind_ints
from .io.write import (start_and_end_file, start_block, write_float, write_int,
                       write_float_matrix, write_int_matrix, end_block,
                       write_string)
from .io.tag import find_tag
from .io.tree import dir_tree_find
from .io.open import fiff_open
from .surface import (read_surface, write_surface, complete_surface_info,
                      _compute_nearest, _get_ico_surface, read_tri,
                      _fast_cross_nd_sum, _get_solids, _complete_sphere_surf,
                      decimate_surface, transform_surface_to)
from .transforms import _ensure_trans, apply_trans, Transform
from .utils import (verbose, logger, run_subprocess, get_subjects_dir, warn,
                    _pl, _validate_type, _TempDir, _check_freesurfer_home,
                    _check_fname, has_nibabel, _check_option, path_like,
                    _on_missing, _import_h5io_funcs, _ensure_int,
                    _path_like, _verbose_safe_false, _check_head_radius)


# ############################################################################
# Compute BEM solution

# The following approach is based on:
#
# de Munck JC: "A linear discretization of the volume conductor boundary
# integral equation using analytically integrated elements",
# IEEE Trans Biomed Eng. 1992 39(9) : 986 - 990
#


class ConductorModel(dict):
    """BEM or sphere model."""

    def __repr__(self):  # noqa: D105
        if self['is_sphere']:
            center = ', '.join('%0.1f' % (x * 1000.) for x in self['r0'])
            rad = self.radius
            if rad is None:  # no radius / MEG only
                extra = 'Sphere (no layers): r0=[%s] mm' % center
            else:
                extra = ('Sphere (%s layer%s): r0=[%s] R=%1.f mm'
                         % (len(self['layers']) - 1, _pl(self['layers']),
                            center, rad * 1000.))
        else:
            extra = ('BEM (%s layer%s)' % (len(self['surfs']),
                                           _pl(self['surfs'])))
            extra += " solver=%s" % self['solver']
        return '<ConductorModel | %s>' % extra

    def copy(self):
        """Return copy of ConductorModel instance."""
        return deepcopy(self)

    @property
    def radius(self):
        """Sphere radius if an EEG sphere model."""
        if not self['is_sphere']:
            raise RuntimeError('radius undefined for BEM')
        return None if len(self['layers']) == 0 else self['layers'][-1]['rad']


def _calc_beta(rk, rk_norm, rk1, rk1_norm):
    """Compute coefficients for calculating the magic vector omega."""
    rkk1 = rk1[0] - rk[0]
    size = np.linalg.norm(rkk1)
    rkk1 /= size
    num = rk_norm + np.dot(rk, rkk1)
    den = rk1_norm + np.dot(rk1, rkk1)
    res = np.log(num / den) / size
    return res


def _lin_pot_coeff(fros, tri_rr, tri_nn, tri_area):
    """Compute the linear potential matrix element computations."""
    omega = np.zeros((len(fros), 3))

    # we replicate a little bit of the _get_solids code here for speed
    # (we need some of the intermediate values later)
    v1 = tri_rr[np.newaxis, 0, :] - fros
    v2 = tri_rr[np.newaxis, 1, :] - fros
    v3 = tri_rr[np.newaxis, 2, :] - fros
    triples = _fast_cross_nd_sum(v1, v2, v3)
    l1 = np.linalg.norm(v1, axis=1)
    l2 = np.linalg.norm(v2, axis=1)
    l3 = np.linalg.norm(v3, axis=1)
    ss = l1 * l2 * l3
    ss += np.einsum('ij,ij,i->i', v1, v2, l3)
    ss += np.einsum('ij,ij,i->i', v1, v3, l2)
    ss += np.einsum('ij,ij,i->i', v2, v3, l1)
    solids = np.arctan2(triples, ss)

    # We *could* subselect the good points from v1, v2, v3, triples, solids,
    # l1, l2, and l3, but there are *very* few bad points. So instead we do
    # some unnecessary calculations, and then omit them from the final
    # solution. These three lines ensure we don't get invalid values in
    # _calc_beta.
    bad_mask = np.abs(solids) < np.pi / 1e6
    l1[bad_mask] = 1.
    l2[bad_mask] = 1.
    l3[bad_mask] = 1.

    # Calculate the magic vector vec_omega
    beta = [_calc_beta(v1, l1, v2, l2)[:, np.newaxis],
            _calc_beta(v2, l2, v3, l3)[:, np.newaxis],
            _calc_beta(v3, l3, v1, l1)[:, np.newaxis]]
    vec_omega = (beta[2] - beta[0]) * v1
    vec_omega += (beta[0] - beta[1]) * v2
    vec_omega += (beta[1] - beta[2]) * v3

    area2 = 2.0 * tri_area
    n2 = 1.0 / (area2 * area2)
    # leave omega = 0 otherwise
    # Put it all together...
    yys = [v1, v2, v3]
    idx = [0, 1, 2, 0, 2]
    for k in range(3):
        diff = yys[idx[k - 1]] - yys[idx[k + 1]]
        zdots = _fast_cross_nd_sum(yys[idx[k + 1]], yys[idx[k - 1]], tri_nn)
        omega[:, k] = -n2 * (area2 * zdots * 2. * solids -
                             triples * (diff * vec_omega).sum(axis=-1))
    # omit the bad points from the solution
    omega[bad_mask] = 0.
    return omega


def _correct_auto_elements(surf, mat):
    """Improve auto-element approximation."""
    pi2 = 2.0 * np.pi
    tris_flat = surf['tris'].ravel()
    misses = pi2 - mat.sum(axis=1)
    for j, miss in enumerate(misses):
        # How much is missing?
        n_memb = len(surf['neighbor_tri'][j])
        assert n_memb > 0  # should be guaranteed by our surface checks
        # The node itself receives one half
        mat[j, j] = miss / 2.0
        # The rest is divided evenly among the member nodes...
        miss /= (4.0 * n_memb)
        members = np.where(j == tris_flat)[0]
        mods = members % 3
        offsets = np.array([[1, 2], [-1, 1], [-1, -2]])
        tri_1 = members + offsets[mods, 0]
        tri_2 = members + offsets[mods, 1]
        for t1, t2 in zip(tri_1, tri_2):
            mat[j, tris_flat[t1]] += miss
            mat[j, tris_flat[t2]] += miss
    return


def _fwd_bem_lin_pot_coeff(surfs):
    """Calculate the coefficients for linear collocation approach."""
    # taken from fwd_bem_linear_collocation.c
    nps = [surf['np'] for surf in surfs]
    np_tot = sum(nps)
    coeff = np.zeros((np_tot, np_tot))
    offsets = np.cumsum(np.concatenate(([0], nps)))
    for si_1, surf1 in enumerate(surfs):
        rr_ord = np.arange(nps[si_1])
        for si_2, surf2 in enumerate(surfs):
            logger.info("        %s (%d) -> %s (%d) ..." %
                        (_bem_surf_name[surf1['id']], nps[si_1],
                         _bem_surf_name[surf2['id']], nps[si_2]))
            tri_rr = surf2['rr'][surf2['tris']]
            tri_nn = surf2['tri_nn']
            tri_area = surf2['tri_area']
            submat = coeff[offsets[si_1]:offsets[si_1 + 1],
                           offsets[si_2]:offsets[si_2 + 1]]  # view
            for k in range(surf2['ntri']):
                tri = surf2['tris'][k]
                if si_1 == si_2:
                    skip_idx = ((rr_ord == tri[0]) |
                                (rr_ord == tri[1]) |
                                (rr_ord == tri[2]))
                else:
                    skip_idx = list()
                # No contribution from a triangle that
                # this vertex belongs to
                # if sidx1 == sidx2 and (tri == j).any():
                #     continue
                # Otherwise do the hard job
                coeffs = _lin_pot_coeff(fros=surf1['rr'], tri_rr=tri_rr[k],
                                        tri_nn=tri_nn[k], tri_area=tri_area[k])
                coeffs[skip_idx] = 0.
                submat[:, tri] -= coeffs
            if si_1 == si_2:
                _correct_auto_elements(surf1, submat)
    return coeff


def _fwd_bem_multi_solution(solids, gamma, nps):
    """Do multi surface solution.

    * Invert I - solids/(2*M_PI)
    * Take deflation into account
    * The matrix is destroyed after inversion
    * This is the general multilayer case
    """
    pi2 = 1.0 / (2 * np.pi)
    n_tot = np.sum(nps)
    assert solids.shape == (n_tot, n_tot)
    nsurf = len(nps)
    defl = 1.0 / n_tot
    # Modify the matrix
    offsets = np.cumsum(np.concatenate(([0], nps)))
    for si_1 in range(nsurf):
        for si_2 in range(nsurf):
            mult = pi2 if gamma is None else pi2 * gamma[si_1, si_2]
            slice_j = slice(offsets[si_1], offsets[si_1 + 1])
            slice_k = slice(offsets[si_2], offsets[si_2 + 1])
            solids[slice_j, slice_k] = defl - solids[slice_j, slice_k] * mult
    solids += np.eye(n_tot)
    return np.linalg.inv(solids)


def _fwd_bem_homog_solution(solids, nps):
    """Make a homogeneous solution."""
    return _fwd_bem_multi_solution(solids, gamma=None, nps=nps)


def _fwd_bem_ip_modify_solution(solution, ip_solution, ip_mult, n_tri):
    """Modify the solution according to the IP approach."""
    n_last = n_tri[-1]
    mult = (1.0 + ip_mult) / ip_mult

    logger.info('        Combining...')
    offsets = np.cumsum(np.concatenate(([0], n_tri)))
    for si in range(len(n_tri)):
        # Pick the correct submatrix (right column) and multiply
        sub = solution[offsets[si]:offsets[si + 1], np.sum(n_tri[:-1]):]
        # Multiply
        sub -= 2 * np.dot(sub, ip_solution)

    # The lower right corner is a special case
    sub[-n_last:, -n_last:] += mult * ip_solution

    # Final scaling
    logger.info('        Scaling...')
    solution *= ip_mult
    return


def _check_complete_surface(surf, copy=False, incomplete='raise', extra=''):
    surf = complete_surface_info(
        surf, copy=copy, verbose=_verbose_safe_false())
    fewer = np.where([len(t) < 3 for t in surf['neighbor_tri']])[0]
    if len(fewer) > 0:
        fewer = list(fewer)
        fewer = (fewer[:80] + ['...']) if len(fewer) > 80 else fewer
        fewer = ', '.join(str(f) for f in fewer)
        msg = ('Surface {} has topological defects: {:.0f} / {:.0f} vertices '
               'have fewer than three neighboring triangles [{}]{}'
               .format(_bem_surf_name[surf['id']], len(fewer), len(surf['rr']),
                       fewer, extra))
        _on_missing(on_missing=incomplete, msg=msg, name='on_defects')
    return surf


def _fwd_bem_linear_collocation_solution(bem):
    """Compute the linear collocation potential solution."""
    # first, add surface geometries
    logger.info('Computing the linear collocation solution...')
    logger.info('    Matrix coefficients...')
    coeff = _fwd_bem_lin_pot_coeff(bem['surfs'])
    bem['nsol'] = len(coeff)
    logger.info("    Inverting the coefficient matrix...")
    nps = [surf['np'] for surf in bem['surfs']]
    bem['solution'] = _fwd_bem_multi_solution(coeff, bem['gamma'], nps)
    if len(bem['surfs']) == 3:
        ip_mult = bem['sigma'][1] / bem['sigma'][2]
        if ip_mult <= FWD.BEM_IP_APPROACH_LIMIT:
            logger.info('IP approach required...')
            logger.info('    Matrix coefficients (homog)...')
            coeff = _fwd_bem_lin_pot_coeff([bem['surfs'][-1]])
            logger.info('    Inverting the coefficient matrix (homog)...')
            ip_solution = _fwd_bem_homog_solution(coeff,
                                                  [bem['surfs'][-1]['np']])
            logger.info('    Modify the original solution to incorporate '
                        'IP approach...')
            _fwd_bem_ip_modify_solution(bem['solution'], ip_solution, ip_mult,
                                        nps)
    bem['bem_method'] = FIFF.FIFFV_BEM_APPROX_LINEAR
    bem['solver'] = 'mne'


