File: montage.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (1726 lines) | stat: -rw-r--r-- 58,731 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Marijn van Vliet <w.m.vanvliet@gmail.com>
#          Jona Sassenhagen <jona.sassenhagen@gmail.com>
#          Teon Brooks <teon.brooks@gmail.com>
#          Christian Brodbeck <christianbrodbeck@nyu.edu>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#          Joan Massich <mailsik@gmail.com>
#
# License: Simplified BSD

from collections import OrderedDict
from dataclasses import dataclass
from copy import deepcopy
import os.path as op
import re

import numpy as np

from ..defaults import HEAD_SIZE_DEFAULT
from .._freesurfer import get_mni_fiducials
from ..viz import plot_montage
from ..transforms import (apply_trans, get_ras_to_neuromag_trans, _sph_to_cart,
                          _topo_to_sph, _frame_to_str, Transform,
                          _verbose_frames, _fit_matched_points,
                          _quat_to_affine, _ensure_trans)
from ..io._digitization import (_count_points_by_type, _ensure_fiducials_head,
                                _get_dig_eeg, _make_dig_points, write_dig,
                                _read_dig_fif, _format_dig_points,
                                _get_fid_coords, _coord_frame_const,
                                _get_data_as_dict_from_dig)
from ..io.meas_info import create_info
from ..io.open import fiff_open
from ..io.pick import pick_types, _picks_to_idx, channel_type
from ..io.constants import FIFF, CHANNEL_LOC_ALIASES
from ..utils import (warn, copy_function_doc_to_method_doc, _pl, verbose,
                     _check_option, _validate_type, _check_fname, _on_missing,
                     fill_doc, _docdict)

from ._dig_montage_utils import _read_dig_montage_egi
from ._dig_montage_utils import _parse_brainvision_dig_montage


@dataclass
class _BuiltinStandardMontage:
    name: str
    description: str


_BUILTIN_STANDARD_MONTAGES = [
    _BuiltinStandardMontage(
        name='standard_1005',
        description='Electrodes are named and positioned according to the '
                    'international 10-05 system (343+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='standard_1020',
        description='Electrodes are named and positioned according to the '
                    'international 10-20 system (94+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='standard_alphabetic',
        description='Electrodes are named with LETTER-NUMBER combinations '
                    '(A1, B2, F4, …) (65+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='standard_postfixed',
        description='Electrodes are named according to the international '
                    '10-20 system using postfixes for intermediate positions '
                    '(100+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='standard_prefixed',
        description='Electrodes are named according to the international '
                    '10-20 system using prefixes for intermediate positions '
                    '(74+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='standard_primed',
        description="Electrodes are named according to the international "
                    "10-20 system using prime marks (' and '') for "
                    "intermediate positions (100+3 locations)",
    ),
    _BuiltinStandardMontage(
        name='biosemi16',
        description='BioSemi cap with 16 electrodes (16+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='biosemi32',
        description='BioSemi cap with 32 electrodes (32+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='biosemi64',
        description='BioSemi cap with 64 electrodes (64+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='biosemi128',
        description='BioSemi cap with 128 electrodes (128+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='biosemi160',
        description='BioSemi cap with 160 electrodes (160+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='biosemi256',
        description='BioSemi cap with 256 electrodes (256+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='easycap-M1',
        description='EasyCap with 10-05 electrode names (74 locations)',
    ),
    _BuiltinStandardMontage(
        name='easycap-M10',
        description='EasyCap with numbered electrodes (61 locations)',
    ),
    _BuiltinStandardMontage(
        name='EGI_256',
        description='Geodesic Sensor Net (256 locations)',
    ),
    _BuiltinStandardMontage(
        name='GSN-HydroCel-32',
        description='HydroCel Geodesic Sensor Net and Cz (33+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='GSN-HydroCel-64_1.0',
        description='HydroCel Geodesic Sensor Net (64+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='GSN-HydroCel-65_1.0',
        description='HydroCel Geodesic Sensor Net and Cz (65+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='GSN-HydroCel-128',
        description='HydroCel Geodesic Sensor Net (128+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='GSN-HydroCel-129',
        description='HydroCel Geodesic Sensor Net and Cz (129+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='GSN-HydroCel-256',
        description='HydroCel Geodesic Sensor Net (256+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='GSN-HydroCel-257',
        description='HydroCel Geodesic Sensor Net and Cz (257+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='mgh60',
        description='The (older) 60-channel cap used at MGH (60+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='mgh70',
        description='The (newer) 70-channel BrainVision cap used at MGH '
                    '(70+3 locations)',
    ),
    _BuiltinStandardMontage(
        name='artinis-octamon',
        description='Artinis OctaMon fNIRS (8 sources, 2 detectors)',
    ),
    _BuiltinStandardMontage(
        name='artinis-brite23',
        description='Artinis Brite23 fNIRS (11 sources, 7 detectors)',
    ),
    _BuiltinStandardMontage(
        name='brainproducts-RNP-BA-128',
        description='Brain Products with 10-10 electrode names (128 channels)',
    )
]


