1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
# Authors: Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
import numpy as np
from numpy.polynomial.legendre import legval
from ..utils import logger, warn, verbose
from ..io.meas_info import _simplify_info
from ..io.pick import pick_types, pick_channels, pick_info
from ..surface import _normalize_vectors
from ..forward import _map_meg_or_eeg_channels
from ..utils import _check_option, _validate_type
def _calc_h(cosang, stiffness=4, n_legendre_terms=50):
"""Calculate spherical spline h function between points on a sphere.
Parameters
----------
cosang : array-like | float
cosine of angles between pairs of points on a spherical surface. This
is equivalent to the dot product of unit vectors.
stiffness : float
stiffnes of the spline. Also referred to as ``m``.
n_legendre_terms : int
number of Legendre terms to evaluate.
"""
factors = [(2 * n + 1) /
(n ** (stiffness - 1) * (n + 1) ** (stiffness - 1) * 4 * np.pi)
for n in range(1, n_legendre_terms + 1)]
return legval(cosang, [0] + factors)
def _calc_g(cosang, stiffness=4, n_legendre_terms=50):
"""Calculate spherical spline g function between points on a sphere.
Parameters
----------
cosang : array-like of float, shape(n_channels, n_channels)
cosine of angles between pairs of points on a spherical surface. This
is equivalent to the dot product of unit vectors.
stiffness : float
stiffness of the spline.
n_legendre_terms : int
number of Legendre terms to evaluate.
Returns
-------
G : np.ndrarray of float, shape(n_channels, n_channels)
The G matrix.
"""
factors = [(2 * n + 1) / (n ** stiffness * (n + 1) ** stiffness *
4 * np.pi)
for n in range(1, n_legendre_terms + 1)]
return legval(cosang, [0] + factors)
def _make_interpolation_matrix(pos_from, pos_to, alpha=1e-5):
"""Compute interpolation matrix based on spherical splines.
Implementation based on [1]
Parameters
----------
pos_from : np.ndarray of float, shape(n_good_sensors, 3)
The positions to interpoloate from.
pos_to : np.ndarray of float, shape(n_bad_sensors, 3)
The positions to interpoloate.
alpha : float
Regularization parameter. Defaults to 1e-5.
Returns
-------
interpolation : np.ndarray of float, shape(len(pos_from), len(pos_to))
The interpolation matrix that maps good signals to the location
of bad signals.
References
----------
[1] Perrin, F., Pernier, J., Bertrand, O. and Echallier, JF. (1989).
Spherical splines for scalp potential and current density mapping.
Electroencephalography Clinical Neurophysiology, Feb; 72(2):184-7.
"""
from scipy import linalg
pos_from = pos_from.copy()
pos_to = pos_to.copy()
n_from = pos_from.shape[0]
n_to = pos_to.shape[0]
# normalize sensor positions to sphere
_normalize_vectors(pos_from)
_normalize_vectors(pos_to)
# cosine angles between source positions
cosang_from = pos_from.dot(pos_from.T)
cosang_to_from = pos_to.dot(pos_from.T)
G_from = _calc_g(cosang_from)
G_to_from = _calc_g(cosang_to_from)
assert G_from.shape == (n_from, n_from)
assert G_to_from.shape == (n_to, n_from)
if alpha is not None:
G_from.flat[::len(G_from) + 1] += alpha
C = np.vstack([np.hstack([G_from, np.ones((n_from, 1))]),
np.hstack([np.ones((1, n_from)), [[0]]])])
C_inv = linalg.pinv(C)
interpolation = np.hstack([G_to_from, np.ones((n_to, 1))]) @ C_inv[:, :-1]
assert interpolation.shape == (n_to, n_from)
return interpolation
def _do_interp_dots(inst, interpolation, goods_idx, bads_idx):
"""Dot product of channel mapping matrix to channel data."""