def _import_openmeeg(what='compute a BEM solution using OpenMEEG'):
    try:
        import openmeeg as om
    except Exception as exc:
        raise ImportError(
            f'The OpenMEEG module must be installed to {what}, but '
            f'"import openmeeg" resulted in: {exc}') from None
    return om


def _make_openmeeg_geometry(bem, mri_head_t=None):
    # OpenMEEG
    om = _import_openmeeg()
    meshes = []
    for surf in bem['surfs'][::-1]:
        if mri_head_t is not None:
            surf = transform_surface_to(surf, "head", mri_head_t, copy=True)
        points, faces = surf['rr'], surf['tris']
        faces = faces[:, [1, 0, 2]]  # swap faces
        meshes.append((points, faces))

    conductivity = bem['sigma'][::-1]
    # We should be able to do this:
    #
    # geom = om.make_nested_geometry(meshes, conductivity)
    #
    # But OpenMEEG's NumPy support is iffy. So let's use file IO for now :(

    def _write_tris(fname, mesh):
        from .surface import complete_surface_info
        mesh = dict(rr=mesh[0], tris=mesh[1])
        complete_surface_info(mesh, copy=False, do_neighbor_tri=False)
        with open(fname, 'w') as fid:
            fid.write(f'- {len(mesh["rr"])}\n')
            for r, n in zip(mesh['rr'], mesh['nn']):
                fid.write(f'{r[0]:.8f} {r[1]:.8f} {r[2]:.8f} '
                          f'{n[0]:.8f} {n[1]:.8f} {n[2]:.8f}\n')
            n_tri = len(mesh['tris'])
            fid.write(f'- {n_tri} {n_tri} {n_tri}\n')
            for t in mesh['tris']:
                fid.write(f'{t[0]} {t[1]} {t[2]}\n')

    assert len(conductivity) in (1, 3)
    # on Windows, the dir can't be cleaned up, presumably because OpenMEEG
    # does not let go of the file pointer (?). This is not great but hopefully
    # writing files is temporary, and/or we can fix the file pointer bug
    # in OpenMEEG soon.
    tmp_dir = tempfile.TemporaryDirectory(prefix='openmeeg-io-')
    tmp_path = Path(tmp_dir.name)
    # In 3.10+ we could use this as a context manager as there is a
    # ignore_cleanup_errors arg, but before this there is not.
    # so let's just try/finally
    try:
        tmp_path = Path(tmp_path)
        # write geom_file and three .tri files
        geom_file = tmp_path / 'tmp.geom'
        names = ['inner_skull', 'outer_skull', 'outer_skin']
        lines = [
            '# Domain Description 1.1',
            '',
            f'Interfaces {len(conductivity)}'
            '',
            f'Interface Cortex: "{names[0]}.tri"',
        ]
        if len(conductivity) == 3:
            lines.extend([
                f'Interface Skull: "{names[1]}.tri"',
                f'Interface Head: "{names[2]}.tri"',
            ])
        lines.extend([
            '',
            f'Domains {len(conductivity) + 1}',
            '',
            'Domain Brain: -Cortex',
        ])
        if len(conductivity) == 1:
            lines.extend([
                'Domain Air: Cortex',
            ])
        else:
            lines.extend([
                'Domain Skull: Cortex -Skull',
                'Domain Scalp: Skull -Head',
                'Domain Air: Head',
            ])
        with open(geom_file, 'w') as fid:
            fid.write('\n'.join(lines))
        for mesh, name in zip(meshes, names):
            _write_tris(tmp_path / f'{name}.tri', mesh)
        # write cond_file
        cond_file = tmp_path / 'tmp.cond'
        lines = [
            '# Properties Description 1.0 (Conductivities)',
            '',
            f'Brain       {conductivity[0]}',
        ]
        if len(conductivity) == 3:
            lines.extend([
                f'Skull       {conductivity[1]}',
                f'Scalp       {conductivity[2]}',
            ])
        lines.append('Air         0.0')
        with open(cond_file, 'w') as fid:
            fid.write('\n'.join(lines))
        geom = om.Geometry(str(geom_file), str(cond_file))
    finally:
        try:
            tmp_dir.cleanup()
        except Exception:
            pass  # ignore any cleanup errors (esp. on Windows)

    return geom


def _fwd_bem_openmeeg_solution(bem):
    om = _import_openmeeg()
    logger.info('Creating BEM solution using OpenMEEG')
    logger.info('Computing the openmeeg head matrix solution...')
    logger.info('    Matrix coefficients...')

    geom = _make_openmeeg_geometry(bem)

    hm = om.HeadMat(geom)
    bem['nsol'] = hm.nlin()

    logger.info("    Inverting the coefficient matrix...")
    hm.invert()  # invert inplace
    bem['solution'] = hm.array_flat()
    bem['bem_method'] = FIFF.FIFFV_BEM_APPROX_LINEAR
    bem['solver'] = 'openmeeg'


@verbose
def make_bem_solution(surfs, *, solver='mne', verbose=None):
    """Create a BEM solution using the linear collocation approach.

    Parameters
    ----------
    surfs : list of dict
        The BEM surfaces to use (from :func:`mne.make_bem_model`).
    solver : str
        Can be 'mne' (default) to use MNE-Python, or 'openmeeg' to use
        the :doc:`OpenMEEG <openmeeg:index>` package.

        .. versionadded:: 1.2
    %(verbose)s

    Returns
    -------
    bem : instance of ConductorModel
        The BEM solution.

    See Also
    --------
    make_bem_model
    read_bem_surfaces
    write_bem_surfaces
    read_bem_solution
    write_bem_solution

    Notes
    -----
    .. versionadded:: 0.10.0
    """
    _validate_type(solver, str, 'solver')
    _check_option('method', solver.lower(), ('mne', 'openmeeg'))
    bem = _ensure_bem_surfaces(surfs)
    _add_gamma_multipliers(bem)
    if len(bem['surfs']) == 3:
        logger.info('Three-layer model surfaces loaded.')
    elif len(bem['surfs']) == 1:
        logger.info('Homogeneous model surface loaded.')
    else:
        raise RuntimeError('Only 1- or 3-layer BEM computations supported')
    _check_bem_size(bem['surfs'])
    for surf in bem['surfs']:
        _check_complete_surface(surf)
    if solver.lower() == 'openmeeg':
        _fwd_bem_openmeeg_solution(bem)
    else:
        assert solver.lower() == 'mne'
        _fwd_bem_linear_collocation_solution(bem)
    logger.info("Solution ready.")
    logger.info('BEM geometry computations complete.')
    return bem


# ############################################################################
# Make BEM model

def _ico_downsample(surf, dest_grade):
    """Downsample the surface if isomorphic to a subdivided icosahedron."""
    n_tri = len(surf['tris'])
    bad_msg = ("Cannot decimate to requested ico grade %d. The provided "
               "BEM surface has %d triangles, which cannot be isomorphic with "
               "a subdivided icosahedron. Consider manually decimating the "
               "surface to a suitable density and then use ico=None in "
               "make_bem_model." % (dest_grade, n_tri))
    if n_tri % 20 != 0:
        raise RuntimeError(bad_msg)
    n_tri = n_tri // 20
    found = int(round(np.log(n_tri) / np.log(4)))
    if n_tri != 4 ** found:
        raise RuntimeError(bad_msg)
    del n_tri

    if dest_grade > found:
        raise RuntimeError('For this surface, decimation grade should be %d '
                           'or less, not %s.' % (found, dest_grade))

    source = _get_ico_surface(found)
    dest = _get_ico_surface(dest_grade, patch_stats=True)
    del dest['tri_cent']
    del dest['tri_nn']
    del dest['neighbor_tri']
    del dest['tri_area']
    if not np.array_equal(source['tris'], surf['tris']):
        raise RuntimeError('The source surface has a matching number of '
                           'triangles but ordering is wrong')
    logger.info('Going from %dth to %dth subdivision of an icosahedron '
                '(n_tri: %d -> %d)' % (found, dest_grade, len(surf['tris']),
                                       len(dest['tris'])))
    # Find the mapping
    dest['rr'] = surf['rr'][_get_ico_map(source, dest)]
    return dest


def _get_ico_map(fro, to):
    """Get a mapping between ico surfaces."""
    nearest, dists = _compute_nearest(fro['rr'], to['rr'], return_dists=True)
    n_bads = (dists > 5e-3).sum()
    if n_bads > 0:
        raise RuntimeError('No matching vertex for %d destination vertices'
                           % (n_bads))
    return nearest


def _order_surfaces(surfs):
    """Reorder the surfaces."""
    if len(surfs) != 3:
        return surfs
    # we have three surfaces
    surf_order = [FIFF.FIFFV_BEM_SURF_ID_HEAD,
                  FIFF.FIFFV_BEM_SURF_ID_SKULL,
                  FIFF.FIFFV_BEM_SURF_ID_BRAIN]
    ids = np.array([surf['id'] for surf in surfs])
    if set(ids) != set(surf_order):
        raise RuntimeError('bad surface ids: %s' % ids)
    order = [np.where(ids == id_)[0][0] for id_ in surf_order]
    surfs = [surfs[idx] for idx in order]
    return surfs


def _assert_complete_surface(surf, incomplete='raise'):
    """Check the sum of solid angles as seen from inside."""
    # from surface_checks.c
    # Center of mass....
    cm = surf['rr'].mean(axis=0)
    logger.info('%s CM is %6.2f %6.2f %6.2f mm' %
                (_bem_surf_name[surf['id']],
                 1000 * cm[0], 1000 * cm[1], 1000 * cm[2]))
    tot_angle = _get_solids(surf['rr'][surf['tris']], cm[np.newaxis, :])[0]
    prop = tot_angle / (2 * np.pi)
    if np.abs(prop - 1.0) > 1e-5:
        msg = (f'Surface {_bem_surf_name[surf["id"]]} is not complete (sum of '
               f'solid angles yielded {prop}, should be 1.)')
        _on_missing(
            incomplete, msg, name='incomplete', error_klass=RuntimeError)


def _assert_inside(fro, to):
    """Check one set of points is inside a surface."""
    # this is "is_inside" in surface_checks.c
    fro_name = _bem_surf_name[fro["id"]]
    to_name = _bem_surf_name[to["id"]]
    logger.info(
        f'Checking that surface {fro_name} is inside surface {to_name} ...')
    tot_angle = _get_solids(to['rr'][to['tris']], fro['rr'])
    if (np.abs(tot_angle / (2 * np.pi) - 1.0) > 1e-5).any():
        raise RuntimeError(
            f'Surface {fro_name} is not completely inside surface {to_name}')


def _check_surfaces(surfs, incomplete='raise'):
    """Check that the surfaces are complete and non-intersecting."""
    for surf in surfs:
        _assert_complete_surface(surf, incomplete=incomplete)
    # Then check the topology
    for surf_1, surf_2 in zip(surfs[:-1], surfs[1:]):
        _assert_inside(surf_2, surf_1)


def _check_surface_size(surf):
    """Check that the coordinate limits are reasonable."""
    sizes = surf['rr'].max(axis=0) - surf['rr'].min(axis=0)
    if (sizes < 0.05).any():
        raise RuntimeError(
            f'Dimensions of the surface {_bem_surf_name[surf["id"]]} seem too '
            f'small ({1000 * sizes.min():9.5f}). Maybe the unit of measure'
            ' is meters instead of mm')