def _check_get_coord_frame(dig):
    dig_coord_frames = sorted(set(d['coord_frame'] for d in dig))
    if len(dig_coord_frames) != 1:
        raise RuntimeError(
            'Only a single coordinate frame in dig is supported, got '
            f'{dig_coord_frames}')
    return _frame_to_str[dig_coord_frames.pop()] if dig_coord_frames else None


def get_builtin_montages(*, descriptions=False):
    """Get a list of all standard montages shipping with MNE-Python.

    The names of the montages can be passed to :func:`make_standard_montage`.

    Parameters
    ----------
    descriptions : bool
        Whether to return not only the montage names, but also their
        corresponding descriptions. If ``True``, a list of tuples is returned,
        where the first tuple element is the montage name and the second is
        the montage description. If ``False`` (default), only the names are
        returned.

        .. versionadded:: 1.1

    Returns
    -------
    montages : list of str | list of tuple
        If ``descriptions=False``, the names of all builtin montages that can
        be used by :func:`make_standard_montage`.

        If ``descriptions=True``, a list of tuples ``(name, description)``.
    """
    if descriptions:
        return [
            (m.name, m.description) for m in _BUILTIN_STANDARD_MONTAGES
        ]
    else:
        return [m.name for m in _BUILTIN_STANDARD_MONTAGES]


def make_dig_montage(ch_pos=None, nasion=None, lpa=None, rpa=None,
                     hsp=None, hpi=None, coord_frame='unknown'):
    r"""Make montage from arrays.

    Parameters
    ----------
    ch_pos : dict | None
        Dictionary of channel positions. Keys are channel names and values
        are 3D coordinates - array of shape (3,) - in native digitizer space
        in m.
    nasion : None | array, shape (3,)
        The position of the nasion fiducial point.
        This point is assumed to be in the native digitizer space in m.
    lpa : None | array, shape (3,)
        The position of the left periauricular fiducial point.
        This point is assumed to be in the native digitizer space in m.
    rpa : None | array, shape (3,)
        The position of the right periauricular fiducial point.
        This point is assumed to be in the native digitizer space in m.
    hsp : None | array, shape (n_points, 3)
        This corresponds to an array of positions of the headshape points in
        3d. These points are assumed to be in the native digitizer space in m.
    hpi : None | array, shape (n_hpi, 3)
        This corresponds to an array of HPI points in the native digitizer
        space. They only necessary if computation of a ``compute_dev_head_t``
        is True.
    coord_frame : str
        The coordinate frame of the points. Usually this is ``'unknown'``
        for native digitizer space.
        Other valid values are: ``'head'``, ``'meg'``, ``'mri'``,
        ``'mri_voxel'``, ``'mni_tal'``, ``'ras'``, ``'fs_tal'``,
        ``'ctf_head'``, and ``'ctf_meg'``.

        .. note::
            For custom montages without fiducials, this parameter must be set
            to ``'head'``.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_captrak
    read_dig_egi
    read_dig_fif
    read_dig_localite
    read_dig_polhemus_isotrak
    """
    _validate_type(ch_pos, (dict, None), 'ch_pos')
    if ch_pos is None:
        ch_names = None
    else:
        ch_names = list(ch_pos)
    dig = _make_dig_points(
        nasion=nasion, lpa=lpa, rpa=rpa, hpi=hpi, extra_points=hsp,
        dig_ch_pos=ch_pos, coord_frame=coord_frame
    )

    return DigMontage(dig=dig, ch_names=ch_names)


class DigMontage(object):
    """Montage for digitized electrode and headshape position data.

    .. warning:: Montages are typically created using one of the helper
                 functions in the ``See Also`` section below instead of
                 instantiating this class directly.

    Parameters
    ----------
    dig : list of dict
        The object containing all the dig points.
    ch_names : list of str
        The names of the EEG channels.

