File: channels.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (2184 lines) | stat: -rw-r--r-- 82,962 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Denis Engemann <denis.engemann@gmail.com>
#          Andrew Dykstra <andrew.r.dykstra@gmail.com>
#          Teon Brooks <teon.brooks@gmail.com>
#          Daniel McCloy <dan.mccloy@gmail.com>
#
# License: BSD-3-Clause


import os.path as op
from pathlib import Path
import sys
from collections import OrderedDict
from dataclasses import dataclass
from copy import deepcopy
from functools import partial
import string
from typing import Union

import numpy as np

from ..defaults import HEAD_SIZE_DEFAULT, _handle_default
from ..utils import (verbose, logger, warn,
                     _check_preload, _validate_type, fill_doc, _check_option,
                     _get_stim_channel, _check_fname, _check_dict_keys,
                     _on_missing)
from ..io.constants import FIFF
from ..io.meas_info import (anonymize_info, Info, MontageMixin, create_info,
                            _rename_comps)
from ..io.pick import (channel_type, pick_info, pick_types, _picks_by_type,
                       _check_excludes_includes, _contains_ch_type,
                       channel_indices_by_type, pick_channels, _picks_to_idx,
                       get_channel_type_constants,
                       _pick_data_channels)
from ..io.tag import _rename_list
from ..io.write import DATE_NONE
from ..io.proj import setup_proj


def _get_meg_system(info):
    """Educated guess for the helmet type based on channels."""
    have_helmet = True
    for ch in info['chs']:
        if ch['kind'] == FIFF.FIFFV_MEG_CH:
            # Only take first 16 bits, as higher bits store CTF grad comp order
            coil_type = ch['coil_type'] & 0xFFFF
            nmag = np.sum(
                [c['kind'] == FIFF.FIFFV_MEG_CH for c in info['chs']])
            if coil_type == FIFF.FIFFV_COIL_NM_122:
                system = '122m'
                break
            elif coil_type // 1000 == 3:  # All Vectorview coils are 30xx
                system = '306m'
                break
            elif (coil_type == FIFF.FIFFV_COIL_MAGNES_MAG or
                  coil_type == FIFF.FIFFV_COIL_MAGNES_GRAD):
                system = 'Magnes_3600wh' if nmag > 150 else 'Magnes_2500wh'
                break
            elif coil_type == FIFF.FIFFV_COIL_CTF_GRAD:
                system = 'CTF_275'
                break
            elif coil_type == FIFF.FIFFV_COIL_KIT_GRAD:
                system = 'KIT'
                # Our helmet does not match very well, so let's just create it
                have_helmet = False
                break
            elif coil_type == FIFF.FIFFV_COIL_BABY_GRAD:
                system = 'BabySQUID'
                break
            elif coil_type == FIFF.FIFFV_COIL_ARTEMIS123_GRAD:
                system = 'ARTEMIS123'
                have_helmet = False
                break
    else:
        system = 'unknown'
        have_helmet = False
    return system, have_helmet


def _get_ch_type(inst, ch_type, allow_ref_meg=False):
    """Choose a single channel type (usually for plotting).

    Usually used in plotting to plot a single datatype, e.g. look for mags,
    then grads, then ... to plot.
    """
    if ch_type is None:
        allowed_types = ['mag', 'grad', 'planar1', 'planar2', 'eeg', 'csd',
                         'fnirs_cw_amplitude', 'fnirs_fd_ac_amplitude',
                         'fnirs_fd_phase', 'fnirs_od', 'hbo', 'hbr',
                         'ecog', 'seeg', 'dbs']
        allowed_types += ['ref_meg'] if allow_ref_meg else []
        for type_ in allowed_types:
            if isinstance(inst, Info):
                if _contains_ch_type(inst, type_):
                    ch_type = type_
                    break
            elif type_ in inst:
                ch_type = type_
                break
        else:
            raise RuntimeError('No plottable channel types found')
    return ch_type


@verbose
def equalize_channels(instances, copy=True, verbose=None):
    """Equalize channel picks and ordering across multiple MNE-Python objects.

    First, all channels that are not common to each object are dropped. Then,
    using the first object in the list as a template, the channels of each
    object are re-ordered to match the template. The end result is that all
    given objects define the same channels, in the same order.

    Parameters
    ----------
    instances : list
        A list of MNE-Python objects to equalize the channels for. Objects can
        be of type Raw, Epochs, Evoked, AverageTFR, Forward, Covariance,
        CrossSpectralDensity or Info.
    copy : bool
        When dropping and/or re-ordering channels, an object will be copied
        when this parameter is set to ``True``. When set to ``False`` (the
        default) the dropping and re-ordering of channels happens in-place.

        .. versionadded:: 0.20.0
    %(verbose)s

    Returns
    -------
    equalized_instances : list
        A list of MNE-Python objects that have the same channels defined in the
        same order.

    Notes
    -----
    This function operates inplace.
    """
    from ..cov import Covariance
    from ..io.base import BaseRaw
    from ..io.meas_info import Info
    from ..epochs import BaseEpochs
    from ..evoked import Evoked
    from ..forward import Forward
    from ..time_frequency import _BaseTFR, CrossSpectralDensity

    # Instances need to have a `ch_names` attribute and a `pick_channels`
    # method that supports `ordered=True`.
    allowed_types = (BaseRaw, BaseEpochs, Evoked, _BaseTFR, Forward,
                     Covariance, CrossSpectralDensity, Info)
    allowed_types_str = ("Raw, Epochs, Evoked, TFR, Forward, Covariance, "
                         "CrossSpectralDensity or Info")
    for inst in instances:
        _validate_type(inst, allowed_types, "Instances to be modified",
                       allowed_types_str)

    chan_template = instances[0].ch_names
    logger.info('Identifying common channels ...')
    channels = [set(inst.ch_names) for inst in instances]
    common_channels = set(chan_template).intersection(*channels)
    all_channels = set(chan_template).union(*channels)
    dropped = list(set(all_channels - common_channels))

    # Preserve the order of chan_template
    order = np.argsort([chan_template.index(ch) for ch in common_channels])
    common_channels = np.array(list(common_channels))[order].tolist()

    # Update all instances to match the common_channels list
    reordered = False
    equalized_instances = []
    for inst in instances:
        # Only perform picking when needed
        if inst.ch_names != common_channels:
            if isinstance(inst, Info):
                sel = pick_channels(inst.ch_names, common_channels, exclude=[],
                                    ordered=True)
                inst = pick_info(inst, sel, copy=copy, verbose=False)
            else:
                if copy:
                    inst = inst.copy()
                inst.pick_channels(common_channels, ordered=True)
            if len(inst.ch_names) == len(common_channels):
                reordered = True
        equalized_instances.append(inst)

    if dropped:
        logger.info('Dropped the following channels:\n%s' % dropped)
    elif reordered:
        logger.info('Channels have been re-ordered.')

    return equalized_instances


channel_type_constants = get_channel_type_constants(include_defaults=True)
_human2fiff = {k: v.get('kind', FIFF.FIFFV_COIL_NONE) for k, v in
               channel_type_constants.items()}
_human2unit = {k: v.get('unit', FIFF.FIFF_UNIT_NONE) for k, v in
               channel_type_constants.items()}
_unit2human = {FIFF.FIFF_UNIT_V: 'V',
               FIFF.FIFF_UNIT_T: 'T',
               FIFF.FIFF_UNIT_T_M: 'T/m',
               FIFF.FIFF_UNIT_MOL: 'M',
               FIFF.FIFF_UNIT_NONE: 'NA',
               FIFF.FIFF_UNIT_CEL: 'C',
               FIFF.FIFF_UNIT_S: 'S'}


def _check_set(ch, projs, ch_type):
    """Ensure type change is compatible with projectors."""
    new_kind = _human2fiff[ch_type]
    if ch['kind'] != new_kind:
        for proj in projs:
            if ch['ch_name'] in proj['data']['col_names']:
                raise RuntimeError('Cannot change channel type for channel %s '
                                   'in projector "%s"'
                                   % (ch['ch_name'], proj['desc']))
    ch['kind'] = new_kind


class SetChannelsMixin(MontageMixin):
    """Mixin class for Raw, Evoked, Epochs."""

    @verbose
    def set_eeg_reference(self, ref_channels='average', projection=False,
                          ch_type='auto', forward=None, *, joint=False,
                          verbose=None):
        """Specify which reference to use for EEG data.

        Use this function to explicitly specify the desired reference for EEG.
        This can be either an existing electrode or a new virtual channel.
        This function will re-reference the data according to the desired
        reference.

        Parameters
        ----------
        %(ref_channels_set_eeg_reference)s
        %(projection_set_eeg_reference)s
        %(ch_type_set_eeg_reference)s
        %(forward_set_eeg_reference)s
        %(joint_set_eeg_reference)s
        %(verbose)s

        Returns
        -------
        inst : instance of Raw | Epochs | Evoked
            Data with EEG channels re-referenced. If ``ref_channels='average'``
            and ``projection=True`` a projection will be added instead of
            directly re-referencing the data.
        %(set_eeg_reference_see_also_notes)s
        """
        from ..io.reference import set_eeg_reference
        return set_eeg_reference(self, ref_channels=ref_channels, copy=False,
                                 projection=projection, ch_type=ch_type,
                                 forward=forward, joint=joint)[0]

    def _get_channel_positions(self, picks=None):
        """Get channel locations from info.