def _check_thicknesses(surfs):
    """Compute how close we are."""
    for surf_1, surf_2 in zip(surfs[:-1], surfs[1:]):
        min_dist = _compute_nearest(surf_1['rr'], surf_2['rr'],
                                    return_dists=True)[1]
        min_dist = min_dist.min()
        fro = _bem_surf_name[surf_1['id']]
        to = _bem_surf_name[surf_2['id']]
        logger.info(f'Checking distance between {fro} and {to} surfaces...')
        logger.info(f'Minimum distance between the {fro} and {to} surfaces is '
                    f'approximately {1000 * min_dist:6.1f} mm')


def _surfaces_to_bem(surfs, ids, sigmas, ico=None, rescale=True,
                     incomplete='raise', extra=''):
    """Convert surfaces to a BEM."""
    # equivalent of mne_surf2bem
    # surfs can be strings (filenames) or surface dicts
    if len(surfs) not in (1, 3) or not (len(surfs) == len(ids) ==
                                        len(sigmas)):
        raise ValueError('surfs, ids, and sigmas must all have the same '
                         'number of elements (1 or 3)')
    for si, surf in enumerate(surfs):
        if isinstance(surf, str):
            surfs[si] = surf = read_surface(surf, return_dict=True)[-1]
    # Downsampling if the surface is isomorphic with a subdivided icosahedron
    if ico is not None:
        for si, surf in enumerate(surfs):
            surfs[si] = _ico_downsample(surf, ico)
    for surf, id_ in zip(surfs, ids):
        # Do topology checks (but don't save data) to fail early
        surf['id'] = id_
        _check_complete_surface(surf, copy=True, incomplete=incomplete,
                                extra=extra)
        surf['coord_frame'] = surf.get('coord_frame', FIFF.FIFFV_COORD_MRI)
        surf.update(np=len(surf['rr']), ntri=len(surf['tris']))
        if rescale:
            surf['rr'] /= 1000.  # convert to meters

    # Shifting surfaces is not implemented here...

    # Order the surfaces for the benefit of the topology checks
    for surf, sigma in zip(surfs, sigmas):
        surf['sigma'] = sigma
    surfs = _order_surfaces(surfs)

    # Check topology as best we can
    _check_surfaces(surfs, incomplete=incomplete)
    for surf in surfs:
        _check_surface_size(surf)
    _check_thicknesses(surfs)
    logger.info('Surfaces passed the basic topology checks.')
    return surfs


@verbose
def make_bem_model(subject, ico=4, conductivity=(0.3, 0.006, 0.3),
                   subjects_dir=None, verbose=None):
    """Create a BEM model for a subject.

    .. note:: To get a single layer bem corresponding to the --homog flag in
              the command line tool set the ``conductivity`` parameter
              to a list/tuple with a single value (e.g. [0.3]).

    Parameters
    ----------
    subject : str
        The subject.
    ico : int | None
        The surface ico downsampling to use, e.g. 5=20484, 4=5120, 3=1280.
        If None, no subsampling is applied.
    conductivity : array of int, shape (3,) or (1,)
        The conductivities to use for each shell. Should be a single element
        for a one-layer model, or three elements for a three-layer model.
        Defaults to ``[0.3, 0.006, 0.3]``. The MNE-C default for a
        single-layer model would be ``[0.3]``.
    %(subjects_dir)s
    %(verbose)s

    Returns
    -------
    surfaces : list of dict
        The BEM surfaces. Use `make_bem_solution` to turn these into a
        `~mne.bem.ConductorModel` suitable for forward calculation.

    See Also
    --------
    make_bem_solution
    make_sphere_model
    read_bem_surfaces
    write_bem_surfaces

    Notes
    -----
    .. versionadded:: 0.10.0
    """
    conductivity = np.array(conductivity, float)
    if conductivity.ndim != 1 or conductivity.size not in (1, 3):
        raise ValueError('conductivity must be 1D array-like with 1 or 3 '
                         'elements')
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    subject_dir = op.join(subjects_dir, subject)
    bem_dir = op.join(subject_dir, 'bem')
    inner_skull = op.join(bem_dir, 'inner_skull.surf')
    outer_skull = op.join(bem_dir, 'outer_skull.surf')
    outer_skin = op.join(bem_dir, 'outer_skin.surf')
    surfaces = [inner_skull, outer_skull, outer_skin]
    ids = [FIFF.FIFFV_BEM_SURF_ID_BRAIN,
           FIFF.FIFFV_BEM_SURF_ID_SKULL,
           FIFF.FIFFV_BEM_SURF_ID_HEAD]
    logger.info('Creating the BEM geometry...')
    if len(conductivity) == 1:
        surfaces = surfaces[:1]
        ids = ids[:1]
    surfaces = _surfaces_to_bem(surfaces, ids, conductivity, ico)
    _check_bem_size(surfaces)
    logger.info('Complete.\n')
    return surfaces


# ############################################################################
# Compute EEG sphere model

def _fwd_eeg_get_multi_sphere_model_coeffs(m, n_terms):
    """Get the model depended weighting factor for n."""
    nlayer = len(m['layers'])
    if nlayer in (0, 1):
        return 1.

    # Initialize the arrays
    c1 = np.zeros(nlayer - 1)
    c2 = np.zeros(nlayer - 1)
    cr = np.zeros(nlayer - 1)
    cr_mult = np.zeros(nlayer - 1)
    for k in range(nlayer - 1):
        c1[k] = m['layers'][k]['sigma'] / m['layers'][k + 1]['sigma']
        c2[k] = c1[k] - 1.0
        cr_mult[k] = m['layers'][k]['rel_rad']
        cr[k] = cr_mult[k]
        cr_mult[k] *= cr_mult[k]

    coeffs = np.zeros(n_terms - 1)
    for n in range(1, n_terms):
        # Increment the radius coefficients
        for k in range(nlayer - 1):
            cr[k] *= cr_mult[k]

        # Multiply the matrices
        M = np.eye(2)
        n1 = n + 1.0
        for k in range(nlayer - 2, -1, -1):
            M = np.dot([[n + n1 * c1[k], n1 * c2[k] / cr[k]],
                        [n * c2[k] * cr[k], n1 + n * c1[k]]], M)
        num = n * (2.0 * n + 1.0) ** (nlayer - 1)
        coeffs[n - 1] = num / (n * M[1, 1] + n1 * M[1, 0])
    return coeffs


def _compose_linear_fitting_data(mu, u):
    """Get the linear fitting data."""
    from scipy import linalg
    k1 = np.arange(1, u['nterms'])
    mu1ns = mu[0] ** k1
    # data to be fitted
    y = u['w'][:-1] * (u['fn'][1:] - mu1ns * u['fn'][0])
    # model matrix
    M = u['w'][:-1, np.newaxis] * (mu[1:] ** k1[:, np.newaxis] -
                                   mu1ns[:, np.newaxis])
    uu, sing, vv = linalg.svd(M, full_matrices=False)
    ncomp = u['nfit'] - 1
    uu, sing, vv = uu[:, :ncomp], sing[:ncomp], vv[:ncomp]
    return y, uu, sing, vv


def _compute_linear_parameters(mu, u):
    """Compute the best-fitting linear parameters."""
    y, uu, sing, vv = _compose_linear_fitting_data(mu, u)

    # Compute the residuals
    vec = np.dot(y, uu)
    resi = y - np.dot(uu, vec)
    vec /= sing

    lambda_ = np.zeros(u['nfit'])
    lambda_[1:] = np.dot(vec, vv)
    lambda_[0] = u['fn'][0] - np.sum(lambda_[1:])
    rv = np.dot(resi, resi) / np.dot(y, y)
    return rv, lambda_


def _one_step(mu, u):
    """Evaluate the residual sum of squares fit for one set of mu values."""
    if np.abs(mu).max() >= 1.0:
        return 100.0

    # Compose the data for the linear fitting, compute SVD, then residuals
    y, uu, sing, vv = _compose_linear_fitting_data(mu, u)
    resi = y - np.dot(uu, np.dot(y, uu))
    return np.dot(resi, resi)


def _fwd_eeg_fit_berg_scherg(m, nterms, nfit):
    """Fit the Berg-Scherg equivalent spherical model dipole parameters."""
    from scipy.optimize import fmin_cobyla
    assert nfit >= 2
    u = dict(nfit=nfit, nterms=nterms)

    # (1) Calculate the coefficients of the true expansion
    u['fn'] = _fwd_eeg_get_multi_sphere_model_coeffs(m, nterms + 1)

    # (2) Calculate the weighting
    f = (min([layer['rad'] for layer in m['layers']]) /
         max([layer['rad'] for layer in m['layers']]))

    # correct weighting
    k = np.arange(1, nterms + 1)
    u['w'] = np.sqrt((2.0 * k + 1) * (3.0 * k + 1.0) /
                     k) * np.power(f, (k - 1.0))
    u['w'][-1] = 0

    # Do the nonlinear minimization, constraining mu to the interval [-1, +1]
    mu_0 = np.zeros(3)
    fun = partial(_one_step, u=u)
    catol = 1e-6
    max_ = 1. - 2 * catol

    def cons(x):
        return max_ - np.abs(x)

    mu = fmin_cobyla(fun, mu_0, [cons], rhobeg=0.5, rhoend=1e-5, catol=catol)

    # (6) Do the final step: calculation of the linear parameters
    rv, lambda_ = _compute_linear_parameters(mu, u)
    order = np.argsort(mu)[::-1]
    mu, lambda_ = mu[order], lambda_[order]  # sort: largest mu first

    m['mu'] = mu
    # This division takes into account the actual conductivities
    m['lambda'] = lambda_ / m['layers'][-1]['sigma']
    m['nfit'] = nfit
    return rv


@verbose
def make_sphere_model(r0=(0., 0., 0.04), head_radius=0.09, info=None,
                      relative_radii=(0.90, 0.92, 0.97, 1.0),
                      sigmas=(0.33, 1.0, 0.004, 0.33), verbose=None):
    """Create a spherical model for forward solution calculation.

    Parameters
    ----------
    r0 : array-like | str
        Head center to use (in head coordinates). If 'auto', the head
        center will be calculated from the digitization points in info.
    head_radius : float | str | None
        If float, compute spherical shells for EEG using the given radius.
        If 'auto', estimate an appropriate radius from the dig points in Info,
        If None, exclude shells (single layer sphere model).
    %(info)s Only needed if ``r0`` or ``head_radius`` are ``'auto'``.
    relative_radii : array-like
        Relative radii for the spherical shells.
    sigmas : array-like
        Sigma values for the spherical shells.
    %(verbose)s

    Returns
    -------
    sphere : instance of ConductorModel
        The resulting spherical conductor model.

    See Also
    --------
    make_bem_model
    make_bem_solution

    Notes
    -----
    The default model has::

        relative_radii = (0.90, 0.92, 0.97, 1.0)
        sigmas = (0.33, 1.0, 0.004, 0.33)

    These correspond to compartments (with relative radii in ``m`` and
    conductivities σ in ``S/m``) for the brain, CSF, skull, and scalp,
    respectively.

