File: interpolation.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (245 lines) | stat: -rw-r--r-- 8,836 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Authors: Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause

import numpy as np
from numpy.polynomial.legendre import legval

from ..utils import logger, warn, verbose
from ..io.meas_info import _simplify_info
from ..io.pick import pick_types, pick_channels, pick_info
from ..surface import _normalize_vectors
from ..forward import _map_meg_or_eeg_channels
from ..utils import _check_option, _validate_type


def _calc_h(cosang, stiffness=4, n_legendre_terms=50):
    """Calculate spherical spline h function between points on a sphere.

    Parameters
    ----------
    cosang : array-like | float
        cosine of angles between pairs of points on a spherical surface. This
        is equivalent to the dot product of unit vectors.
    stiffness : float
        stiffnes of the spline. Also referred to as ``m``.
    n_legendre_terms : int
        number of Legendre terms to evaluate.
    """
    factors = [(2 * n + 1) /
               (n ** (stiffness - 1) * (n + 1) ** (stiffness - 1) * 4 * np.pi)
               for n in range(1, n_legendre_terms + 1)]
    return legval(cosang, [0] + factors)


def _calc_g(cosang, stiffness=4, n_legendre_terms=50):
    """Calculate spherical spline g function between points on a sphere.

    Parameters
    ----------
    cosang : array-like of float, shape(n_channels, n_channels)
        cosine of angles between pairs of points on a spherical surface. This
        is equivalent to the dot product of unit vectors.
    stiffness : float
        stiffness of the spline.
    n_legendre_terms : int
        number of Legendre terms to evaluate.

    Returns
    -------
    G : np.ndrarray of float, shape(n_channels, n_channels)
        The G matrix.
    """
    factors = [(2 * n + 1) / (n ** stiffness * (n + 1) ** stiffness *
                              4 * np.pi)
               for n in range(1, n_legendre_terms + 1)]
    return legval(cosang, [0] + factors)


def _make_interpolation_matrix(pos_from, pos_to, alpha=1e-5):
    """Compute interpolation matrix based on spherical splines.

    Implementation based on [1]

    Parameters
    ----------
    pos_from : np.ndarray of float, shape(n_good_sensors, 3)
        The positions to interpoloate from.
    pos_to : np.ndarray of float, shape(n_bad_sensors, 3)
        The positions to interpoloate.
    alpha : float
        Regularization parameter. Defaults to 1e-5.

    Returns
    -------
    interpolation : np.ndarray of float, shape(len(pos_from), len(pos_to))
        The interpolation matrix that maps good signals to the location
        of bad signals.

    References
    ----------
    [1] Perrin, F., Pernier, J., Bertrand, O. and Echallier, JF. (1989).
        Spherical splines for scalp potential and current density mapping.
        Electroencephalography Clinical Neurophysiology, Feb; 72(2):184-7.
    """
    from scipy import linalg
    pos_from = pos_from.copy()
    pos_to = pos_to.copy()
    n_from = pos_from.shape[0]
    n_to = pos_to.shape[0]

    # normalize sensor positions to sphere
    _normalize_vectors(pos_from)
    _normalize_vectors(pos_to)

    # cosine angles between source positions
    cosang_from = pos_from.dot(pos_from.T)
    cosang_to_from = pos_to.dot(pos_from.T)
    G_from = _calc_g(cosang_from)
    G_to_from = _calc_g(cosang_to_from)
    assert G_from.shape == (n_from, n_from)
    assert G_to_from.shape == (n_to, n_from)

    if alpha is not None:
        G_from.flat[::len(G_from) + 1] += alpha

    C = np.vstack([np.hstack([G_from, np.ones((n_from, 1))]),
                   np.hstack([np.ones((1, n_from)), [[0]]])])
    C_inv = linalg.pinv(C)

    interpolation = np.hstack([G_to_from, np.ones((n_to, 1))]) @ C_inv[:, :-1]
    assert interpolation.shape == (n_to, n_from)
    return interpolation


def _do_interp_dots(inst, interpolation, goods_idx, bads_idx):
    """Dot product of channel mapping matrix to channel data."""
    from ..io.base import BaseRaw
    from ..epochs import BaseEpochs
    from ..evoked import Evoked
    _validate_type(inst, (BaseRaw, BaseEpochs, Evoked), 'inst')
    inst._data[..., bads_idx, :] = np.matmul(
        interpolation, inst._data[..., goods_idx, :])