        Parameters
        ----------
        picks : str | list | slice | None
            None gets good data indices.

        Notes
        -----
        .. versionadded:: 0.9.0
        """
        picks = _picks_to_idx(self.info, picks)
        chs = self.info['chs']
        pos = np.array([chs[k]['loc'][:3] for k in picks])
        n_zero = np.sum(np.sum(np.abs(pos), axis=1) == 0)
        if n_zero > 1:  # XXX some systems have origin (0, 0, 0)
            raise ValueError('Could not extract channel positions for '
                             '{} channels'.format(n_zero))
        return pos

    def _set_channel_positions(self, pos, names):
        """Update channel locations in info.

        Parameters
        ----------
        pos : array-like | np.ndarray, shape (n_points, 3)
            The channel positions to be set.
        names : list of str
            The names of the channels to be set.

        Notes
        -----
        .. versionadded:: 0.9.0
        """
        if len(pos) != len(names):
            raise ValueError('Number of channel positions not equal to '
                             'the number of names given.')
        pos = np.asarray(pos, dtype=np.float64)
        if pos.shape[-1] != 3 or pos.ndim != 2:
            msg = ('Channel positions must have the shape (n_points, 3) '
                   'not %s.' % (pos.shape,))
            raise ValueError(msg)
        for name, p in zip(names, pos):
            if name in self.ch_names:
                idx = self.ch_names.index(name)
                self.info['chs'][idx]['loc'][:3] = p
            else:
                msg = ('%s was not found in the info. Cannot be updated.'
                       % name)
                raise ValueError(msg)

    @verbose
    def set_channel_types(self, mapping, verbose=None):
        """Define the sensor type of channels.

        Parameters
        ----------
        mapping : dict
            A dictionary mapping a channel to a sensor type (str), e.g.,
            ``{'EEG061': 'eog'}``.
        %(verbose)s

        Returns
        -------
        inst : instance of Raw | Epochs | Evoked
            The instance (modified in place).

            .. versionchanged:: 0.20
               Return the instance.

        Notes
        -----
        The following sensor types are accepted:

            ecg, eeg, emg, eog, exci, ias, misc, resp, seeg, dbs, stim, syst,
            ecog, hbo, hbr, fnirs_cw_amplitude, fnirs_fd_ac_amplitude,
            fnirs_fd_phase, fnirs_od, temperature, gsr

        .. versionadded:: 0.9.0
        """
        ch_names = self.info['ch_names']

        # first check and assemble clean mappings of index and name
        unit_changes = dict()
        for ch_name, ch_type in mapping.items():
            if ch_name not in ch_names:
                raise ValueError("This channel name (%s) doesn't exist in "
                                 "info." % ch_name)

            c_ind = ch_names.index(ch_name)
            if ch_type not in _human2fiff:
                raise ValueError('This function cannot change to this '
                                 'channel type: %s. Accepted channel types '
                                 'are %s.'
                                 % (ch_type,
                                    ", ".join(sorted(_human2unit.keys()))))
            # Set sensor type
            _check_set(self.info['chs'][c_ind], self.info['projs'], ch_type)
            unit_old = self.info['chs'][c_ind]['unit']
            unit_new = _human2unit[ch_type]
            if unit_old not in _unit2human:
                raise ValueError("Channel '%s' has unknown unit (%s). Please "
                                 "fix the measurement info of your data."
                                 % (ch_name, unit_old))
            if unit_old != _human2unit[ch_type]:
                this_change = (_unit2human[unit_old], _unit2human[unit_new])
                if this_change not in unit_changes:
                    unit_changes[this_change] = list()
                unit_changes[this_change].append(ch_name)
            self.info['chs'][c_ind]['unit'] = _human2unit[ch_type]
            if ch_type in ['eeg', 'seeg', 'ecog', 'dbs']:
                coil_type = FIFF.FIFFV_COIL_EEG
            elif ch_type == 'hbo':
                coil_type = FIFF.FIFFV_COIL_FNIRS_HBO
            elif ch_type == 'hbr':
                coil_type = FIFF.FIFFV_COIL_FNIRS_HBR
            elif ch_type == 'fnirs_cw_amplitude':
                coil_type = FIFF.FIFFV_COIL_FNIRS_CW_AMPLITUDE
            elif ch_type == 'fnirs_fd_ac_amplitude':
                coil_type = FIFF.FIFFV_COIL_FNIRS_FD_AC_AMPLITUDE
            elif ch_type == 'fnirs_fd_phase':
                coil_type = FIFF.FIFFV_COIL_FNIRS_FD_PHASE
            elif ch_type == 'fnirs_od':
                coil_type = FIFF.FIFFV_COIL_FNIRS_OD
            else:
                coil_type = FIFF.FIFFV_COIL_NONE
            self.info['chs'][c_ind]['coil_type'] = coil_type
        msg = "The unit for channel(s) {0} has changed from {1} to {2}."
        for this_change, names in unit_changes.items():
            warn(msg.format(", ".join(sorted(names)), *this_change))
        return self

    @verbose
    def rename_channels(self, mapping, allow_duplicates=False, verbose=None):
        """Rename channels.

        Parameters
        ----------
        %(mapping_rename_channels_duplicates)s
        %(verbose)s

        Returns
        -------
        inst : instance of Raw | Epochs | Evoked
            The instance (modified in place).

            .. versionchanged:: 0.20
               Return the instance.

        Notes
        -----
        .. versionadded:: 0.9.0
        """
        from ..io import BaseRaw

        ch_names_orig = list(self.info['ch_names'])
        rename_channels(self.info, mapping, allow_duplicates)

        # Update self._orig_units for Raw
        if isinstance(self, BaseRaw):
            # whatever mapping was provided, now we can just use a dict
            mapping = dict(zip(ch_names_orig, self.info['ch_names']))
            for old_name, new_name in mapping.items():
                if old_name in self._orig_units:
                    self._orig_units[new_name] = self._orig_units.pop(old_name)
            ch_names = self.annotations.ch_names
            for ci, ch in enumerate(ch_names):
                ch_names[ci] = tuple(mapping.get(name, name) for name in ch)

        return self

    @verbose
    def plot_sensors(self, kind='topomap', ch_type=None, title=None,
                     show_names=False, ch_groups=None, to_sphere=True,
                     axes=None, block=False, show=True, sphere=None,
                     verbose=None):
        """Plot sensor positions.

        Parameters
        ----------
        kind : str
            Whether to plot the sensors as 3d, topomap or as an interactive
            sensor selection dialog. Available options 'topomap', '3d',
            'select'. If 'select', a set of channels can be selected
            interactively by using lasso selector or clicking while holding
            control key. The selected channels are returned along with the
            figure instance. Defaults to 'topomap'.
        ch_type : None | str
            The channel type to plot. Available options 'mag', 'grad', 'eeg',
            'seeg', 'dbs', 'ecog', 'all'. If ``'all'``, all the available mag,
            grad, eeg, seeg, dbs, and ecog channels are plotted. If
            None (default), then channels are chosen in the order given above.
        title : str | None
            Title for the figure. If None (default), equals to ``'Sensor
            positions (%%s)' %% ch_type``.
        show_names : bool | array of str
            Whether to display all channel names. If an array, only the channel
            names in the array are shown. Defaults to False.
        ch_groups : 'position' | array of shape (n_ch_groups, n_picks) | None
            Channel groups for coloring the sensors. If None (default), default
            coloring scheme is used. If 'position', the sensors are divided
            into 8 regions. See ``order`` kwarg of :func:`mne.viz.plot_raw`. If
            array, the channels are divided by picks given in the array.

            .. versionadded:: 0.13.0
        to_sphere : bool
            Whether to project the 3d locations to a sphere. When False, the
            sensor array appears similar as to looking downwards straight above
            the subject's head. Has no effect when kind='3d'. Defaults to True.

            .. versionadded:: 0.14.0
        axes : instance of Axes | instance of Axes3D | None
            Axes to draw the sensors to. If ``kind='3d'``, axes must be an
            instance of Axes3D. If None (default), a new axes will be created.

            .. versionadded:: 0.13.0
        block : bool
            Whether to halt program execution until the figure is closed.
            Defaults to False.

            .. versionadded:: 0.13.0
        show : bool
            Show figure if True. Defaults to True.
        %(sphere_topomap_auto)s
        %(verbose)s

        Returns
        -------
        fig : instance of Figure
            Figure containing the sensor topography.
        selection : list
            A list of selected channels. Only returned if ``kind=='select'``.

        See Also
        --------
        mne.viz.plot_layout

        Notes
        -----
        This function plots the sensor locations from the info structure using
        matplotlib. For drawing the sensors using PyVista see
        :func:`mne.viz.plot_alignment`.

        .. versionadded:: 0.12.0
        """
        from ..viz.utils import plot_sensors
        return plot_sensors(self.info, kind=kind, ch_type=ch_type, title=title,
                            show_names=show_names, ch_groups=ch_groups,
                            to_sphere=to_sphere, axes=axes, block=block,
                            show=show, sphere=sphere, verbose=verbose)

    @verbose
    def anonymize(self, daysback=None, keep_his=False, verbose=None):
        """Anonymize measurement information in place.