    .. versionadded:: 0.9.0
    """
    for name in ('r0', 'head_radius'):
        param = locals()[name]
        if isinstance(param, str):
            if param != 'auto':
                raise ValueError('%s, if str, must be "auto" not "%s"'
                                 % (name, param))
    relative_radii = np.array(relative_radii, float).ravel()
    sigmas = np.array(sigmas, float).ravel()
    if len(relative_radii) != len(sigmas):
        raise ValueError('relative_radii length (%s) must match that of '
                         'sigmas (%s)' % (len(relative_radii),
                                          len(sigmas)))
    if len(sigmas) <= 1 and head_radius is not None:
        raise ValueError('at least 2 sigmas must be supplied if '
                         'head_radius is not None, got %s' % (len(sigmas),))
    if (isinstance(r0, str) and r0 == 'auto') or \
       (isinstance(head_radius, str) and head_radius == 'auto'):
        if info is None:
            raise ValueError('Info must not be None for auto mode')
        head_radius_fit, r0_fit = fit_sphere_to_headshape(info, units='m')[:2]
        if isinstance(r0, str):
            r0 = r0_fit
        if isinstance(head_radius, str):
            head_radius = head_radius_fit
    sphere = ConductorModel(is_sphere=True, r0=np.array(r0),
                            coord_frame=FIFF.FIFFV_COORD_HEAD)
    sphere['layers'] = list()
    if head_radius is not None:
        # Eventually these could be configurable...
        relative_radii = np.array(relative_radii, float)
        sigmas = np.array(sigmas, float)
        order = np.argsort(relative_radii)
        relative_radii = relative_radii[order]
        sigmas = sigmas[order]
        for rel_rad, sig in zip(relative_radii, sigmas):
            # sort layers by (relative) radius, and scale radii
            layer = dict(rad=rel_rad, sigma=sig)
            layer['rel_rad'] = layer['rad'] = rel_rad
            sphere['layers'].append(layer)

        # scale the radii
        R = sphere['layers'][-1]['rad']
        rR = sphere['layers'][-1]['rel_rad']
        for layer in sphere['layers']:
            layer['rad'] /= R
            layer['rel_rad'] /= rR

        #
        # Setup the EEG sphere model calculations
        #

        # Scale the relative radii
        for k in range(len(relative_radii)):
            sphere['layers'][k]['rad'] = (head_radius *
                                          sphere['layers'][k]['rel_rad'])
        rv = _fwd_eeg_fit_berg_scherg(sphere, 200, 3)
        logger.info('\nEquiv. model fitting -> RV = %g %%' % (100 * rv))
        for k in range(3):
            logger.info('mu%d = %g    lambda%d = %g'
                        % (k + 1, sphere['mu'][k], k + 1,
                           sphere['layers'][-1]['sigma'] *
                           sphere['lambda'][k]))
        logger.info('Set up EEG sphere model with scalp radius %7.1f mm\n'
                    % (1000 * head_radius,))
    return sphere


# #############################################################################
# Sphere fitting

@verbose
def fit_sphere_to_headshape(info, dig_kinds='auto', units='m', verbose=None):
    """Fit a sphere to the headshape points to determine head center.

    Parameters
    ----------
    %(info_not_none)s
    %(dig_kinds)s
    units : str
        Can be "m" (default) or "mm".

        .. versionadded:: 0.12
    %(verbose)s

    Returns
    -------
    radius : float
        Sphere radius.
    origin_head: ndarray, shape (3,)
        Head center in head coordinates.
    origin_device: ndarray, shape (3,)
        Head center in device coordinates.

    Notes
    -----
    This function excludes any points that are low and frontal
    (``z < 0 and y > 0``) to improve the fit.
    """
    if not isinstance(units, str) or units not in ('m', 'mm'):
        raise ValueError('units must be a "m" or "mm"')
    radius, origin_head, origin_device = _fit_sphere_to_headshape(
        info, dig_kinds)
    if units == 'mm':
        radius *= 1e3
        origin_head *= 1e3
        origin_device *= 1e3
    return radius, origin_head, origin_device


@verbose
def get_fitting_dig(info, dig_kinds='auto', exclude_frontal=True,
                    verbose=None):
    """Get digitization points suitable for sphere fitting.

    Parameters
    ----------
    %(info_not_none)s
    %(dig_kinds)s
    %(exclude_frontal)s
        Default is True.

        .. versionadded:: 0.19
    %(verbose)s

    Returns
    -------
    dig : array, shape (n_pts, 3)
        The digitization points (in head coordinates) to use for fitting.

    Notes
    -----
    This will exclude digitization locations that have ``z < 0 and y > 0``,
    i.e. points on the nose and below the nose on the face.

    .. versionadded:: 0.14
    """
    _validate_type(info, "info")
    if info['dig'] is None:
        raise RuntimeError('Cannot fit headshape without digitization '
                           ', info["dig"] is None')
    if isinstance(dig_kinds, str):
        if dig_kinds == 'auto':
            # try "extra" first
            try:
                return get_fitting_dig(info, 'extra')
            except ValueError:
                pass
            return get_fitting_dig(info, ('extra', 'eeg'))
        else:
            dig_kinds = (dig_kinds,)
    # convert string args to ints (first make dig_kinds mutable in case tuple)
    dig_kinds = list(dig_kinds)
    for di, d in enumerate(dig_kinds):
        dig_kinds[di] = _dig_kind_dict.get(d, d)
        if dig_kinds[di] not in _dig_kind_ints:
            raise ValueError('dig_kinds[#%d] (%s) must be one of %s'
                             % (di, d, sorted(list(_dig_kind_dict.keys()))))

    # get head digization points of the specified kind(s)
    dig = [p for p in info['dig'] if p['kind'] in dig_kinds]
    if len(dig) == 0:
        raise ValueError(
            f'No digitization points found for dig_kinds={dig_kinds}')
    if any(p['coord_frame'] != FIFF.FIFFV_COORD_HEAD for p in dig):
        raise RuntimeError(
            f'Digitization points dig_kinds={dig_kinds} not in head '
            'coordinates, contact mne-python developers')
    hsp = [p['r'] for p in dig]
    del dig

    # exclude some frontal points (nose etc.)
    if exclude_frontal:
        hsp = [p for p in hsp if not (p[2] < -1e-6 and p[1] > 1e-6)]
    hsp = np.array(hsp)

    if len(hsp) <= 10:
        kinds_str = ', '.join(['"%s"' % _dig_kind_rev[d]
                               for d in sorted(dig_kinds)])
        msg = ('Only %s head digitization points of the specified kind%s (%s,)'
               % (len(hsp), _pl(dig_kinds), kinds_str))
        if len(hsp) < 4:
            raise ValueError(msg + ', at least 4 required')
        else:
            warn(msg + ', fitting may be inaccurate')
    return hsp


@verbose
def _fit_sphere_to_headshape(info, dig_kinds, verbose=None):
    """Fit a sphere to the given head shape."""
    hsp = get_fitting_dig(info, dig_kinds)
    radius, origin_head = _fit_sphere(np.array(hsp), disp=False)
    # compute origin in device coordinates
    dev_head_t = info['dev_head_t']
    if dev_head_t is None:
        dev_head_t = Transform('meg', 'head')
    head_to_dev = _ensure_trans(dev_head_t, 'head', 'meg')
    origin_device = apply_trans(head_to_dev, origin_head)
    logger.info('Fitted sphere radius:'.ljust(30) + '%0.1f mm'
                % (radius * 1e3,))
    _check_head_radius(radius)

    # > 2 cm away from head center in X or Y is strange
    if np.linalg.norm(origin_head[:2]) > 0.02:
        warn('(X, Y) fit (%0.1f, %0.1f) more than 20 mm from '
             'head frame origin' % tuple(1e3 * origin_head[:2]))
    logger.info('Origin head coordinates:'.ljust(30) +
                '%0.1f %0.1f %0.1f mm' % tuple(1e3 * origin_head))
    logger.info('Origin device coordinates:'.ljust(30) +
                '%0.1f %0.1f %0.1f mm' % tuple(1e3 * origin_device))
    return radius, origin_head, origin_device


def _fit_sphere(points, disp='auto'):
    """Fit a sphere to an arbitrary set of points."""
    from scipy.optimize import fmin_cobyla
    if isinstance(disp, str) and disp == 'auto':
        disp = True if logger.level <= 20 else False
    # initial guess for center and radius
    radii = (np.max(points, axis=1) - np.min(points, axis=1)) / 2.
    radius_init = radii.mean()
    center_init = np.median(points, axis=0)

    # optimization
    x0 = np.concatenate([center_init, [radius_init]])

    def cost_fun(center_rad):
        d = np.linalg.norm(points - center_rad[:3], axis=1) - center_rad[3]
        d *= d
        return d.sum()

    def constraint(center_rad):
        return center_rad[3]  # radius must be >= 0

    x_opt = fmin_cobyla(cost_fun, x0, constraint, rhobeg=radius_init,
                        rhoend=radius_init * 1e-6, disp=disp)

    origin, radius = x_opt[:3], x_opt[3]
    return radius, origin


def _check_origin(origin, info, coord_frame='head', disp=False):
    """Check or auto-determine the origin."""
    if isinstance(origin, str):
        if origin != 'auto':
            raise ValueError('origin must be a numerical array, or "auto", '
                             'not %s' % (origin,))
        if coord_frame == 'head':
            R, origin = fit_sphere_to_headshape(
                info, verbose=_verbose_safe_false(), units='m')[:2]
            logger.info('    Automatic origin fit: head of radius %0.1f mm'
                        % (R * 1000.,))
            del R
        else:
            origin = (0., 0., 0.)
    origin = np.array(origin, float)
    if origin.shape != (3,):
        raise ValueError('origin must be a 3-element array')
    if disp:
        origin_str = ', '.join(['%0.1f' % (o * 1000) for o in origin])
        msg = ('    Using origin %s mm in the %s frame'
               % (origin_str, coord_frame))
        if coord_frame == 'meg' and info['dev_head_t'] is not None:
            o_dev = apply_trans(info['dev_head_t'], origin)
            origin_str = ', '.join('%0.1f' % (o * 1000,) for o in o_dev)
            msg += ' (%s mm in the head frame)' % (origin_str,)
        logger.info(msg)
    return origin


# ############################################################################
# Create BEM surfaces

@verbose
def make_watershed_bem(subject, subjects_dir=None, overwrite=False,
                       volume='T1', atlas=False, gcaatlas=False, preflood=None,
                       show=False, copy=True, T1=None, brainmask='ws.mgz',
                       verbose=None):
    """Create BEM surfaces using the FreeSurfer watershed algorithm.

    Parameters
    ----------
    subject : str
        Subject name.
    %(subjects_dir)s
    %(overwrite)s
    volume : str
        Defaults to T1.
    atlas : bool
        Specify the --atlas option for mri_watershed.
    gcaatlas : bool
        Specify the --brain_atlas option for mri_watershed.
    preflood : int
        Change the preflood height.
    show : bool
        Show surfaces to visually inspect all three BEM surfaces (recommended).

        .. versionadded:: 0.12

    copy : bool
        If True (default), use copies instead of symlinks for surfaces
        (if they do not already exist).

        .. versionadded:: 0.18
        .. versionchanged:: 1.1 Use copies instead of symlinks.
    T1 : bool | None
        If True, pass the ``-T1`` flag.
        By default (None), this takes the same value as ``gcaatlas``.

        .. versionadded:: 0.19
    brainmask : str
        The filename for the brainmask output file relative to the
        ``$SUBJECTS_DIR/$SUBJECT/bem/watershed/`` directory.
        Can be for example ``"../../mri/brainmask.mgz"`` to overwrite
        the brainmask obtained via ``recon-all -autorecon1``.

        .. versionadded:: 0.19
    %(verbose)s

    See Also
    --------
    mne.viz.plot_bem

    Notes
    -----
    If your BEM meshes do not look correct when viewed in
    :func:`mne.viz.plot_alignment` or :func:`mne.viz.plot_bem`, consider
    potential solutions from the :ref:`FAQ <faq_watershed_bem_meshes>`.