from ..io.base import BaseRaw
from ..epochs import BaseEpochs
from ..evoked import Evoked
_validate_type(inst, (BaseRaw, BaseEpochs, Evoked), 'inst')
inst._data[..., bads_idx, :] = np.matmul(
interpolation, inst._data[..., goods_idx, :])
@verbose
def _interpolate_bads_eeg(inst, origin, exclude=None, verbose=None):
if exclude is None:
exclude = list()
bads_idx = np.zeros(len(inst.ch_names), dtype=bool)
goods_idx = np.zeros(len(inst.ch_names), dtype=bool)
picks = pick_types(inst.info, meg=False, eeg=True, exclude=exclude)
inst.info._check_consistency()
bads_idx[picks] = [inst.ch_names[ch] in inst.info['bads'] for ch in picks]
if len(picks) == 0 or bads_idx.sum() == 0:
return
goods_idx[picks] = True
goods_idx[bads_idx] = False
pos = inst._get_channel_positions(picks)
# Make sure only EEG are used
bads_idx_pos = bads_idx[picks]
goods_idx_pos = goods_idx[picks]
# test spherical fit
distance = np.linalg.norm(pos - origin, axis=-1)
distance = np.mean(distance / np.mean(distance))
if np.abs(1. - distance) > 0.1:
warn('Your spherical fit is poor, interpolation results are '
'likely to be inaccurate.')
pos_good = pos[goods_idx_pos] - origin
pos_bad = pos[bads_idx_pos] - origin
logger.info('Computing interpolation matrix from {} sensor '
'positions'.format(len(pos_good)))
interpolation = _make_interpolation_matrix(pos_good, pos_bad)
logger.info('Interpolating {} sensors'.format(len(pos_bad)))
_do_interp_dots(inst, interpolation, goods_idx, bads_idx)
def _interpolate_bads_meg(inst, mode='accurate', origin=(0., 0., 0.04),
verbose=None, ref_meg=False):
return _interpolate_bads_meeg(
inst, mode, origin, ref_meg=ref_meg, eeg=False, verbose=verbose)
@verbose
def _interpolate_bads_meeg(inst, mode='accurate', origin=(0., 0., 0.04),
meg=True, eeg=True, ref_meg=False,
exclude=(), verbose=None):
bools = dict(meg=meg, eeg=eeg)
info = _simplify_info(inst.info)
for ch_type, do in bools.items():
if not do:
continue
kw = dict(meg=False, eeg=False)
kw[ch_type] = True
picks_type = pick_types(info, ref_meg=ref_meg, exclude=exclude, **kw)
picks_good = pick_types(info, ref_meg=ref_meg, exclude='bads', **kw)
use_ch_names = [inst.info['ch_names'][p] for p in picks_type]
bads_type = [ch for ch in inst.info['bads'] if ch in use_ch_names]
if len(bads_type) == 0 or len(picks_type) == 0:
continue
# select the bad channels to be interpolated
picks_bad = pick_channels(inst.info['ch_names'], bads_type,
exclude=[])
if ch_type == 'eeg':
picks_to = picks_type
bad_sel = np.in1d(picks_type, picks_bad)
else:
picks_to = picks_bad
bad_sel = slice(None)
info_from = pick_info(inst.info, picks_good)
info_to = pick_info(inst.info, picks_to)
mapping = _map_meg_or_eeg_channels(
info_from, info_to, mode=mode, origin=origin)
mapping = mapping[bad_sel]
_do_interp_dots(inst, mapping, picks_good, picks_bad)
@verbose
def _interpolate_bads_nirs(inst, method='nearest', exclude=(), verbose=None):
from scipy.spatial.distance import pdist, squareform
from mne.preprocessing.nirs import _validate_nirs_info
if len(pick_types(inst.info, fnirs=True, exclude=())) == 0:
return
# Returns pick of all nirs and ensures channels are correctly ordered
picks_nirs = _validate_nirs_info(inst.info)
nirs_ch_names = [inst.info['ch_names'][p] for p in picks_nirs]
nirs_ch_names = [ch for ch in nirs_ch_names if ch not in exclude]
bads_nirs = [ch for ch in inst.info['bads'] if ch in nirs_ch_names]
if len(bads_nirs) == 0:
return
picks_bad = pick_channels(inst.info['ch_names'], bads_nirs, exclude=[])
bads_mask = [p in picks_bad for p in picks_nirs]
chs = [inst.info['chs'][i] for i in picks_nirs]
locs3d = np.array([ch['loc'][:3] for ch in chs])
_check_option('fnirs_method', method, ['nearest'])
if method == 'nearest':
dist = pdist(locs3d)
dist = squareform(dist)
for bad in picks_bad:
dists_to_bad = dist[bad]
# Ignore distances to self
dists_to_bad[dists_to_bad == 0] = np.inf
# Ignore distances to other bad channels
dists_to_bad[bads_mask] = np.inf
# Find closest remaining channels for same frequency
closest_idx = np.argmin(dists_to_bad) + (bad % 2)
inst._data[bad] = inst._data[closest_idx]
inst.info['bads'] = [ch for ch in inst.info['bads'] if ch in exclude]
return inst
|