        Parameters
        ----------
        %(daysback_anonymize_info)s
        %(keep_his_anonymize_info)s
        %(verbose)s

        Returns
        -------
        inst : instance of Raw | Epochs | Evoked
            The modified instance.

        Notes
        -----
        %(anonymize_info_notes)s

        .. versionadded:: 0.13.0
        """
        anonymize_info(self.info, daysback=daysback, keep_his=keep_his,
                       verbose=verbose)
        self.set_meas_date(self.info['meas_date'])  # unify annot update
        return self

    def set_meas_date(self, meas_date):
        """Set the measurement start date.

        Parameters
        ----------
        meas_date : datetime | float | tuple | None
            The new measurement date.
            If datetime object, it must be timezone-aware and in UTC.
            A tuple of (seconds, microseconds) or float (alias for
            ``(meas_date, 0)``) can also be passed and a datetime
            object will be automatically created. If None, will remove
            the time reference.

        Returns
        -------
        inst : instance of Raw | Epochs | Evoked
            The modified raw instance. Operates in place.

        See Also
        --------
        mne.io.Raw.anonymize

        Notes
        -----
        If you want to remove all time references in the file, call
        :func:`mne.io.anonymize_info(inst.info) <mne.io.anonymize_info>`
        after calling ``inst.set_meas_date(None)``.

        .. versionadded:: 0.20
        """
        from ..annotations import _handle_meas_date
        meas_date = _handle_meas_date(meas_date)
        with self.info._unlock():
            self.info['meas_date'] = meas_date

        # clear file_id and meas_id if needed
        if meas_date is None:
            for key in ('file_id', 'meas_id'):
                value = self.info.get(key)
                if value is not None:
                    assert 'msecs' not in value
                    value['secs'] = DATE_NONE[0]
                    value['usecs'] = DATE_NONE[1]
                    # The following copy is needed for a test CTF dataset
                    # otherwise value['machid'][:] = 0 would suffice
                    _tmp = value['machid'].copy()
                    _tmp[:] = 0
                    value['machid'] = _tmp

        if hasattr(self, 'annotations'):
            self.annotations._orig_time = meas_date
        return self


class UpdateChannelsMixin(object):
    """Mixin class for Raw, Evoked, Epochs, Spectrum, AverageTFR."""

    @verbose
    def pick_types(self, meg=False, eeg=False, stim=False, eog=False,
                   ecg=False, emg=False, ref_meg='auto', *, misc=False,
                   resp=False, chpi=False, exci=False, ias=False, syst=False,
                   seeg=False, dipole=False, gof=False, bio=False,
                   ecog=False, fnirs=False, csd=False, dbs=False,
                   temperature=False, gsr=False,
                   include=(), exclude='bads', selection=None, verbose=None):
        """Pick some channels by type and names.

        Parameters
        ----------
        %(pick_types_params)s
        %(verbose)s

        Returns
        -------
        inst : instance of Raw, Epochs, or Evoked
            The modified instance.

        See Also
        --------
        pick_channels

        Notes
        -----
        .. versionadded:: 0.9.0
        """
        idx = pick_types(
            self.info, meg=meg, eeg=eeg, stim=stim, eog=eog, ecg=ecg, emg=emg,
            ref_meg=ref_meg, misc=misc, resp=resp, chpi=chpi, exci=exci,
            ias=ias, syst=syst, seeg=seeg, dipole=dipole, gof=gof, bio=bio,
            ecog=ecog, fnirs=fnirs, csd=csd, dbs=dbs, include=include,
            exclude=exclude, selection=selection, temperature=temperature,
            gsr=gsr)

        self._pick_drop_channels(idx)

        # remove dropped channel types from reject and flat
        if getattr(self, 'reject', None) is not None:
            # use list(self.reject) to avoid RuntimeError for changing
            # dictionary size during iteration
            for ch_type in list(self.reject):
                if ch_type not in self:
                    del self.reject[ch_type]

        if getattr(self, 'flat', None) is not None:
            for ch_type in list(self.flat):
                if ch_type not in self:
                    del self.flat[ch_type]

        return self

    @verbose
    def pick_channels(self, ch_names, ordered=False, *, verbose=None):
        """Pick some channels.

        Parameters
        ----------
        ch_names : list
            The list of channels to select.
        ordered : bool
            If True (default False), ensure that the order of the channels in
            the modified instance matches the order of ``ch_names``.

            .. versionadded:: 0.20.0
        %(verbose)s

            .. versionadded:: 1.1

        Returns
        -------
        inst : instance of Raw, Epochs, or Evoked
            The modified instance.

        See Also
        --------
        drop_channels
        pick_types
        reorder_channels

        Notes
        -----
        The channel names given are assumed to be a set, i.e. the order
        does not matter. The original order of the channels is preserved.
        You can use ``reorder_channels`` to set channel order if necessary.

        .. versionadded:: 0.9.0
        """
        picks = pick_channels(self.info['ch_names'], ch_names, ordered=ordered)
        return self._pick_drop_channels(picks)

    @verbose
    def pick(self, picks, exclude=(), *, verbose=None):
        """Pick a subset of channels.

        Parameters
        ----------
        %(picks_all)s
        exclude : list | str
            Set of channels to exclude, only used when picking based on
            types (e.g., exclude="bads" when picks="meg").
        %(verbose)s

            .. versionadded:: 0.24.0

        Returns
        -------
        inst : instance of Raw, Epochs, or Evoked
            The modified instance.
        """
        picks = _picks_to_idx(self.info, picks, 'all', exclude,
                              allow_empty=False)
        return self._pick_drop_channels(picks)

    def reorder_channels(self, ch_names):
        """Reorder channels.

        Parameters
        ----------
        ch_names : list
            The desired channel order.

        Returns
        -------
        inst : instance of Raw, Epochs, or Evoked
            The modified instance.

        See Also
        --------
        drop_channels
        pick_types
        pick_channels

        Notes
        -----
        Channel names must be unique. Channels that are not in ``ch_names``
        are dropped.

        .. versionadded:: 0.16.0
        """
        _check_excludes_includes(ch_names)
        idx = list()
        for ch_name in ch_names:
            ii = self.ch_names.index(ch_name)
            if ii in idx:
                raise ValueError('Channel name repeated: %s' % (ch_name,))
            idx.append(ii)
        return self._pick_drop_channels(idx)

    @fill_doc
    def drop_channels(self, ch_names, on_missing='raise'):
        """Drop channel(s).

        Parameters
        ----------
        ch_names : iterable or str
            Iterable (e.g. list) of channel name(s) or channel name to remove.
        %(on_missing_ch_names)s

        Returns
        -------
        inst : instance of Raw, Epochs, or Evoked
            The modified instance.

        See Also
        --------
        reorder_channels
        pick_channels
        pick_types

        Notes
        -----
        .. versionadded:: 0.9.0
        """
        if isinstance(ch_names, str):
            ch_names = [ch_names]

        try:
            all_str = all([isinstance(ch, str) for ch in ch_names])
        except TypeError:
            raise ValueError("'ch_names' must be iterable, got "
                             "type {} ({}).".format(type(ch_names), ch_names))

        if not all_str:
            raise ValueError("Each element in 'ch_names' must be str, got "
                             "{}.".format([type(ch) for ch in ch_names]))

        missing = [ch for ch in ch_names if ch not in self.ch_names]
        if len(missing) > 0:
            msg = "Channel(s) {0} not found, nothing dropped."
            _on_missing(on_missing, msg.format(", ".join(missing)))

        bad_idx = [self.ch_names.index(ch) for ch in ch_names
                   if ch in self.ch_names]
        idx = np.setdiff1d(np.arange(len(self.ch_names)), bad_idx)
        return self._pick_drop_channels(idx)

    @verbose
    def _pick_drop_channels(self, idx, *, verbose=None):
        # avoid circular imports
        from ..io import BaseRaw
        from ..time_frequency import AverageTFR, EpochsTFR
        from ..time_frequency.spectrum import BaseSpectrum

        msg = 'adding, dropping, or reordering channels'
        if isinstance(self, BaseRaw):
            if self._projector is not None:
                _check_preload(self, f'{msg} after calling .apply_proj()')
        else:
            _check_preload(self, msg)

        if getattr(self, 'picks', None) is not None:
            self.picks = self.picks[idx]

        if getattr(self, '_read_picks', None) is not None:
            self._read_picks = [r[idx] for r in self._read_picks]

        if hasattr(self, '_cals'):
            self._cals = self._cals[idx]

        pick_info(self.info, idx, copy=False)

        for key in ('_comp', '_projector'):
            mat = getattr(self, key, None)
            if mat is not None:
                setattr(self, key, mat[idx][:, idx])

        if isinstance(self, BaseSpectrum):
            axis = self._dims.index('channel')
        elif isinstance(self, (AverageTFR, EpochsTFR)):
            axis = -3
        else:  # All others (Evoked, Epochs, Raw) have chs axis=-2
            axis = -2
        if hasattr(self, '_data'):  # skip non-preloaded Raw
            self._data = self._data.take(idx, axis=axis)
        else:
            assert isinstance(self, BaseRaw) and not self.preload

        if isinstance(self, BaseRaw):
            self.annotations._prune_ch_names(self.info, on_missing='ignore')
            self._orig_units = {
                k: v for k, v in self._orig_units.items()
                if k in self.ch_names}

        self._pick_projs()
        return self

    def _pick_projs(self):
        """Keep only projectors which apply to at least 1 data channel."""
        drop_idx = []
        for idx, proj in enumerate(self.info['projs']):
            if not set(self.info['ch_names']) & set(proj['data']['col_names']):
                drop_idx.append(idx)

        for idx in drop_idx:
            logger.info(f"Removing projector {self.info['projs'][idx]}")

        if drop_idx and hasattr(self, 'del_proj'):
            self.del_proj(drop_idx)

        return self

    def add_channels(self, add_list, force_update_info=False):
        """Append new channels to the instance.