    .. versionadded:: 0.10
    """
    from .viz.misc import plot_bem
    env, mri_dir, bem_dir = _prepare_env(subject, subjects_dir)
    tempdir = _TempDir()  # fsl and Freesurfer create some random junk in CWD
    run_subprocess_env = partial(run_subprocess, env=env,
                                 cwd=tempdir)

    subjects_dir = env['SUBJECTS_DIR']  # Set by _prepare_env() above.
    subject_dir = op.join(subjects_dir, subject)
    ws_dir = op.join(bem_dir, 'watershed')
    T1_dir = op.join(mri_dir, volume)
    T1_mgz = T1_dir
    if not T1_dir.endswith('.mgz'):
        T1_mgz += '.mgz'

    if not op.isdir(bem_dir):
        os.makedirs(bem_dir)
    _check_fname(T1_mgz, overwrite='read', must_exist=True, name='MRI data')
    if op.isdir(ws_dir):
        if not overwrite:
            raise RuntimeError('%s already exists. Use the --overwrite option'
                               ' to recreate it.' % ws_dir)
        else:
            shutil.rmtree(ws_dir)

    # put together the command
    cmd = ['mri_watershed']
    if preflood:
        cmd += ["-h", "%s" % int(preflood)]

    if T1 is None:
        T1 = gcaatlas
    if T1:
        cmd += ['-T1']
    if gcaatlas:
        fname = op.join(env['FREESURFER_HOME'], 'average',
                        'RB_all_withskull_*.gca')
        fname = sorted(glob.glob(fname))[::-1][0]
        logger.info('Using GCA atlas: %s' % (fname,))
        cmd += ['-atlas', '-brain_atlas', fname,
                subject_dir + '/mri/transforms/talairach_with_skull.lta']
    elif atlas:
        cmd += ['-atlas']
    if op.exists(T1_mgz):
        cmd += ['-useSRAS', '-surf', op.join(ws_dir, subject), T1_mgz,
                op.join(ws_dir, brainmask)]
    else:
        cmd += ['-useSRAS', '-surf', op.join(ws_dir, subject), T1_dir,
                op.join(ws_dir, brainmask)]
    # report and run
    logger.info('\nRunning mri_watershed for BEM segmentation with the '
                'following parameters:\n\nResults dir = %s\nCommand = %s\n'
                % (ws_dir, ' '.join(cmd)))
    os.makedirs(op.join(ws_dir))
    run_subprocess_env(cmd)
    del tempdir  # clean up directory
    if op.isfile(T1_mgz):
        new_info = _extract_volume_info(T1_mgz) if has_nibabel() else dict()
        if not new_info:
            warn('nibabel is not available or the volume info is invalid.'
                 'Volume info not updated in the written surface.')
        surfs = ['brain', 'inner_skull', 'outer_skull', 'outer_skin']
        for s in surfs:
            surf_ws_out = op.join(ws_dir, '%s_%s_surface' % (subject, s))

            rr, tris, volume_info = read_surface(surf_ws_out,
                                                 read_metadata=True)
            # replace volume info, 'head' stays
            volume_info.update(new_info)
            write_surface(surf_ws_out, rr, tris, volume_info=volume_info,
                          overwrite=True)

            # Create symbolic links
            surf_out = op.join(bem_dir, '%s.surf' % s)
            if not overwrite and op.exists(surf_out):
                skip_symlink = True
            else:
                if op.exists(surf_out):
                    os.remove(surf_out)
                _symlink(surf_ws_out, surf_out, copy)
                skip_symlink = False

        if skip_symlink:
            logger.info("Unable to create all symbolic links to .surf files "
                        "in bem folder. Use --overwrite option to recreate "
                        "them.")
            dest = op.join(bem_dir, 'watershed')
        else:
            logger.info("Symbolic links to .surf files created in bem folder")
            dest = bem_dir

    logger.info("\nThank you for waiting.\nThe BEM triangulations for this "
                "subject are now available at:\n%s." % dest)

    # Write a head file for coregistration
    fname_head = op.join(bem_dir, subject + '-head.fif')
    if op.isfile(fname_head):
        os.remove(fname_head)

    surf = _surfaces_to_bem([op.join(ws_dir, subject + '_outer_skin_surface')],
                            [FIFF.FIFFV_BEM_SURF_ID_HEAD], sigmas=[1])
    write_bem_surfaces(fname_head, surf)

    # Show computed BEM surfaces
    if show:
        plot_bem(subject=subject, subjects_dir=subjects_dir,
                 orientation='coronal', slices=None, show=True)

    logger.info('Created %s\n\nComplete.' % (fname_head,))


def _extract_volume_info(mgz):
    """Extract volume info from a mgz file."""
    import nibabel
    header = nibabel.load(mgz).header
    version = header['version']
    vol_info = dict()
    if version == 1:
        version = '%s  # volume info valid' % version
        vol_info['valid'] = version
        vol_info['filename'] = mgz
        vol_info['volume'] = header['dims'][:3]
        vol_info['voxelsize'] = header['delta']
        vol_info['xras'], vol_info['yras'], vol_info['zras'] = header['Mdc']
        vol_info['cras'] = header['Pxyz_c']

    return vol_info


# ############################################################################
# Read

@verbose
def read_bem_surfaces(fname, patch_stats=False, s_id=None, on_defects='raise',
                      verbose=None):
    """Read the BEM surfaces from a FIF file.

    Parameters
    ----------
    fname : str
        The name of the file containing the surfaces.
    patch_stats : bool, optional (default False)
        Calculate and add cortical patch statistics to the surfaces.
    s_id : int | None
        If int, only read and return the surface with the given s_id.
        An error will be raised if it doesn't exist. If None, all
        surfaces are read and returned.
    %(on_defects)s

        .. versionadded:: 0.23
    %(verbose)s

    Returns
    -------
    surf: list | dict
        A list of dictionaries that each contain a surface. If s_id
        is not None, only the requested surface will be returned.

    See Also
    --------
    write_bem_surfaces, write_bem_solution, make_bem_model
    """
    # Open the file, create directory
    _validate_type(s_id, ('int-like', None), 's_id')
    fname = _check_fname(fname, 'read', True, 'fname')
    if fname.endswith('.h5'):
        surf = _read_bem_surfaces_h5(fname, s_id)
    else:
        surf = _read_bem_surfaces_fif(fname, s_id)
    if s_id is not None and len(surf) != 1:
        raise ValueError('surface with id %d not found' % s_id)
    for this in surf:
        if patch_stats or this['nn'] is None:
            _check_complete_surface(this, incomplete=on_defects)
    return surf[0] if s_id is not None else surf


def _read_bem_surfaces_h5(fname, s_id):
    read_hdf5, _ = _import_h5io_funcs()
    bem = read_hdf5(fname)
    try:
        [s['id'] for s in bem['surfs']]
    except Exception:  # not our format
        raise ValueError('BEM data not found')
    surf = bem['surfs']
    if s_id is not None:
        surf = [s for s in surf if s['id'] == s_id]
    return surf


def _read_bem_surfaces_fif(fname, s_id):
    # Default coordinate frame
    coord_frame = FIFF.FIFFV_COORD_MRI
    f, tree, _ = fiff_open(fname)
    with f as fid:
        # Find BEM
        bem = dir_tree_find(tree, FIFF.FIFFB_BEM)
        if bem is None or len(bem) == 0:
            raise ValueError('BEM data not found')

        bem = bem[0]
        # Locate all surfaces
        bemsurf = dir_tree_find(bem, FIFF.FIFFB_BEM_SURF)
        if bemsurf is None:
            raise ValueError('BEM surface data not found')

        logger.info('    %d BEM surfaces found' % len(bemsurf))
        # Coordinate frame possibly at the top level
        tag = find_tag(fid, bem, FIFF.FIFF_BEM_COORD_FRAME)
        if tag is not None:
            coord_frame = tag.data
        # Read all surfaces
        if s_id is not None:
            surf = [_read_bem_surface(fid, bsurf, coord_frame, s_id)
                    for bsurf in bemsurf]
            surf = [s for s in surf if s is not None]
        else:
            surf = list()
            for bsurf in bemsurf:
                logger.info('    Reading a surface...')
                this = _read_bem_surface(fid, bsurf, coord_frame)
                surf.append(this)
                logger.info('[done]')
            logger.info('    %d BEM surfaces read' % len(surf))
    return surf


def _read_bem_surface(fid, this, def_coord_frame, s_id=None):
    """Read one bem surface."""
    # fid should be open as a context manager here
    res = dict()
    # Read all the interesting stuff
    tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_ID)

    if tag is None:
        res['id'] = FIFF.FIFFV_BEM_SURF_ID_UNKNOWN
    else:
        res['id'] = int(tag.data)

    if s_id is not None and res['id'] != s_id:
        return None

    tag = find_tag(fid, this, FIFF.FIFF_BEM_SIGMA)
    res['sigma'] = 1.0 if tag is None else float(tag.data)

    tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NNODE)
    if tag is None:
        raise ValueError('Number of vertices not found')

    res['np'] = int(tag.data)

    tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NTRI)
    if tag is None:
        raise ValueError('Number of triangles not found')
    res['ntri'] = int(tag.data)

    tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME)
    if tag is None:
        tag = find_tag(fid, this, FIFF.FIFF_BEM_COORD_FRAME)
        if tag is None:
            res['coord_frame'] = def_coord_frame
        else:
            res['coord_frame'] = tag.data
    else:
        res['coord_frame'] = tag.data

    # Vertices, normals, and triangles
    tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NODES)
    if tag is None:
        raise ValueError('Vertex data not found')

    res['rr'] = tag.data.astype(np.float64)
    if res['rr'].shape[0] != res['np']:
        raise ValueError('Vertex information is incorrect')

    tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS)
    if tag is None:
        tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NORMALS)
    if tag is None:
        res['nn'] = None
    else:
        res['nn'] = tag.data.astype(np.float64)
        if res['nn'].shape[0] != res['np']:
            raise ValueError('Vertex normal information is incorrect')

    tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_TRIANGLES)
    if tag is None:
        raise ValueError('Triangulation not found')

    res['tris'] = tag.data - 1  # index start at 0 in Python
    if res['tris'].shape[0] != res['ntri']:
        raise ValueError('Triangulation information is incorrect')

    return res


@verbose
def read_bem_solution(fname, *, verbose=None):
    """Read the BEM solution from a file.

    Parameters
    ----------
    fname : str
        The file containing the BEM solution.
    %(verbose)s

    Returns
    -------
    bem : instance of ConductorModel
        The BEM solution.