@verbose
def _interpolate_bads_eeg(inst, origin, exclude=None, verbose=None):
    if exclude is None:
        exclude = list()
    bads_idx = np.zeros(len(inst.ch_names), dtype=bool)
    goods_idx = np.zeros(len(inst.ch_names), dtype=bool)

    picks = pick_types(inst.info, meg=False, eeg=True, exclude=exclude)
    inst.info._check_consistency()
    bads_idx[picks] = [inst.ch_names[ch] in inst.info['bads'] for ch in picks]

    if len(picks) == 0 or bads_idx.sum() == 0:
        return

    goods_idx[picks] = True
    goods_idx[bads_idx] = False

    pos = inst._get_channel_positions(picks)

    # Make sure only EEG are used
    bads_idx_pos = bads_idx[picks]
    goods_idx_pos = goods_idx[picks]

    # test spherical fit
    distance = np.linalg.norm(pos - origin, axis=-1)
    distance = np.mean(distance / np.mean(distance))
    if np.abs(1. - distance) > 0.1:
        warn('Your spherical fit is poor, interpolation results are '
             'likely to be inaccurate.')

    pos_good = pos[goods_idx_pos] - origin
    pos_bad = pos[bads_idx_pos] - origin
    logger.info('Computing interpolation matrix from {} sensor '
                'positions'.format(len(pos_good)))
    interpolation = _make_interpolation_matrix(pos_good, pos_bad)

    logger.info('Interpolating {} sensors'.format(len(pos_bad)))
    _do_interp_dots(inst, interpolation, goods_idx, bads_idx)


def _interpolate_bads_meg(inst, mode='accurate', origin=(0., 0., 0.04),
                          verbose=None, ref_meg=False):
    return _interpolate_bads_meeg(
        inst, mode, origin, ref_meg=ref_meg, eeg=False, verbose=verbose)


@verbose
def _interpolate_bads_meeg(inst, mode='accurate', origin=(0., 0., 0.04),
                           meg=True, eeg=True, ref_meg=False,
                           exclude=(), verbose=None):
    bools = dict(meg=meg, eeg=eeg)
    info = _simplify_info(inst.info)
    for ch_type, do in bools.items():
        if not do:
            continue
        kw = dict(meg=False, eeg=False)
        kw[ch_type] = True
        picks_type = pick_types(info, ref_meg=ref_meg, exclude=exclude, **kw)
        picks_good = pick_types(info, ref_meg=ref_meg, exclude='bads', **kw)
        use_ch_names = [inst.info['ch_names'][p] for p in picks_type]
        bads_type = [ch for ch in inst.info['bads'] if ch in use_ch_names]
        if len(bads_type) == 0 or len(picks_type) == 0:
            continue
        # select the bad channels to be interpolated
        picks_bad = pick_channels(inst.info['ch_names'], bads_type,
                                  exclude=[])
        if ch_type == 'eeg':
            picks_to = picks_type
            bad_sel = np.in1d(picks_type, picks_bad)
        else:
            picks_to = picks_bad
            bad_sel = slice(None)
        info_from = pick_info(inst.info, picks_good)
        info_to = pick_info(inst.info, picks_to)
        mapping = _map_meg_or_eeg_channels(
            info_from, info_to, mode=mode, origin=origin)
        mapping = mapping[bad_sel]
        _do_interp_dots(inst, mapping, picks_good, picks_bad)


@verbose
def _interpolate_bads_nirs(inst, method='nearest', exclude=(), verbose=None):
    from scipy.spatial.distance import pdist, squareform
    from mne.preprocessing.nirs import _validate_nirs_info

    if len(pick_types(inst.info, fnirs=True, exclude=())) == 0:
        return

    # Returns pick of all nirs and ensures channels are correctly ordered
    picks_nirs = _validate_nirs_info(inst.info)
    nirs_ch_names = [inst.info['ch_names'][p] for p in picks_nirs]
    nirs_ch_names = [ch for ch in nirs_ch_names if ch not in exclude]
    bads_nirs = [ch for ch in inst.info['bads'] if ch in nirs_ch_names]
    if len(bads_nirs) == 0:
        return
    picks_bad = pick_channels(inst.info['ch_names'], bads_nirs, exclude=[])
    bads_mask = [p in picks_bad for p in picks_nirs]

    chs = [inst.info['chs'][i] for i in picks_nirs]
    locs3d = np.array([ch['loc'][:3] for ch in chs])

    _check_option('fnirs_method', method, ['nearest'])

    if method == 'nearest':

        dist = pdist(locs3d)
        dist = squareform(dist)

        for bad in picks_bad:
            dists_to_bad = dist[bad]
            # Ignore distances to self
            dists_to_bad[dists_to_bad == 0] = np.inf
            # Ignore distances to other bad channels
            dists_to_bad[bads_mask] = np.inf
            # Find closest remaining channels for same frequency
            closest_idx = np.argmin(dists_to_bad) + (bad % 2)
            inst._data[bad] = inst._data[closest_idx]

        inst.info['bads'] = [ch for ch in inst.info['bads'] if ch in exclude]

    return inst