        Parameters
        ----------
        add_list : list
            A list of objects to append to self. Must contain all the same
            type as the current object.
        force_update_info : bool
            If True, force the info for objects to be appended to match the
            values in ``self``. This should generally only be used when adding
            stim channels for which important metadata won't be overwritten.

            .. versionadded:: 0.12

        Returns
        -------
        inst : instance of Raw, Epochs, or Evoked
            The modified instance.

        See Also
        --------
        drop_channels

        Notes
        -----
        If ``self`` is a Raw instance that has been preloaded into a
        :obj:`numpy.memmap` instance, the memmap will be resized.
        """
        # avoid circular imports
        from ..io import BaseRaw, _merge_info
        from ..epochs import BaseEpochs

        _validate_type(add_list, (list, tuple), 'Input')

        # Object-specific checks
        for inst in add_list + [self]:
            _check_preload(inst, "adding channels")
        if isinstance(self, BaseRaw):
            con_axis = 0
            comp_class = BaseRaw
        elif isinstance(self, BaseEpochs):
            con_axis = 1
            comp_class = BaseEpochs
        else:
            con_axis = 0
            comp_class = type(self)
        for inst in add_list:
            _validate_type(inst, comp_class, 'All input')
        data = [inst._data for inst in [self] + add_list]

        # Make sure that all dimensions other than channel axis are the same
        compare_axes = [i for i in range(data[0].ndim) if i != con_axis]
        shapes = np.array([dat.shape for dat in data])[:, compare_axes]
        for shape in shapes:
            if not ((shapes[0] - shape) == 0).all():
                raise ValueError(
                    'All data dimensions except channels must match, got '
                    f'{shapes[0]} != {shape}')
        del shapes

        # Create final data / info objects
        infos = [self.info] + [inst.info for inst in add_list]
        new_info = _merge_info(infos, force_update_to_first=force_update_info)

        # Now update the attributes
        if isinstance(self._data, np.memmap) and con_axis == 0 and \
                sys.platform != 'darwin':  # resizing not available--no mremap
            # Use a resize and fill in other ones
            out_shape = (sum(d.shape[0] for d in data),) + data[0].shape[1:]
            n_bytes = np.prod(out_shape) * self._data.dtype.itemsize
            self._data.flush()
            self._data.base.resize(n_bytes)
            self._data = np.memmap(self._data.filename, mode='r+',
                                   dtype=self._data.dtype, shape=out_shape)
            assert self._data.shape == out_shape
            assert self._data.nbytes == n_bytes
            offset = len(data[0])
            for d in data[1:]:
                this_len = len(d)
                self._data[offset:offset + this_len] = d
                offset += this_len
        else:
            self._data = np.concatenate(data, axis=con_axis)
        self.info = new_info
        if isinstance(self, BaseRaw):
            self._cals = np.concatenate([getattr(inst, '_cals')
                                         for inst in [self] + add_list])
            # We should never use these since data are preloaded, let's just
            # set it to something large and likely to break (2 ** 31 - 1)
            extra_idx = [2147483647] * sum(info['nchan'] for info in infos[1:])
            assert all(len(r) == infos[0]['nchan'] for r in self._read_picks)
            self._read_picks = [
                np.concatenate([r, extra_idx]) for r in self._read_picks]
            assert all(len(r) == self.info['nchan'] for r in self._read_picks)
            for other in add_list:
                self._orig_units.update(other._orig_units)
        elif isinstance(self, BaseEpochs):
            self.picks = np.arange(self._data.shape[1])
            if hasattr(self, '_projector'):
                activate = False if self._do_delayed_proj else self.proj
                self._projector, self.info = setup_proj(self.info, False,
                                                        activate=activate)

        return self

    @fill_doc
    def add_reference_channels(self, ref_channels):
        """Add reference channels to data that consists of all zeros.

        Adds reference channels to data that were not included during
        recording. This is useful when you need to re-reference your data
        to different channels. These added channels will consist of all zeros.

        Parameters
        ----------
        %(ref_channels)s

        Returns
        -------
        inst : instance of Raw | Epochs | Evoked
               The modified instance.
        """
        from ..io.reference import add_reference_channels

        return add_reference_channels(self, ref_channels, copy=False)


class InterpolationMixin(object):
    """Mixin class for Raw, Evoked, Epochs."""

    @verbose
    def interpolate_bads(self, reset_bads=True, mode='accurate',
                         origin='auto', method=None, exclude=(),
                         verbose=None):
        """Interpolate bad MEG and EEG channels.

        Operates in place.

        Parameters
        ----------
        reset_bads : bool
            If True, remove the bads from info.
        mode : str
            Either ``'accurate'`` or ``'fast'``, determines the quality of the
            Legendre polynomial expansion used for interpolation of channels
            using the minimum-norm method.
        origin : array-like, shape (3,) | str
            Origin of the sphere in the head coordinate frame and in meters.
            Can be ``'auto'`` (default), which means a head-digitization-based
            origin fit.

            .. versionadded:: 0.17
        method : dict
            Method to use for each channel type.
            Currently only the key "eeg" has multiple options:

            - ``"spline"`` (default)
                Use spherical spline interpolation.
            - ``"MNE"``
                Use minimum-norm projection to a sphere and back.
                This is the method used for MEG channels.

            The value for "meg" is "MNE", and the value for
            "fnirs" is "nearest". The default (None) is thus an alias for::

                method=dict(meg="MNE", eeg="spline", fnirs="nearest")

            .. versionadded:: 0.21
        exclude : list | tuple
            The channels to exclude from interpolation. If excluded a bad
            channel will stay in bads.
        %(verbose)s

        Returns
        -------
        inst : instance of Raw, Epochs, or Evoked
            The modified instance.

        Notes
        -----
        .. versionadded:: 0.9.0
        """
        from ..bem import _check_origin
        from .interpolation import _interpolate_bads_eeg,\
            _interpolate_bads_meeg, _interpolate_bads_nirs

        _check_preload(self, "interpolation")
        method = _handle_default('interpolation_method', method)
        for key in method:
            _check_option('method[key]', key, ('meg', 'eeg', 'fnirs'))
        _check_option("method['eeg']", method['eeg'], ('spline', 'MNE'))
        _check_option("method['meg']", method['meg'], ('MNE',))
        _check_option("method['fnirs']", method['fnirs'], ('nearest',))

        if len(self.info['bads']) == 0:
            warn('No bad channels to interpolate. Doing nothing...')
            return self
        logger.info('Interpolating bad channels')
        origin = _check_origin(origin, self.info)
        if method['eeg'] == 'spline':
            _interpolate_bads_eeg(self, origin=origin, exclude=exclude)
            eeg_mne = False
        else:
            eeg_mne = True
        _interpolate_bads_meeg(self, mode=mode, origin=origin, eeg=eeg_mne,
                               exclude=exclude)
        _interpolate_bads_nirs(self, exclude=exclude)

        if reset_bads is True:
            self.info['bads'] = \
                [ch for ch in self.info['bads'] if ch in exclude]

        return self


@verbose
def rename_channels(info, mapping, allow_duplicates=False, verbose=None):
    """Rename channels.

    Parameters
    ----------
    %(info_not_none)s Note: modified in place.
    %(mapping_rename_channels_duplicates)s
    %(verbose)s
    """
    _validate_type(info, Info, 'info')
    info._check_consistency()
    bads = list(info['bads'])  # make our own local copies
    ch_names = list(info['ch_names'])

    # first check and assemble clean mappings of index and name
    if isinstance(mapping, dict):
        _check_dict_keys(mapping, ch_names, key_description="channel name(s)",
                         valid_key_source="info")
        new_names = [(ch_names.index(ch_name), new_name)
                     for ch_name, new_name in mapping.items()]
    elif callable(mapping):
        new_names = [(ci, mapping(ch_name))
                     for ci, ch_name in enumerate(ch_names)]
    else:
        raise ValueError('mapping must be callable or dict, not %s'
                         % (type(mapping),))

    # check we got all strings out of the mapping
    for new_name in new_names:
        _validate_type(new_name[1], 'str', 'New channel mappings')

    # do the remapping locally
    for c_ind, new_name in new_names:
        for bi, bad in enumerate(bads):
            if bad == ch_names[c_ind]:
                bads[bi] = new_name
        ch_names[c_ind] = new_name

    # check that all the channel names are unique
    if len(ch_names) != len(np.unique(ch_names)) and not allow_duplicates:
        raise ValueError('New channel names are not unique, renaming failed')