    See Also
    --------
    read_bem_surfaces
    write_bem_surfaces
    make_bem_solution
    write_bem_solution
    """
    fname = _check_fname(fname, 'read', True, 'fname')
    # mirrors fwd_bem_load_surfaces from fwd_bem_model.c
    if fname.endswith('.h5'):
        read_hdf5, _ = _import_h5io_funcs()
        logger.info('Loading surfaces and solution...')
        bem = read_hdf5(fname)
        if 'solver' not in bem:
            bem['solver'] = 'mne'
    else:
        bem = _read_bem_solution_fif(fname)

    if len(bem['surfs']) == 3:
        logger.info('Three-layer model surfaces loaded.')
        needed = np.array([FIFF.FIFFV_BEM_SURF_ID_HEAD,
                           FIFF.FIFFV_BEM_SURF_ID_SKULL,
                           FIFF.FIFFV_BEM_SURF_ID_BRAIN])
        if not all(x['id'] in needed for x in bem['surfs']):
            raise RuntimeError('Could not find necessary BEM surfaces')
        # reorder surfaces as necessary (shouldn't need to?)
        reorder = [None] * 3
        for x in bem['surfs']:
            reorder[np.where(x['id'] == needed)[0][0]] = x
        bem['surfs'] = reorder
    elif len(bem['surfs']) == 1:
        if not bem['surfs'][0]['id'] == FIFF.FIFFV_BEM_SURF_ID_BRAIN:
            raise RuntimeError('BEM Surfaces not found')
        logger.info('Homogeneous model surface loaded.')

    assert set(bem.keys()) == set(
        ('surfs', 'solution', 'bem_method', 'solver'))
    bem = ConductorModel(bem)
    bem['is_sphere'] = False
    # sanity checks and conversions
    _check_option(
        'BEM approximation method', bem['bem_method'],
        (FIFF.FIFFV_BEM_APPROX_LINEAR,))  # CONSTANT not supported
    dim = 0
    solver = bem.get('solver', 'mne')
    _check_option('BEM solver', solver, ('mne', 'openmeeg'))
    for si, surf in enumerate(bem['surfs']):
        assert bem['bem_method'] == FIFF.FIFFV_BEM_APPROX_LINEAR
        dim += surf['np']
        if solver == 'openmeeg' and si != 0:
            dim += surf['ntri']
    dims = bem['solution'].shape
    if solver == "openmeeg":
        sz = (dim * (dim + 1)) // 2
        if len(dims) != 1 or dims[0] != sz:
            raise RuntimeError(
                'For the given BEM surfaces, OpenMEEG should produce a '
                f'solution matrix of shape ({sz},) but got {dims}')
        bem['nsol'] = dim
    else:
        if len(dims) != 2 and solver != "openmeeg":
            raise RuntimeError('Expected a two-dimensional solution matrix '
                               'instead of a %d dimensional one' % dims[0])
        if dims[0] != dim or dims[1] != dim:
            raise RuntimeError('Expected a %d x %d solution matrix instead of '
                               'a %d x %d one' % (dim, dim, dims[1], dims[0]))
        bem['nsol'] = bem['solution'].shape[0]
    # Gamma factors and multipliers
    _add_gamma_multipliers(bem)
    extra = f'made by {solver}' if solver != 'mne' else ''
    logger.info(f'Loaded linear collocation BEM solution{extra} from {fname}')
    return bem


def _read_bem_solution_fif(fname):
    logger.info('Loading surfaces...')
    surfs = read_bem_surfaces(
        fname, patch_stats=True, verbose=_verbose_safe_false())

    # convert from surfaces to solution
    logger.info('\nLoading the solution matrix...\n')
    solver = 'mne'
    f, tree, _ = fiff_open(fname)
    with f as fid:
        # Find the BEM data
        nodes = dir_tree_find(tree, FIFF.FIFFB_BEM)
        if len(nodes) == 0:
            raise RuntimeError('No BEM data in %s' % fname)
        bem_node = nodes[0]

        # Approximation method
        tag = find_tag(f, bem_node, FIFF.FIFF_DESCRIPTION)
        if tag is not None:
            tag = json.loads(tag.data)
            solver = tag['solver']
        tag = find_tag(f, bem_node, FIFF.FIFF_BEM_APPROX)
        if tag is None:
            raise RuntimeError('No BEM solution found in %s' % fname)
        method = tag.data[0]
        tag = find_tag(fid, bem_node, FIFF.FIFF_BEM_POT_SOLUTION)
        sol = tag.data

    return dict(solution=sol, bem_method=method, surfs=surfs, solver=solver)


def _add_gamma_multipliers(bem):
    """Add gamma and multipliers in-place."""
    bem['sigma'] = np.array([surf['sigma'] for surf in bem['surfs']])
    # Dirty trick for the zero conductivity outside
    sigma = np.r_[0.0, bem['sigma']]
    bem['source_mult'] = 2.0 / (sigma[1:] + sigma[:-1])
    bem['field_mult'] = sigma[1:] - sigma[:-1]
    # make sure subsequent "zip"s work correctly
    assert len(bem['surfs']) == len(bem['field_mult'])
    bem['gamma'] = ((sigma[1:] - sigma[:-1])[np.newaxis, :] /
                    (sigma[1:] + sigma[:-1])[:, np.newaxis])


# In our BEM code we do not model the CSF so we assign the innermost surface
# the id BRAIN. Our 4-layer sphere we model CSF (at least by default), so when
# searching for and referring to surfaces we need to keep track of this.
_sm_surf_dict = OrderedDict([
    ('brain', FIFF.FIFFV_BEM_SURF_ID_BRAIN),
    ('inner_skull', FIFF.FIFFV_BEM_SURF_ID_CSF),
    ('outer_skull', FIFF.FIFFV_BEM_SURF_ID_SKULL),
    ('head', FIFF.FIFFV_BEM_SURF_ID_HEAD),
])
_bem_surf_dict = {
    'inner_skull': FIFF.FIFFV_BEM_SURF_ID_BRAIN,
    'outer_skull': FIFF.FIFFV_BEM_SURF_ID_SKULL,
    'head': FIFF.FIFFV_BEM_SURF_ID_HEAD,
}
_bem_surf_name = {
    FIFF.FIFFV_BEM_SURF_ID_BRAIN: 'inner skull',
    FIFF.FIFFV_BEM_SURF_ID_SKULL: 'outer skull',
    FIFF.FIFFV_BEM_SURF_ID_HEAD: 'outer skin ',
    FIFF.FIFFV_BEM_SURF_ID_UNKNOWN: 'unknown    ',
}
_sm_surf_name = {
    FIFF.FIFFV_BEM_SURF_ID_BRAIN: 'brain',
    FIFF.FIFFV_BEM_SURF_ID_CSF: 'csf',
    FIFF.FIFFV_BEM_SURF_ID_SKULL: 'outer skull',
    FIFF.FIFFV_BEM_SURF_ID_HEAD: 'outer skin ',
    FIFF.FIFFV_BEM_SURF_ID_UNKNOWN: 'unknown    ',
}


def _bem_find_surface(bem, id_):
    """Find surface from already-loaded conductor model."""
    if bem['is_sphere']:
        _surf_dict = _sm_surf_dict
        _name_dict = _sm_surf_name
        kind = 'Sphere model'
        tri = 'boundary'
    else:
        _surf_dict = _bem_surf_dict
        _name_dict = _bem_surf_name
        kind = 'BEM'
        tri = 'triangulation'
    if isinstance(id_, str):
        name = id_
        id_ = _surf_dict[id_]
    else:
        name = _name_dict[id_]
    kind = 'Sphere model' if bem['is_sphere'] else 'BEM'
    idx = np.where(np.array([s['id'] for s in bem['surfs']]) == id_)[0]
    if len(idx) != 1:
        raise RuntimeError(f'{kind} does not have the {name} {tri}')
    return bem['surfs'][idx[0]]


# ############################################################################
# Write

@verbose
def write_bem_surfaces(fname, surfs, overwrite=False, *, verbose=None):
    """Write BEM surfaces to a fiff file.

    Parameters
    ----------
    fname : str
        Filename to write. Can end with ``.h5`` to write using HDF5.
    surfs : dict | list of dict
        The surfaces, or a single surface.
    %(overwrite)s
    %(verbose)s
    """
    if isinstance(surfs, dict):
        surfs = [surfs]
    fname = _check_fname(fname, overwrite=overwrite, name='fname')

    if fname.endswith('.h5'):
        _, write_hdf5 = _import_h5io_funcs()
        write_hdf5(fname, dict(surfs=surfs), overwrite=True)
    else:
        with start_and_end_file(fname) as fid:
            start_block(fid, FIFF.FIFFB_BEM)
            write_int(fid, FIFF.FIFF_BEM_COORD_FRAME, surfs[0]['coord_frame'])
            _write_bem_surfaces_block(fid, surfs)
            end_block(fid, FIFF.FIFFB_BEM)


@verbose
def write_head_bem(fname, rr, tris, on_defects='raise', overwrite=False,
                   *, verbose=None):
    """Write a head surface to a fiff file.

    Parameters
    ----------
    fname : str
        Filename to write.
    rr : array, shape (n_vertices, 3)
        Coordinate points in the MRI coordinate system.
    tris : ndarray of int, shape (n_tris, 3)
        Triangulation (each line contains indices for three points which
        together form a face).
    %(on_defects)s
    %(overwrite)s
    %(verbose)s
    """
    surf = _surfaces_to_bem([dict(rr=rr, tris=tris)],
                            [FIFF.FIFFV_BEM_SURF_ID_HEAD], [1], rescale=False,
                            incomplete=on_defects)
    write_bem_surfaces(fname, surf, overwrite=overwrite)


def _write_bem_surfaces_block(fid, surfs):
    """Write bem surfaces to open file handle."""
    for surf in surfs:
        start_block(fid, FIFF.FIFFB_BEM_SURF)
        write_float(fid, FIFF.FIFF_BEM_SIGMA, surf['sigma'])
        write_int(fid, FIFF.FIFF_BEM_SURF_ID, surf['id'])
        write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, surf['coord_frame'])
        write_int(fid, FIFF.FIFF_BEM_SURF_NNODE, surf['np'])
        write_int(fid, FIFF.FIFF_BEM_SURF_NTRI, surf['ntri'])
        write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NODES, surf['rr'])
        # index start at 0 in Python
        write_int_matrix(fid, FIFF.FIFF_BEM_SURF_TRIANGLES,
                         surf['tris'] + 1)
        if 'nn' in surf and surf['nn'] is not None and len(surf['nn']) > 0:
            write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NORMALS, surf['nn'])
        end_block(fid, FIFF.FIFFB_BEM_SURF)


@verbose
def write_bem_solution(fname, bem, overwrite=False, *, verbose=None):
    """Write a BEM model with solution.

    Parameters
    ----------
    fname : str
        The filename to use. Can end with ``.h5`` to write using HDF5.
    bem : instance of ConductorModel
        The BEM model with solution to save.
    %(overwrite)s
    %(verbose)s

    See Also
    --------
    read_bem_solution
    """
    fname = _check_fname(fname, overwrite=overwrite, name='fname')
    if fname.endswith('.h5'):
        _, write_hdf5 = _import_h5io_funcs()
        bem = {k: bem[k] for k in ('surfs', 'solution', 'bem_method')}
        write_hdf5(fname, bem, overwrite=True)
    else:
        _write_bem_solution_fif(fname, bem)


def _write_bem_solution_fif(fname, bem):
    _check_bem_size(bem['surfs'])
    with start_and_end_file(fname) as fid:
        start_block(fid, FIFF.FIFFB_BEM)
        # Coordinate frame (mainly for backward compatibility)
        write_int(fid, FIFF.FIFF_BEM_COORD_FRAME,
                  bem['surfs'][0]['coord_frame'])
        solver = bem.get('solver', 'mne')
        if solver != 'mne':
            write_string(
                fid, FIFF.FIFF_DESCRIPTION, json.dumps(dict(solver=solver)))
        # Surfaces
        _write_bem_surfaces_block(fid, bem['surfs'])
        # The potential solution
        if 'solution' in bem:
            _check_option(
                'bem_method', bem['bem_method'],
                (FIFF.FIFFV_BEM_APPROX_LINEAR,))
            write_int(fid, FIFF.FIFF_BEM_APPROX, FIFF.FIFFV_BEM_APPROX_LINEAR)
            write_float_matrix(fid, FIFF.FIFF_BEM_POT_SOLUTION,
                               bem['solution'])
        end_block(fid, FIFF.FIFFB_BEM)


# #############################################################################
# Create 3-Layers BEM model from Flash MRI images

def _prepare_env(subject, subjects_dir):
    """Prepare an env object for subprocess calls."""
    env = os.environ.copy()

    fs_home = _check_freesurfer_home()

    _validate_type(subject, "str")