    # do the remapping in info
    info['bads'] = bads
    ch_names_mapping = dict()
    for ch, ch_name in zip(info['chs'], ch_names):
        ch_names_mapping[ch['ch_name']] = ch_name
        ch['ch_name'] = ch_name
    # .get b/c fwd info omits it
    _rename_comps(info.get('comps', []), ch_names_mapping)
    if 'projs' in info:  # fwd might omit it
        for proj in info['projs']:
            proj['data']['col_names'][:] = \
                _rename_list(proj['data']['col_names'], ch_names_mapping)
    info._update_redundant()
    info._check_consistency()


def _recursive_flatten(cell, dtype):
    """Unpack mat files in Python."""
    if len(cell) > 0:
        while not isinstance(cell[0], dtype):
            cell = [c for d in cell for c in d]
    return cell


@dataclass
class _BuiltinChannelAdjacency:
    name: str
    description: str
    fname: str
    source_url: Union[str, None]


_ft_neighbor_url_t = string.Template(
    'https://github.com/fieldtrip/fieldtrip/raw/master/'
    'template/neighbours/$fname'
)

_BUILTIN_CHANNEL_ADJACENCIES = [
    _BuiltinChannelAdjacency(
        name='biosemi16',
        description='Biosemi 16-electrode cap',
        fname='biosemi16_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='biosemi16_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='biosemi32',
        description='Biosemi 32-electrode cap',
        fname='biosemi32_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='biosemi32_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='biosemi64',
        description='Biosemi 64-electrode cap',
        fname='biosemi64_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='biosemi64_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='bti148',
        description='BTI 148-channel system',
        fname='bti148_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='bti148_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='bti248',
        description='BTI 248-channel system',
        fname='bti248_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='bti248_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='bti248grad',
        description='BTI 248 gradiometer system',
        fname='bti248grad_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='bti248grad_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='ctf64',
        description='CTF 64 axial gradiometer',
        fname='ctf64_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='ctf64_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='ctf151',
        description='CTF 151 axial gradiometer',
        fname='ctf151_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='ctf151_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='ctf275',
        description='CTF 275 axial gradiometer',
        fname='ctf275_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='ctf275_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='easycap32ch-avg',
        description='',
        fname='easycap32ch-avg_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='easycap32ch-avg_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='easycap64ch-avg',
        description='',
        fname='easycap64ch-avg_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='easycap64ch-avg_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='easycap128ch-avg',
        description='',
        fname='easycap128ch-avg_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='easycap128ch-avg_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='easycapM1',
        description='Easycap M1',
        fname='easycapM1_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='easycapM1_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='easycapM11',
        description='Easycap M11',
        fname='easycapM11_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='easycapM11_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='easycapM14',
        description='Easycap M14',
        fname='easycapM14_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='easycapM14_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='easycapM15',
        description='Easycap M15',
        fname='easycapM15_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='easycapM15_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='KIT-157',
        description='',
        fname='KIT-157_neighb.mat',
        source_url=None,
    ),
    _BuiltinChannelAdjacency(
        name='KIT-208',
        description='',
        fname='KIT-208_neighb.mat',
        source_url=None,
    ),
    _BuiltinChannelAdjacency(
        name='KIT-NYU-2019',
        description='',
        fname='KIT-NYU-2019_neighb.mat',
        source_url=None,
    ),
    _BuiltinChannelAdjacency(
        name='KIT-UMD-1',
        description='',
        fname='KIT-UMD-1_neighb.mat',
        source_url=None,
    ),
    _BuiltinChannelAdjacency(
        name='KIT-UMD-2',
        description='',
        fname='KIT-UMD-2_neighb.mat',
        source_url=None,
    ),
    _BuiltinChannelAdjacency(
        name='KIT-UMD-3',
        description='',
        fname='KIT-UMD-3_neighb.mat',
        source_url=None,
    ),
    _BuiltinChannelAdjacency(
        name='KIT-UMD-4',
        description='',
        fname='KIT-UMD-4_neighb.mat',
        source_url=None,
    ),
    _BuiltinChannelAdjacency(
        name='neuromag306mag',
        description='Neuromag306, only magnetometers',
        fname='neuromag306mag_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='neuromag306mag_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='neuromag306planar',
        description='Neuromag306, only planar gradiometers',
        fname='neuromag306planar_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='neuromag306planar_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='neuromag122cmb',
        description='Neuromag122, only combined planar gradiometers',
        fname='neuromag122cmb_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='neuromag122cmb_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='neuromag306cmb',
        description='Neuromag306, only combined planar gradiometers',
        fname='neuromag306cmb_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='neuromag306cmb_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='ecog256',
        description='ECOG 256channels, average referenced',
        fname='ecog256_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='ecog256_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='ecog256bipolar',
        description='ECOG 256channels, bipolar referenced',
        fname='ecog256bipolar_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='ecog256bipolar_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='eeg1010_neighb',
        description='',
        fname='eeg1010_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='eeg1010_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='elec1005',
        description='Standard 10-05 system',
        fname='elec1005_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='elec1005_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='elec1010',
        description='Standard 10-10 system',
        fname='elec1010_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='elec1010_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='elec1020',
        description='Standard 10-20 system',
        fname='elec1020_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='elec1020_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='itab28',
        description='ITAB 28-channel system',
        fname='itab28_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='itab28_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='itab153',
        description='ITAB 153-channel system',
        fname='itab153_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='itab153_neighb.mat'),
    ),
    _BuiltinChannelAdjacency(
        name='language29ch-avg',
        description='MPI for Psycholinguistic: Averaged 29-channel cap',
        fname='language29ch-avg_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='language29ch-avg_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='mpi_59_channels',
        description='MPI for Psycholinguistic: 59-channel cap',
        fname='mpi_59_channels_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='mpi_59_channels_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='yokogawa160',
        description='',
        fname='yokogawa160_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='yokogawa160_neighb.mat'),  # noqa: E501
    ),
    _BuiltinChannelAdjacency(
        name='yokogawa440',
        description='',
        fname='yokogawa440_neighb.mat',
        source_url=_ft_neighbor_url_t.substitute(fname='yokogawa440_neighb.mat'),  # noqa: E501
    ),
]


@fill_doc
def get_builtin_ch_adjacencies(*, descriptions=False):
    """Get a list of all FieldTrip neighbor definitions shipping with MNE.

    The names of the these neighbor definitions can be passed to
    :func:`read_ch_adjacency`.

    Parameters
    ----------
    descriptions : bool
        Whether to return not only the neighbor definition names, but also
        their corresponding descriptions. If ``True``, a list of tuples is
        returned, where the first tuple element is the neighbor definition name
        and the second is the description. If ``False`` (default), only the
        names are returned.

    Returns
    -------
    neighbor_name : list of str | list of tuple
        If ``descriptions=False``, the names of all builtin FieldTrip neighbor
        definitions that can be loaded directly via :func:`read_ch_adjacency`.

        If ``descriptions=True``, a list of tuples ``(name, description)``.

    Notes
    -----
    .. versionadded:: 1.1
    """
    if descriptions:
        return sorted(
            [(m.name, m.description) for m in _BUILTIN_CHANNEL_ADJACENCIES],
            key=lambda x: x[0].casefold()  # only sort based on name
        )
    else:
        return sorted(
            [m.name for m in _BUILTIN_CHANNEL_ADJACENCIES],
            key=str.casefold
        )


@fill_doc
def read_ch_adjacency(fname, picks=None):
    """Read a channel adjacency ("neighbors") file that ships with MNE.

    More information on these neighbor definitions can be found on the related
    `FieldTrip documentation pages
    <http://www.fieldtriptoolbox.org/template/neighbours/>`__.

    Parameters
    ----------
    fname : str
        The path to the file to load, or the name of a channel adjacency
        matrix that ships with MNE-Python.

        .. note::
            You can retrieve the names of all
            built-in channel adjacencies via
            :func:`mne.channels.get_builtin_ch_adjacencies`.
    %(picks_all)s
        Picks must match the template.

    Returns
    -------
    ch_adjacency : scipy.sparse.csr_matrix, shape (n_channels, n_channels)
        The adjacency matrix.
    ch_names : list
        The list of channel names present in adjacency matrix.

    See Also
    --------
    get_builtin_ch_adjacencies
    mne.viz.plot_ch_adjacency
    find_ch_adjacency
    mne.stats.combine_adjacency

    Notes
    -----
    If the neighbor definition you need is not shipped by MNE-Python,
    you may use :func:`find_ch_adjacency` to compute the
    adjacency matrix based on your 2D sensor locations.

    Note that depending on your use case, you may need to additionally use
    :func:`mne.stats.combine_adjacency` to prepare a final "adjacency"
    to pass to the eventual function.
    """
    from scipy.io import loadmat
    if op.isabs(fname):
        fname = _check_fname(
            fname=fname,
            overwrite='read',
            must_exist=True
        )
    else:  # built-in FieldTrip neighbors
        ch_adj_name = fname
        del fname
        if ch_adj_name.endswith('_neighb.mat'):  # backward-compat
            ch_adj_name = ch_adj_name.replace('_neighb.mat', '')

        if ch_adj_name not in get_builtin_ch_adjacencies():
            raise ValueError(
                f'No built-in channel adjacency matrix found with name: '
                f'{ch_adj_name}. Valid names are: '
                f'{", ".join(get_builtin_ch_adjacencies())}'
            )

        ch_adj = [a for a in _BUILTIN_CHANNEL_ADJACENCIES
                  if a.name == ch_adj_name][0]
        fname = ch_adj.fname
        templates_dir = Path(__file__).resolve().parent / 'data' / 'neighbors'
        fname = _check_fname(  # only needed to convert to a string
            fname=templates_dir / fname,
            overwrite='read',
            must_exist=True
        )

    nb = loadmat(fname)['neighbours']
    ch_names = _recursive_flatten(nb['label'], str)
    picks = _picks_to_idx(len(ch_names), picks)
    neighbors = [_recursive_flatten(c, str) for c in
                 nb['neighblabel'].flatten()]
    assert len(ch_names) == len(neighbors)
    adjacency = _ch_neighbor_adjacency(ch_names, neighbors)
    # picking before constructing matrix is buggy
    adjacency = adjacency[picks][:, picks]
    ch_names = [ch_names[p] for p in picks]

    # make sure MEG channel names contain space after "MEG"
    for idx, ch_name in enumerate(ch_names):
        if ch_name.startswith('MEG') and not ch_name[3] == ' ':
            ch_name = ch_name.replace('MEG', 'MEG ')
            ch_names[idx] = ch_name

    return adjacency, ch_names


def _ch_neighbor_adjacency(ch_names, neighbors):
    """Compute sensor adjacency matrix.

    Parameters
    ----------
    ch_names : list of str
        The channel names.
    neighbors : list of list
        A list of list of channel names. The neighbors to
        which the channels in ch_names are connected with.
        Must be of the same length as ch_names.

    Returns
    -------
    ch_adjacency : scipy.sparse.spmatrix
        The adjacency matrix.
    """
    from scipy import sparse
    if len(ch_names) != len(neighbors):
        raise ValueError('`ch_names` and `neighbors` must '
                         'have the same length')
    set_neighbors = {c for d in neighbors for c in d}
    rest = set_neighbors - set(ch_names)
    if len(rest) > 0:
        raise ValueError('Some of your neighbors are not present in the '
                         'list of channel names')

    for neigh in neighbors:
        if (not isinstance(neigh, list) and
                not all(isinstance(c, str) for c in neigh)):
            raise ValueError('`neighbors` must be a list of lists of str')

    ch_adjacency = np.eye(len(ch_names), dtype=bool)
    for ii, neigbs in enumerate(neighbors):
        ch_adjacency[ii, [ch_names.index(i) for i in neigbs]] = True
    ch_adjacency = sparse.csr_matrix(ch_adjacency)
    return ch_adjacency


@fill_doc
def find_ch_adjacency(info, ch_type):
    """Find the adjacency matrix for the given channels.

    This function tries to infer the appropriate adjacency matrix template
    for the given channels. If a template is not found, the adjacency matrix
    is computed using Delaunay triangulation based on 2D sensor locations.

    Parameters
    ----------
    %(info_not_none)s
    ch_type : str | None
        The channel type for computing the adjacency matrix. Currently
        supports ``'mag'``, ``'grad'``, ``'eeg'`` and ``None``.
        If ``None``, the info must contain only one channel type.

    Returns
    -------
    ch_adjacency : scipy.sparse.csr_matrix, shape (n_channels, n_channels)
        The adjacency matrix.
    ch_names : list
        The list of channel names present in adjacency matrix.

    See Also
    --------
    mne.viz.plot_ch_adjacency
    mne.stats.combine_adjacency
    get_builtin_ch_adjacencies
    read_ch_adjacency

    Notes
    -----
    .. versionadded:: 0.15

    Automatic detection of an appropriate adjacency matrix template only
    works for MEG data at the moment. This means that the adjacency matrix
    is always computed for EEG data and never loaded from a template file. If
    you want to load a template for a given montage use
    :func:`read_ch_adjacency` directly.

    .. warning::
        If Delaunay triangulation is used to calculate the adjacency matrix it
        may yield partially unexpected results (e.g., include unwanted edges
        between non-adjacent sensors). Therefore, it is recommended to check
        (and, if necessary, manually modify) the result by inspecting it
        via :func:`mne.viz.plot_ch_adjacency`.

    Note that depending on your use case, you may need to additionally use
    :func:`mne.stats.combine_adjacency` to prepare a final "adjacency"
    to pass to the eventual function.
    """
    if ch_type is None:
        picks = channel_indices_by_type(info)
        if sum([len(p) != 0 for p in picks.values()]) != 1:
            raise ValueError('info must contain only one channel type if '
                             'ch_type is None.')
        ch_type = channel_type(info, 0)
    else:
        _check_option('ch_type', ch_type, ['mag', 'grad', 'eeg'])
    (has_vv_mag, has_vv_grad, is_old_vv, has_4D_mag, ctf_other_types,
     has_CTF_grad, n_kit_grads, has_any_meg, has_eeg_coils,
     has_eeg_coils_and_meg, has_eeg_coils_only,
     has_neuromag_122_grad, has_csd_coils) = _get_ch_info(info)
    conn_name = None
    if has_vv_mag and ch_type == 'mag':
        conn_name = 'neuromag306mag'
    elif has_vv_grad and ch_type == 'grad':
        conn_name = 'neuromag306planar'
    elif has_4D_mag:
        if 'MEG 248' in info['ch_names']:
            idx = info['ch_names'].index('MEG 248')
            grad = info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_MAGNES_GRAD
            mag = info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_MAGNES_MAG
            if ch_type == 'grad' and grad:
                conn_name = 'bti248grad'
            elif ch_type == 'mag' and mag:
                conn_name = 'bti248'
        elif 'MEG 148' in info['ch_names'] and ch_type == 'mag':
            idx = info['ch_names'].index('MEG 148')
            if info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_MAGNES_MAG:
                conn_name = 'bti148'
    elif has_CTF_grad and ch_type == 'mag':
        if info['nchan'] < 100:
            conn_name = 'ctf64'
        elif info['nchan'] > 200:
            conn_name = 'ctf275'
        else:
            conn_name = 'ctf151'
    elif n_kit_grads > 0:
        from ..io.kit.constants import KIT_NEIGHBORS
        conn_name = KIT_NEIGHBORS.get(info['kit_system_id'])

    if conn_name is not None:
        logger.info(f'Reading adjacency matrix for {conn_name}.')
        return read_ch_adjacency(conn_name)
    logger.info('Could not find a adjacency matrix for the data. '
                'Computing adjacency based on Delaunay triangulations.')
    return _compute_ch_adjacency(info, ch_type)


@fill_doc
def _compute_ch_adjacency(info, ch_type):
    """Compute channel adjacency matrix using Delaunay triangulations.

    Parameters
    ----------
    %(info_not_none)s
    ch_type : str
        The channel type for computing the adjacency matrix. Currently
        supports 'mag', 'grad' and 'eeg'.

    Returns
    -------
    ch_adjacency : scipy.sparse.csr_matrix, shape (n_channels, n_channels)
        The adjacency matrix.
    ch_names : list
        The list of channel names present in adjacency matrix.
    """
    from scipy import sparse
    from scipy.spatial import Delaunay
    from .. import spatial_tris_adjacency
    from ..channels.layout import _find_topomap_coords, _pair_grad_sensors
    combine_grads = (ch_type == 'grad'
                     and any([coil_type in [ch['coil_type']
                                            for ch in info['chs']]
                              for coil_type in
                              [FIFF.FIFFV_COIL_VV_PLANAR_T1,
                               FIFF.FIFFV_COIL_NM_122]]))

    picks = dict(_picks_by_type(info, exclude=[]))[ch_type]
    ch_names = [info['ch_names'][pick] for pick in picks]
    if combine_grads:
        pairs = _pair_grad_sensors(info, topomap_coords=False, exclude=[])
        if len(pairs) != len(picks):
            raise RuntimeError('Cannot find a pair for some of the '
                               'gradiometers. Cannot compute adjacency '
                               'matrix.')
        # only for one of the pair
        xy = _find_topomap_coords(info, picks[::2], sphere=HEAD_SIZE_DEFAULT)
    else:
        xy = _find_topomap_coords(info, picks, sphere=HEAD_SIZE_DEFAULT)
    tri = Delaunay(xy)
    neighbors = spatial_tris_adjacency(tri.simplices)

    if combine_grads:
        ch_adjacency = np.eye(len(picks), dtype=bool)
        for idx, neigbs in zip(neighbors.row, neighbors.col):
            for ii in range(2):  # make sure each pair is included
                for jj in range(2):
                    ch_adjacency[idx * 2 + ii, neigbs * 2 + jj] = True
                    ch_adjacency[idx * 2 + ii, idx * 2 + jj] = True  # pair
        ch_adjacency = sparse.csr_matrix(ch_adjacency)
    else:
        ch_adjacency = sparse.lil_matrix(neighbors)
        ch_adjacency.setdiag(np.repeat(1, ch_adjacency.shape[0]))
        ch_adjacency = ch_adjacency.tocsr()

    return ch_adjacency, ch_names


@fill_doc
def fix_mag_coil_types(info, use_cal=False):
    """Fix magnetometer coil types.

    Parameters
    ----------
    %(info_not_none)s Corrections are done in-place.
    use_cal : bool
        If True, further refine the check for old coil types by checking
        ``info['chs'][ii]['cal']``.

    Notes
    -----
    This function changes magnetometer coil types 3022 (T1: SQ20483N) and
    3023 (T2: SQ20483-A) to 3024 (T3: SQ20950N) in the channel definition
    records in the info structure.