    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    subjects_dir = op.abspath(subjects_dir)  # force use of an absolute path
    subjects_dir = op.expanduser(subjects_dir)
    if not op.isdir(subjects_dir):
        raise RuntimeError('Could not find the MRI data directory "%s"'
                           % subjects_dir)
    subject_dir = op.join(subjects_dir, subject)
    if not op.isdir(subject_dir):
        raise RuntimeError('Could not find the subject data directory "%s"'
                           % (subject_dir,))
    env.update(SUBJECT=subject, SUBJECTS_DIR=subjects_dir,
               FREESURFER_HOME=fs_home)
    mri_dir = op.join(subject_dir, 'mri')
    bem_dir = op.join(subject_dir, 'bem')
    return env, mri_dir, bem_dir


def _write_echos(mri_dir, flash_echos, angle):
    import nibabel as nib
    from nibabel.spatialimages import SpatialImage
    if _path_like(flash_echos):
        flash_echos = nib.load(flash_echos)
    if isinstance(flash_echos, SpatialImage):
        flash_echo_imgs = []
        data = np.asanyarray(flash_echos.dataobj)
        affine = flash_echos.affine
        if data.ndim == 3:
            data = data[..., np.newaxis]
        for echo_idx in range(data.shape[3]):
            this_echo_img = flash_echos.__class__(
                data[..., echo_idx], affine=affine,
                header=deepcopy(flash_echos.header)
            )
            flash_echo_imgs.append(this_echo_img)
        flash_echos = flash_echo_imgs
        del flash_echo_imgs
    for idx, flash_echo in enumerate(flash_echos, 1):
        if _path_like(flash_echo):
            flash_echo = nib.load(flash_echo)
        nib.save(flash_echo,
                 op.join(mri_dir, 'flash', f'mef{angle}_{idx:03d}.mgz'))


@verbose
def convert_flash_mris(subject, flash30=True, unwarp=False,
                       subjects_dir=None, flash5=True, verbose=None):
    """Synthesize the flash 5 files for use with make_flash_bem.

    This function aims to produce a synthesized flash 5 MRI from
    multiecho flash (MEF) MRI data. This function can use MEF data
    with 5 or 30 flip angles. If flash5 (and flash30) images are not
    explicitly provided, it will assume that the different echos are available
    in the mri/flash folder of the subject with the following naming
    convention "mef<angle>_<echo>.mgz", e.g. "mef05_001.mgz"
    or "mef30_001.mgz".

    Parameters
    ----------
    subject : str
        Subject name.
    flash30 : bool | list of SpatialImage or path-like | SpatialImage | path-like
        If False do not use 30-degree flip angle data.
        The list of flash 5 echos to use. If True it will look for files
        named mef30_*.mgz in the subject's mri/flash directory and if not False
        the list of flash 5 echos images will be written to the mri/flash
        folder with convention mef05_<echo>.mgz. If a SpatialImage object
        each frame of the image will be interpreted as an echo.
    unwarp : bool
        Run grad_unwarp with -unwarp option on each of the converted
        data sets. It requires FreeSurfer's MATLAB toolbox to be properly
        installed.
    %(subjects_dir)s
    flash5 : list of SpatialImage or path-like | SpatialImage | path-like | True
        The list of flash 5 echos to use. If True it will look for files
        named mef05_*.mgz in the subject's mri/flash directory and if not None
        the list of flash 5 echos images will be written to the mri/flash
        folder with convention mef05_<echo>.mgz. If a SpatialImage object
        each frame of the image will be interpreted as an echo.
    %(verbose)s

    Returns
    -------
    flash5_img : path-like
        The path the synthesized flash 5 MRI.

    Notes
    -----
    This function assumes that the Freesurfer segmentation of the subject
    has been completed. In particular, the T1.mgz and brain.mgz MRI volumes
    should be, as usual, in the subject's mri directory.
    """  # noqa: E501
    env, mri_dir = _prepare_env(subject, subjects_dir)[:2]
    tempdir = _TempDir()  # fsl and Freesurfer create some random junk in CWD
    run_subprocess_env = partial(run_subprocess, env=env,
                                 cwd=tempdir)

    mri_dir = Path(mri_dir)
    # Step 1a : Data conversion to mgz format
    flash_dir = mri_dir / "flash"
    pm_dir = flash_dir / 'parameter_maps'
    pm_dir.mkdir(parents=True, exist_ok=True)
    echos_done = 0

    if not isinstance(flash5, bool):
        _write_echos(mri_dir, flash5, angle='05')
    if not isinstance(flash30, bool):
        _write_echos(mri_dir, flash30, angle='30')

    # Step 1b : Run grad_unwarp on converted files
    template = op.join(flash_dir, "mef*_*.mgz")
    files = sorted(glob.glob(template))
    if len(files) == 0:
        raise ValueError('No suitable source files found (%s)' % template)
    if unwarp:
        logger.info("\n---- Unwarp mgz data sets ----")
        for infile in files:
            outfile = infile.replace(".mgz", "u.mgz")
            cmd = ['grad_unwarp', '-i', infile, '-o', outfile, '-unwarp',
                   'true']
            run_subprocess_env(cmd)
    # Clear parameter maps if some of the data were reconverted
    if echos_done > 0 and pm_dir.exists():
        shutil.rmtree(pm_dir)
        logger.info("\nParameter maps directory cleared")
    if not pm_dir.exists():
        pm_dir.mkdir(parents=True, exist_ok=True)
    # Step 2 : Create the parameter maps
    if flash30:
        logger.info("\n---- Creating the parameter maps ----")
        if unwarp:
            files = sorted(glob.glob(op.join(flash_dir, "mef05_*u.mgz")))
        if len(os.listdir(pm_dir)) == 0:
            cmd = (['mri_ms_fitparms'] + files + [str(pm_dir)])
            run_subprocess_env(cmd)
        else:
            logger.info("Parameter maps were already computed")
        # Step 3 : Synthesize the flash 5 images
        logger.info("\n---- Synthesizing flash 5 images ----")
        if not (pm_dir / 'flash5.mgz').exists():
            cmd = ['mri_synthesize', '20', '5', '5',
                   (pm_dir / 'T1.mgz'),
                   (pm_dir / 'PD.mgz'),
                   (pm_dir / 'flash5.mgz')
                   ]
            run_subprocess_env(cmd)
            (pm_dir / 'flash5_reg.mgz').unlink()
        else:
            logger.info("Synthesized flash 5 volume is already there")
    else:
        logger.info("\n---- Averaging flash5 echoes ----")
        template = "mef05_*u.mgz" if unwarp else "mef05_*.mgz"
        files = sorted(flash_dir.glob(template))
        if len(files) == 0:
            raise ValueError('No suitable source files found (%s)' % template)
        cmd = (['mri_average', '-noconform'] + files + [pm_dir / 'flash5.mgz'])
        run_subprocess_env(cmd)
        (pm_dir / 'flash5_reg.mgz').unlink(missing_ok=True)
    del tempdir  # finally done running subprocesses
    assert (pm_dir / 'flash5.mgz').exists()
    return pm_dir / 'flash5.mgz'


@verbose
def make_flash_bem(subject, overwrite=False, show=True, subjects_dir=None,
                   copy=True, *, flash5_img=None, register=True, verbose=None):
    """Create 3-Layer BEM model from prepared flash MRI images.

    Parameters
    ----------
    subject : str
        Subject name.
    overwrite : bool
        Write over existing .surf files in bem folder.
    show : bool
        Show surfaces to visually inspect all three BEM surfaces (recommended).
    %(subjects_dir)s
    copy : bool
        If True (default), use copies instead of symlinks for surfaces
        (if they do not already exist).

        .. versionadded:: 0.18
        .. versionchanged:: 1.1 Use copies instead of symlinks.
    flash5_img : None | path-like | Nifti1Image
        The path to the synthesized flash 5 MRI image or the image itself. If
        None (default), the path defaults to
        ``mri/flash/parameter_maps/flash5.mgz`` within the subject
        reconstruction. If not present the image is copied or written to the
        default location.

        .. versionadded:: 1.1.0
    register : bool
        Register the flash 5 image with T1.mgz file. If False, we assume
        that the images are already coregistered.

        .. versionadded:: 1.1.0
    %(verbose)s

    See Also
    --------
    convert_flash_mris

    Notes
    -----
    This program assumes that FreeSurfer is installed and sourced properly.

    This function extracts the BEM surfaces (outer skull, inner skull, and
    outer skin) from a FLASH 5 MRI image synthesized from multiecho FLASH
    images acquired with spin angles of 5 and 30 degrees.
    """
    from .viz.misc import plot_bem

    env, mri_dir, bem_dir = _prepare_env(subject, subjects_dir)
    tempdir = _TempDir()  # fsl and Freesurfer create some random junk in CWD
    run_subprocess_env = partial(run_subprocess, env=env,
                                 cwd=tempdir)

    mri_dir = Path(mri_dir)
    bem_dir = Path(bem_dir)
    subjects_dir = env['SUBJECTS_DIR']
    flash_path = (mri_dir / 'flash' / 'parameter_maps').resolve()
    flash_path.mkdir(exist_ok=True, parents=True)

    logger.info('\nProcessing the flash MRI data to produce BEM meshes with '
                'the following parameters:\n'
                'SUBJECTS_DIR = %s\n'
                'SUBJECT = %s\n'
                'Result dir = %s\n' % (subjects_dir, subject,
                                       bem_dir / 'flash'))
    # Step 4 : Register with MPRAGE
    flash5 = flash_path / 'flash5.mgz'

    if _path_like(flash5_img):
        logger.info(f"Copying flash 5 image {flash5_img} to {flash5}")
        cmd = ['mri_convert', Path(flash5_img).resolve(), flash5]
        run_subprocess_env(cmd)
    elif flash5_img is None:
        if not flash5.exists():
            raise ValueError(f'Flash 5 image cannot be found at {flash5}.')
    else:
        logger.info(f"Writing flash 5 image at {flash5}")
        import nibabel as nib
        nib.save(flash5_img, flash5)

    if register:
        logger.info("\n---- Registering flash 5 with T1 MPRAGE ----")
        flash5_reg = flash_path / 'flash5_reg.mgz'
        if not flash5_reg.exists():
            if (mri_dir / 'T1.mgz').exists():
                ref_volume = mri_dir / 'T1.mgz'
            else:
                ref_volume = mri_dir / 'T1'
            cmd = ['fsl_rigid_register', '-r', str(ref_volume), '-i',
                   str(flash5), '-o', str(flash5_reg)]
            run_subprocess_env(cmd)
        else:
            logger.info("Registered flash 5 image is already there")
    else:
        flash5_reg = flash5