    Neuromag Vectorview systems can contain magnetometers with two
    different coil sizes (3022 and 3023 vs. 3024). The systems
    incorporating coils of type 3024 were introduced last and are used at
    the majority of MEG sites. At some sites with 3024 magnetometers,
    the data files have still defined the magnetometers to be of type
    3022 to ensure compatibility with older versions of Neuromag software.
    In the MNE software as well as in the present version of Neuromag
    software coil type 3024 is fully supported. Therefore, it is now safe
    to upgrade the data files to use the true coil type.

    .. note:: The effect of the difference between the coil sizes on the
              current estimates computed by the MNE software is very small.
              Therefore the use of ``fix_mag_coil_types`` is not mandatory.
    """
    old_mag_inds = _get_T1T2_mag_inds(info, use_cal)

    for ii in old_mag_inds:
        info['chs'][ii]['coil_type'] = FIFF.FIFFV_COIL_VV_MAG_T3
    logger.info('%d of %d magnetometer types replaced with T3.' %
                (len(old_mag_inds),
                 len(pick_types(info, meg='mag', exclude=[]))))
    info._check_consistency()


def _get_T1T2_mag_inds(info, use_cal=False):
    """Find T1/T2 magnetometer coil types."""
    picks = pick_types(info, meg='mag', exclude=[])
    old_mag_inds = []
    # From email exchanges, systems with the larger T2 coil only use the cal
    # value of 2.09e-11. Newer T3 magnetometers use 4.13e-11 or 1.33e-10
    # (Triux). So we can use a simple check for > 3e-11.
    for ii in picks:
        ch = info['chs'][ii]
        if ch['coil_type'] in (FIFF.FIFFV_COIL_VV_MAG_T1,
                               FIFF.FIFFV_COIL_VV_MAG_T2):
            if use_cal:
                if ch['cal'] > 3e-11:
                    old_mag_inds.append(ii)
            else:
                old_mag_inds.append(ii)
    return old_mag_inds


def _get_ch_info(info):
    """Get channel info for inferring acquisition device."""
    chs = info['chs']
    # Only take first 16 bits, as higher bits store CTF comp order
    coil_types = {ch['coil_type'] & 0xFFFF for ch in chs}
    channel_types = {ch['kind'] for ch in chs}

    has_vv_mag = any(k in coil_types for k in
                     [FIFF.FIFFV_COIL_VV_MAG_T1, FIFF.FIFFV_COIL_VV_MAG_T2,
                      FIFF.FIFFV_COIL_VV_MAG_T3])
    has_vv_grad = any(k in coil_types for k in [FIFF.FIFFV_COIL_VV_PLANAR_T1,
                                                FIFF.FIFFV_COIL_VV_PLANAR_T2,
                                                FIFF.FIFFV_COIL_VV_PLANAR_T3])
    has_neuromag_122_grad = any(k in coil_types
                                for k in [FIFF.FIFFV_COIL_NM_122])

    is_old_vv = ' ' in chs[0]['ch_name']

    has_4D_mag = FIFF.FIFFV_COIL_MAGNES_MAG in coil_types
    ctf_other_types = (FIFF.FIFFV_COIL_CTF_REF_MAG,
                       FIFF.FIFFV_COIL_CTF_REF_GRAD,
                       FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD)
    has_CTF_grad = (FIFF.FIFFV_COIL_CTF_GRAD in coil_types or
                    (FIFF.FIFFV_MEG_CH in channel_types and
                     any(k in ctf_other_types for k in coil_types)))
    # hack due to MNE-C bug in IO of CTF
    # only take first 16 bits, as higher bits store CTF comp order
    n_kit_grads = sum(ch['coil_type'] & 0xFFFF == FIFF.FIFFV_COIL_KIT_GRAD
                      for ch in chs)

    has_any_meg = any([has_vv_mag, has_vv_grad, has_4D_mag, has_CTF_grad,
                       n_kit_grads])
    has_eeg_coils = (FIFF.FIFFV_COIL_EEG in coil_types and
                     FIFF.FIFFV_EEG_CH in channel_types)
    has_eeg_coils_and_meg = has_eeg_coils and has_any_meg
    has_eeg_coils_only = has_eeg_coils and not has_any_meg
    has_csd_coils = (FIFF.FIFFV_COIL_EEG_CSD in coil_types and
                     FIFF.FIFFV_EEG_CH in channel_types)

    return (has_vv_mag, has_vv_grad, is_old_vv, has_4D_mag, ctf_other_types,
            has_CTF_grad, n_kit_grads, has_any_meg, has_eeg_coils,
            has_eeg_coils_and_meg, has_eeg_coils_only, has_neuromag_122_grad,
            has_csd_coils)


@fill_doc
def make_1020_channel_selections(info, midline="z"):
    """Return dict mapping from ROI names to lists of picks for 10/20 setups.

    This passes through all channel names, and uses a simple heuristic to
    separate channel names into three Region of Interest-based selections:
    Left, Midline and Right. The heuristic is that channels ending on any of
    the characters in ``midline`` are filed under that heading, otherwise those
    ending in odd numbers under "Left", those in even numbers under "Right".
    Other channels are ignored. This is appropriate for 10/20 files, but not
    for other channel naming conventions.
    If an info object is provided, lists are sorted from posterior to anterior.

    Parameters
    ----------
    %(info_not_none)s If possible, the channel lists will be sorted
        posterior-to-anterior; otherwise they default to the order specified in
        ``info["ch_names"]``.
    midline : str
        Names ending in any of these characters are stored under the
        ``Midline`` key. Defaults to 'z'. Note that capitalization is ignored.

    Returns
    -------
    selections : dict
        A dictionary mapping from ROI names to lists of picks (integers).
    """
    _validate_type(info, "info")

    try:
        from .layout import find_layout
        layout = find_layout(info)
        pos = layout.pos
        ch_names = layout.names
    except RuntimeError:  # no channel positions found
        ch_names = info["ch_names"]
        pos = None

    selections = dict(Left=[], Midline=[], Right=[])
    for pick, channel in enumerate(ch_names):
        last_char = channel[-1].lower()  # in 10/20, last char codes hemisphere
        if last_char in midline:
            selection = "Midline"
        elif last_char.isdigit():
            selection = "Left" if int(last_char) % 2 else "Right"
        else:  # ignore the channel
            continue
        selections[selection].append(pick)

    if pos is not None:
        # sort channels from front to center
        # (y-coordinate of the position info in the layout)
        selections = {selection: np.array(picks)[pos[picks, 1].argsort()]
                      for selection, picks in selections.items()}

    return selections


@verbose
def combine_channels(inst, groups, method='mean', keep_stim=False,
                     drop_bad=False, verbose=None):
    """Combine channels based on specified channel grouping.

    Parameters
    ----------
    inst : instance of Raw, Epochs, or Evoked
        An MNE-Python object to combine the channels for. The object can be of
        type Raw, Epochs, or Evoked.
    groups : dict
        Specifies which channels are aggregated into a single channel, with
        aggregation method determined by the ``method`` parameter. One new
        pseudo-channel is made per dict entry; the dict values must be lists of
        picks (integer indices of ``ch_names``). For example::

            groups=dict(Left=[1, 2, 3, 4], Right=[5, 6, 7, 8])

        Note that within a dict entry all channels must have the same type.
    method : str | callable
        Which method to use to combine channels. If a :class:`str`, must be one
        of 'mean', 'median', or 'std' (standard deviation). If callable, the
        callable must accept one positional input (data of shape ``(n_channels,
        n_times)``, or ``(n_epochs, n_channels, n_times)``) and return an
        :class:`array <numpy.ndarray>` of shape ``(n_times,)``, or ``(n_epochs,
        n_times)``. For example with an instance of Raw or Evoked::

            method = lambda data: np.mean(data, axis=0)

        Another example with an instance of Epochs::

            method = lambda data: np.median(data, axis=1)

        Defaults to ``'mean'``.
    keep_stim : bool
        If ``True``, include stimulus channels in the resulting object.
        Defaults to ``False``.
    drop_bad : bool
        If ``True``, drop channels marked as bad before combining. Defaults to
        ``False``.
    %(verbose)s

    Returns
    -------
    combined_inst : instance of Raw, Epochs, or Evoked
        An MNE-Python object of the same type as the input ``inst``, containing
        one virtual channel for each group in ``groups`` (and, if ``keep_stim``
        is ``True``, also containing stimulus channels).
    """
    from ..io import BaseRaw, RawArray
    from .. import BaseEpochs, EpochsArray, Evoked, EvokedArray

    ch_axis = 1 if isinstance(inst, BaseEpochs) else 0
    ch_idx = list(range(inst.info['nchan']))
    ch_names = inst.info['ch_names']
    ch_types = inst.get_channel_types()
    inst_data = inst.data if isinstance(inst, Evoked) else inst.get_data()
    groups = OrderedDict(deepcopy(groups))

    # Convert string values of ``method`` into callables
    # XXX Possibly de-duplicate with _make_combine_callable of mne/viz/utils.py
    if isinstance(method, str):
        method_dict = {key: partial(getattr(np, key), axis=ch_axis)
                       for key in ('mean', 'median', 'std')}
        try:
            method = method_dict[method]
        except KeyError:
            raise ValueError('"method" must be a callable, or one of "mean", '
                             f'"median", or "std"; got "{method}".')