    # Step 5a : Convert flash5 into COR
    logger.info("\n---- Converting flash5 volume into COR format ----")
    flash5_dir = mri_dir / 'flash5'
    shutil.rmtree(flash5_dir, ignore_errors=True)
    flash5_dir.mkdir(exist_ok=True, parents=True)
    cmd = ['mri_convert', flash5_reg, flash5_dir]
    run_subprocess_env(cmd)
    # Step 5b and c : Convert the mgz volumes into COR
    convert_T1 = False
    T1_dir = mri_dir / 'T1'
    if not T1_dir.is_dir() or next(T1_dir.glob('COR*')) is None:
        convert_T1 = True
    convert_brain = False
    brain_dir = mri_dir / 'brain'
    if not brain_dir.is_dir() or next(brain_dir.glob('COR*')) is None:
        convert_brain = True
    logger.info("\n---- Converting T1 volume into COR format ----")
    if convert_T1:
        T1_fname = mri_dir / 'T1.mgz'
        if not T1_fname.is_file():
            raise RuntimeError("Both T1 mgz and T1 COR volumes missing.")
        T1_dir.mkdir(exist_ok=True, parents=True)
        cmd = ['mri_convert', T1_fname, T1_dir]
        run_subprocess_env(cmd)
    else:
        logger.info("T1 volume is already in COR format")
    logger.info("\n---- Converting brain volume into COR format ----")
    if convert_brain:
        brain_fname = mri_dir / 'brain.mgz'
        if not brain_fname.is_file():
            raise RuntimeError("Both brain mgz and brain COR volumes missing.")
        brain_dir.mkdir(exist_ok=True, parents=True)
        cmd = ['mri_convert', brain_fname, brain_dir]
        run_subprocess_env(cmd)
    else:
        logger.info("Brain volume is already in COR format")
    # Finally ready to go
    logger.info("\n---- Creating the BEM surfaces ----")
    cmd = ['mri_make_bem_surfaces', subject]
    run_subprocess_env(cmd)
    del tempdir  # ran our last subprocess; clean up directory

    logger.info("\n---- Converting the tri files into surf files ----")
    flash_bem_dir = bem_dir / 'flash'
    flash_bem_dir.mkdir(exist_ok=True, parents=True)
    surfs = ['inner_skull', 'outer_skull', 'outer_skin']
    for surf in surfs:
        out_fname = flash_bem_dir / (surf + '.tri')
        shutil.move(bem_dir / (surf + '.tri'), out_fname)
        nodes, tris = read_tri(out_fname, swap=True)
        # Do not write volume info here because the tris are already in
        # standard Freesurfer coords
        write_surface(op.splitext(out_fname)[0] + '.surf', nodes, tris,
                      overwrite=True)

    # Cleanup section
    logger.info("\n---- Cleaning up ----")
    (bem_dir / 'inner_skull_tmp.tri').unlink()
    if convert_T1:
        shutil.rmtree(T1_dir)
        logger.info("Deleted the T1 COR volume")
    if convert_brain:
        shutil.rmtree(brain_dir)
        logger.info("Deleted the brain COR volume")
    shutil.rmtree(flash5_dir)
    logger.info("Deleted the flash5 COR volume")
    # Create symbolic links to the .surf files in the bem folder
    logger.info("\n---- Creating symbolic links ----")
    # os.chdir(bem_dir)
    for surf in surfs:
        surf = bem_dir / (surf + '.surf')
        if not overwrite and surf.exists():
            skip_symlink = True
        else:
            if surf.exists():
                surf.unlink()
            _symlink(flash_bem_dir / surf.name, surf, copy)
            skip_symlink = False
    if skip_symlink:
        logger.info("Unable to create all symbolic links to .surf files "
                    "in bem folder. Use --overwrite option to recreate them.")
        dest = bem_dir / 'flash'
    else:
        logger.info("Symbolic links to .surf files created in bem folder")
        dest = bem_dir
    logger.info("\nThank you for waiting.\nThe BEM triangulations for this "
                "subject are now available at:\n%s.\nWe hope the BEM meshes "
                "created will facilitate your MEG and EEG data analyses."
                % dest)
    # Show computed BEM surfaces
    if show:
        plot_bem(subject=subject, subjects_dir=subjects_dir,
                 orientation='coronal', slices=None, show=True)


def _check_bem_size(surfs):
    """Check bem surface sizes."""
    if len(surfs) > 1 and surfs[0]['np'] > 10000:
        warn('The bem surfaces have %s data points. 5120 (ico grade=4) '
             'should be enough. Dense 3-layer bems may not save properly.' %
             surfs[0]['np'])


def _symlink(src, dest, copy=False):
    """Create a relative symlink (or just copy)."""
    if not copy:
        src_link = op.relpath(src, op.dirname(dest))
        try:
            os.symlink(src_link, dest)
        except OSError:
            warn('Could not create symbolic link %s. Check that your '
                 'partition handles symbolic links. The file will be copied '
                 'instead.' % dest)
            copy = True
    if copy:
        shutil.copy(src, dest)


def _ensure_bem_surfaces(bem, extra_allow=(), name='bem'):
    # by default only allow path-like and list, but handle None and
    # ConductorModel properly if need be. Always return a ConductorModel
    # even though it's incomplete (and might have is_sphere=True).
    assert all(extra in (None, ConductorModel) for extra in extra_allow)
    allowed = ('path-like', list) + extra_allow
    _validate_type(bem, allowed, name)
    if isinstance(bem, path_like):
        # Load the surfaces
        logger.info(f'Loading BEM surfaces from {str(bem)}...')
        bem = read_bem_surfaces(bem)
        bem = ConductorModel(is_sphere=False, surfs=bem)
    elif isinstance(bem, list):
        for ii, this_surf in enumerate(bem):
            _validate_type(this_surf, dict, f'{name}[{ii}]')
    if isinstance(bem, list):
        bem = ConductorModel(is_sphere=False, surfs=bem)
    # add surfaces in the spherical case
    if isinstance(bem, ConductorModel) and bem['is_sphere']:
        bem = bem.copy()
        bem['surfs'] = []
        if len(bem['layers']) == 4:
            for idx, id_ in enumerate(_sm_surf_dict.values()):
                bem['surfs'].append(_complete_sphere_surf(
                    bem, idx, 4, complete=False))
                bem['surfs'][-1]['id'] = id_

    return bem


def _check_file(fname, overwrite):
    """Prevent overwrites."""
    if op.isfile(fname) and not overwrite:
        raise IOError(f'File {fname} exists, use --overwrite to overwrite it')


_tri_levels = dict(
    medium=30000,
    sparse=2500,
)


@verbose
def make_scalp_surfaces(subject, subjects_dir=None, force=True,
                        overwrite=False, no_decimate=False, *,
                        threshold=20, mri='T1.mgz', verbose=None):
    """Create surfaces of the scalp and neck.

    The scalp surfaces are required for using the MNE coregistration GUI, and
    allow for a visualization of the alignment between anatomy and channel
    locations.

    Parameters
    ----------
    %(subject)s
    %(subjects_dir)s
    force : bool
        Force creation of the surface even if it has some topological defects.
        Defaults to ``True``. See :ref:`tut-fix-meshes` for ideas on how to
        fix problematic meshes.
    %(overwrite)s
    no_decimate : bool
        Disable the "medium" and "sparse" decimations. In this case, only
        a "dense" surface will be generated. Defaults to ``False``, i.e.,
        create surfaces for all three types of decimations.
    threshold : int
        The threshold to use with the MRI in the call to ``mkheadsurf``.
        The default is 20.

        .. versionadded:: 1.1
    mri : str
        The MRI to use. Should exist in ``$SUBJECTS_DIR/$SUBJECT/mri``.

        .. versionadded:: 1.1
    %(verbose)s
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    incomplete = 'warn' if force else 'raise'
    subj_path = op.join(subjects_dir, subject)
    if not op.exists(subj_path):
        raise RuntimeError('%s does not exist. Please check your subject '
                           'directory path.' % subj_path)

    # Backward compat for old FreeSurfer (?)
    _validate_type(mri, str, 'mri')
    if mri == 'T1.mgz':
        mri = mri if op.exists(op.join(subj_path, 'mri', mri)) else 'T1'

    logger.info('1. Creating a dense scalp tessellation with mkheadsurf...')

    def check_seghead(surf_path=op.join(subj_path, 'surf')):
        surf = None
        for k in ['lh.seghead', 'lh.smseghead']:
            this_surf = op.join(surf_path, k)
            if op.exists(this_surf):
                surf = this_surf
                break
        return surf

    my_seghead = check_seghead()
    threshold = _ensure_int(threshold, 'threshold')
    if my_seghead is None:
        this_env = deepcopy(os.environ)
        this_env['SUBJECTS_DIR'] = subjects_dir
        this_env['SUBJECT'] = subject
        this_env['subjdir'] = subjects_dir + '/' + subject
        if 'FREESURFER_HOME' not in this_env:
            raise RuntimeError(
                'The FreeSurfer environment needs to be set up to use '
                'make_scalp_surfaces to create the outer skin surface '
                'lh.seghead')
        run_subprocess([
            'mkheadsurf', '-subjid', subject, '-srcvol', mri,
            '-thresh1', str(threshold),
            '-thresh2', str(threshold)], env=this_env)

    surf = check_seghead()
    if surf is None:
        raise RuntimeError('mkheadsurf did not produce the standard output '
                           'file.')

    bem_dir = op.join(subjects_dir, subject, 'bem')
    if not op.isdir(bem_dir):
        os.mkdir(bem_dir)
    fname_template = op.join(bem_dir, '%s-head-{}.fif' % subject)
    dense_fname = fname_template.format('dense')
    logger.info('2. Creating %s ...' % dense_fname)
    _check_file(dense_fname, overwrite)
    # Helpful message if we get a topology error
    msg = ('\n\nConsider using pymeshfix directly to fix the mesh, or --force '
           'to ignore the problem.')
    surf = _surfaces_to_bem(
        [surf], [FIFF.FIFFV_BEM_SURF_ID_HEAD], [1],
        incomplete=incomplete, extra=msg)[0]
    write_bem_surfaces(dense_fname, surf, overwrite=overwrite)
    if os.getenv('_MNE_TESTING_SCALP', 'false') == 'true':
        tris = [len(surf['tris'])]  # don't actually decimate
    for ii, (level, n_tri) in enumerate(_tri_levels.items(), 3):
        if no_decimate:
            break
        logger.info(f'{ii}. Creating {level} tessellation...')
        logger.info(f'{ii}.1 Decimating the dense tessellation '
                    f'({len(surf["tris"])} -> {n_tri} triangles)...')
        points, tris = decimate_surface(points=surf['rr'],
                                        triangles=surf['tris'],
                                        n_triangles=n_tri)
        dec_fname = fname_template.format(level)
        logger.info('%i.2 Creating %s' % (ii, dec_fname))
        _check_file(dec_fname, overwrite)
        dec_surf = _surfaces_to_bem(
            [dict(rr=points, tris=tris)],
            [FIFF.FIFFV_BEM_SURF_ID_HEAD], [1], rescale=False,
            incomplete=incomplete, extra=msg)
        write_bem_surfaces(dec_fname, dec_surf, overwrite=overwrite)
    logger.info('[done]')


@verbose
def distance_to_bem(pos, bem, trans=None, verbose=None):
    """Calculate the distance of positions to inner skull surface.

    Parameters
    ----------
    pos : array, shape (..., 3)
        Position(s) in m, in head coordinates.
    bem : instance of ConductorModel
        Conductor model.
    %(trans)s If None (default), assumes bem is in head coordinates.

        .. versionchanged:: 0.19
            Support for 'fsaverage' argument.
    %(verbose)s

    Returns
    -------
    distances : float | array, shape (...)
        The computed distance(s). A float is returned if pos is
        an array of shape (3,) corresponding to a single position.

    Notes
    -----
    .. versionadded:: 1.1
    """
    ndim = pos.ndim
    if ndim == 1:
        pos = pos[np.newaxis, :]

    n = pos.shape[0]
    distance = np.zeros((n,))

    logger.info(
        'Computing distance to inner skull surface for ' +
        f'{n} position{_pl(n)}...'
    )

    if bem['is_sphere']:
        center = bem['r0']

        if trans:
            center = apply_trans(trans, center, move=True)
        radius = bem['layers'][0]['rad']

        distance = np.abs(radius - np.linalg.norm(
            pos - center, axis=1
        ))

    else:  # is BEM
        surface_points = bem['surfs'][0]['rr']

        if trans:
            surface_points = apply_trans(
                trans, surface_points, move=True
            )

        _, distance = _compute_nearest(surface_points, pos, return_dists=True)

    if ndim == 1:
        distance = distance[0]  # return just a float if one pos is passed

    return distance