    # Instantiate channel info and data
    new_ch_names, new_ch_types, new_data = [], [], []
    if not isinstance(keep_stim, bool):
        raise TypeError('"keep_stim" must be of type bool, not '
                        f'{type(keep_stim)}.')
    if keep_stim:
        stim_ch_idx = list(pick_types(inst.info, meg=False, stim=True))
        if stim_ch_idx:
            new_ch_names = [ch_names[idx] for idx in stim_ch_idx]
            new_ch_types = [ch_types[idx] for idx in stim_ch_idx]
            new_data = [np.take(inst_data, idx, axis=ch_axis)
                        for idx in stim_ch_idx]
        else:
            warn('Could not find stimulus channels.')

    # Get indices of bad channels
    ch_idx_bad = []
    if not isinstance(drop_bad, bool):
        raise TypeError('"drop_bad" must be of type bool, not '
                        f'{type(drop_bad)}.')
    if drop_bad and inst.info['bads']:
        ch_idx_bad = pick_channels(ch_names, inst.info['bads'])

    # Check correctness of combinations
    for this_group, this_picks in groups.items():
        # Check if channel indices are out of bounds
        if not all(idx in ch_idx for idx in this_picks):
            raise ValueError('Some channel indices are out of bounds.')
        # Check if heterogeneous sensor type combinations
        this_ch_type = np.array(ch_types)[this_picks]
        if len(set(this_ch_type)) > 1:
            types = ', '.join(set(this_ch_type))
            raise ValueError('Cannot combine sensors of different types; '
                             f'"{this_group}" contains types {types}.')
        # Remove bad channels
        these_bads = [idx for idx in this_picks if idx in ch_idx_bad]
        this_picks = [idx for idx in this_picks if idx not in ch_idx_bad]
        if these_bads:
            logger.info('Dropped the following channels in group '
                        f'{this_group}: {these_bads}')
        #  Check if combining less than 2 channel
        if len(set(this_picks)) < 2:
            warn(f'Less than 2 channels in group "{this_group}" when '
                 f'combining by method "{method}".')
        # If all good create more detailed dict without bad channels
        groups[this_group] = dict(picks=this_picks, ch_type=this_ch_type[0])

    # Combine channels and add them to the new instance
    for this_group, this_group_dict in groups.items():
        new_ch_names.append(this_group)
        new_ch_types.append(this_group_dict['ch_type'])
        this_picks = this_group_dict['picks']
        this_data = np.take(inst_data, this_picks, axis=ch_axis)
        new_data.append(method(this_data))
    new_data = np.swapaxes(new_data, 0, ch_axis)
    info = create_info(sfreq=inst.info['sfreq'], ch_names=new_ch_names,
                       ch_types=new_ch_types)
    # create new instances and make sure to copy important attributes
    if isinstance(inst, BaseRaw):
        combined_inst = RawArray(new_data, info, first_samp=inst.first_samp)
    elif isinstance(inst, BaseEpochs):
        combined_inst = EpochsArray(new_data, info, events=inst.events,
                                    tmin=inst.times[0], baseline=inst.baseline)
        if inst.metadata is not None:
            combined_inst.metadata = inst.metadata.copy()
    elif isinstance(inst, Evoked):
        combined_inst = EvokedArray(new_data, info, tmin=inst.times[0],
                                    baseline=inst.baseline)

    return combined_inst


# NeuroMag channel groupings
_SELECTIONS = ['Vertex', 'Left-temporal', 'Right-temporal', 'Left-parietal',
               'Right-parietal', 'Left-occipital', 'Right-occipital',
               'Left-frontal', 'Right-frontal']
_EEG_SELECTIONS = ['EEG 1-32', 'EEG 33-64', 'EEG 65-96', 'EEG 97-128']


def _divide_to_regions(info, add_stim=True):
    """Divide channels to regions by positions."""
    from scipy.stats import zscore
    picks = _pick_data_channels(info, exclude=[])
    chs_in_lobe = len(picks) // 4
    pos = np.array([ch['loc'][:3] for ch in info['chs']])
    x, y, z = pos.T

    frontal = picks[np.argsort(y[picks])[-chs_in_lobe:]]
    picks = np.setdiff1d(picks, frontal)

    occipital = picks[np.argsort(y[picks])[:chs_in_lobe]]
    picks = np.setdiff1d(picks, occipital)

    temporal = picks[np.argsort(z[picks])[:chs_in_lobe]]
    picks = np.setdiff1d(picks, temporal)

    lt, rt = _divide_side(temporal, x)
    lf, rf = _divide_side(frontal, x)
    lo, ro = _divide_side(occipital, x)
    lp, rp = _divide_side(picks, x)  # Parietal lobe from the remaining picks.

    # Because of the way the sides are divided, there may be outliers in the
    # temporal lobes. Here we switch the sides for these outliers. For other
    # lobes it is not a big problem because of the vicinity of the lobes.
    with np.errstate(invalid='ignore'):  # invalid division, greater compare
        zs = np.abs(zscore(x[rt]))
        outliers = np.array(rt)[np.where(zs > 2.)[0]]
    rt = list(np.setdiff1d(rt, outliers))

    with np.errstate(invalid='ignore'):  # invalid division, greater compare
        zs = np.abs(zscore(x[lt]))
        outliers = np.append(outliers, (np.array(lt)[np.where(zs > 2.)[0]]))
    lt = list(np.setdiff1d(lt, outliers))

    l_mean = np.mean(x[lt])
    r_mean = np.mean(x[rt])
    for outlier in outliers:
        if abs(l_mean - x[outlier]) < abs(r_mean - x[outlier]):
            lt.append(outlier)
        else:
            rt.append(outlier)

    if add_stim:
        stim_ch = _get_stim_channel(None, info, raise_error=False)
        if len(stim_ch) > 0:
            for region in [lf, rf, lo, ro, lp, rp, lt, rt]:
                region.append(info['ch_names'].index(stim_ch[0]))
    return OrderedDict([('Left-frontal', lf), ('Right-frontal', rf),
                        ('Left-parietal', lp), ('Right-parietal', rp),
                        ('Left-occipital', lo), ('Right-occipital', ro),
                        ('Left-temporal', lt), ('Right-temporal', rt)])


def _divide_side(lobe, x):
    """Make a separation between left and right lobe evenly."""
    lobe = np.asarray(lobe)
    median = np.median(x[lobe])

    left = lobe[np.where(x[lobe] < median)[0]]
    right = lobe[np.where(x[lobe] > median)[0]]
    medians = np.where(x[lobe] == median)[0]

    left = np.sort(np.concatenate([left, lobe[medians[1::2]]]))
    right = np.sort(np.concatenate([right, lobe[medians[::2]]]))
    return list(left), list(right)


@verbose
def read_vectorview_selection(name, fname=None, info=None, verbose=None):
    """Read Neuromag Vector View channel selection from a file.

    Parameters
    ----------
    name : str | list of str
        Name of the selection. If a list, the selections are combined.
        Supported selections are: ``'Vertex'``, ``'Left-temporal'``,
        ``'Right-temporal'``, ``'Left-parietal'``, ``'Right-parietal'``,
        ``'Left-occipital'``, ``'Right-occipital'``, ``'Left-frontal'`` and
        ``'Right-frontal'``. Selections can also be matched and combined by
        spcecifying common substrings. For example, ``name='temporal`` will
        produce a combination of ``'Left-temporal'`` and ``'Right-temporal'``.
    fname : str
        Filename of the selection file (if ``None``, built-in selections are
        used).
    %(info)s Used to determine which channel naming convention to use, e.g.
        ``'MEG 0111'`` (with space) for old Neuromag systems and ``'MEG0111'``
        (without space) for new ones.
    %(verbose)s

    Returns
    -------
    sel : list of str
        List with channel names in the selection.
    """
    # convert name to list of string
    if not isinstance(name, (list, tuple)):
        name = [name]
    if isinstance(info, Info):
        picks = pick_types(info, meg=True, exclude=())
        if len(picks) > 0 and ' ' not in info['ch_names'][picks[0]]:
            spacing = 'new'
        else:
            spacing = 'old'
    elif info is not None:
        raise TypeError('info must be an instance of Info or None, not %s'
                        % (type(info),))
    else:  # info is None
        spacing = 'old'

    # use built-in selections by default
    if fname is None:
        fname = op.join(op.dirname(__file__), '..', 'data', 'mne_analyze.sel')

    fname = _check_fname(fname, must_exist=True, overwrite='read')

    # use this to make sure we find at least one match for each name
    name_found = {n: False for n in name}
    with open(fname, 'r') as fid:
        sel = []
        for line in fid:
            line = line.strip()
            # skip blank lines and comments
            if len(line) == 0 or line[0] == '#':
                continue
            # get the name of the selection in the file
            pos = line.find(':')
            if pos < 0:
                logger.info('":" delimiter not found in selections file, '
                            'skipping line')
                continue
            sel_name_file = line[:pos]
            # search for substring match with name provided
            for n in name:
                if sel_name_file.find(n) >= 0:
                    sel.extend(line[pos + 1:].split('|'))
                    name_found[n] = True
                    break

    # make sure we found at least one match for each name
    for n, found in name_found.items():
        if not found:
            raise ValueError('No match for selection name "%s" found' % n)

    # make the selection a sorted list with unique elements
    sel = list(set(sel))
    sel.sort()
    if spacing == 'new':  # "new" or "old" by now, "old" is default
        sel = [s.replace('MEG ', 'MEG') for s in sel]
    return sel