    See Also
    --------
    read_dig_captrak
    read_dig_dat
    read_dig_egi
    read_dig_fif
    read_dig_hpts
    read_dig_localite
    read_dig_polhemus_isotrak
    make_dig_montage

    Notes
    -----
    .. versionadded:: 0.9.0
    """

    def __init__(self, *, dig=None, ch_names=None):
        dig = list() if dig is None else dig
        _validate_type(item=dig, types=list, item_name='dig')
        ch_names = list() if ch_names is None else ch_names
        n_eeg = sum([1 for d in dig if d['kind'] == FIFF.FIFFV_POINT_EEG])
        if n_eeg != len(ch_names):
            raise ValueError(
                'The number of EEG channels (%d) does not match the number'
                ' of channel names provided (%d)' % (n_eeg, len(ch_names))
            )

        self.dig = dig
        self.ch_names = ch_names

    def __repr__(self):
        """Return string representation."""
        n_points = _count_points_by_type(self.dig)
        return ('<DigMontage | {extra:d} extras (headshape), {hpi:d} HPIs,'
                ' {fid:d} fiducials, {eeg:d} channels>').format(**n_points)

    @copy_function_doc_to_method_doc(plot_montage)
    def plot(self, scale_factor=20, show_names=True, kind='topomap', show=True,
             sphere=None, verbose=None):
        return plot_montage(self, scale_factor=scale_factor,
                            show_names=show_names, kind=kind, show=show,
                            sphere=sphere)

    @fill_doc
    def rename_channels(self, mapping, allow_duplicates=False):
        """Rename the channels.

        Parameters
        ----------
        %(mapping_rename_channels_duplicates)s

        Returns
        -------
        inst : instance of DigMontage
            The instance. Operates in-place.
        """
        from .channels import rename_channels
        temp_info = create_info(list(self._get_ch_pos()), 1000., 'eeg')
        rename_channels(temp_info, mapping, allow_duplicates)
        self.ch_names = temp_info['ch_names']

    @verbose
    def save(self, fname, *, overwrite=False, verbose=None):
        """Save digitization points to FIF.

        Parameters
        ----------
        fname : path-like
            The filename to use. Should end in .fif or .fif.gz.
        %(overwrite)s
        %(verbose)s
        """
        coord_frame = _check_get_coord_frame(self.dig)
        write_dig(fname, self.dig, coord_frame, overwrite=overwrite)

    def __iadd__(self, other):
        """Add two DigMontages in place.

        Notes
        -----
        Two DigMontages can only be added if there are no duplicated ch_names
        and if fiducials are present they should share the same coordinate
        system and location values.
        """
        def is_fid_defined(fid):
            return not (
                fid.nasion is None and fid.lpa is None and fid.rpa is None
            )

        # Check for none duplicated ch_names
        ch_names_intersection = set(self.ch_names).intersection(other.ch_names)
        if ch_names_intersection:
            raise RuntimeError((
                "Cannot add two DigMontage objects if they contain duplicated"
                " channel names. Duplicated channel(s) found: {}."
            ).format(
                ', '.join(['%r' % v for v in sorted(ch_names_intersection)])
            ))

        # Check for unique matching fiducials
        self_fid, self_coord = _get_fid_coords(self.dig)
        other_fid, other_coord = _get_fid_coords(other.dig)

        if is_fid_defined(self_fid) and is_fid_defined(other_fid):
            if self_coord != other_coord:
                raise RuntimeError('Cannot add two DigMontage objects if '
                                   'fiducial locations are not in the same '
                                   'coordinate system.')

            for kk in self_fid:
                if not np.array_equal(self_fid[kk], other_fid[kk]):
                    raise RuntimeError('Cannot add two DigMontage objects if '
                                       'fiducial locations do not match '
                                       '(%s)' % kk)

            # keep self
            self.dig = _format_dig_points(
                self.dig + [d for d in other.dig
                            if d['kind'] != FIFF.FIFFV_POINT_CARDINAL]
            )
        else:
            self.dig = _format_dig_points(self.dig + other.dig)

        self.ch_names += other.ch_names
        return self

    def copy(self):
        """Copy the DigMontage object.

        Returns
        -------
        dig : instance of DigMontage
            The copied DigMontage instance.
        """
        return deepcopy(self)

    def __add__(self, other):
        """Add two DigMontages."""
        out = self.copy()
        out += other
        return out

    def __eq__(self, other):
        """Compare different DigMontage objects for equality.

        Returns
        -------
        Boolean output from comparison of .dig
        """
        return self.dig == other.dig and self.ch_names == other.ch_names

    def _get_ch_pos(self):
        pos = [d['r'] for d in _get_dig_eeg(self.dig)]
        assert len(self.ch_names) == len(pos)
        return OrderedDict(zip(self.ch_names, pos))

    def _get_dig_names(self):
        NAMED_KIND = (FIFF.FIFFV_POINT_EEG,)
        is_eeg = np.array([d['kind'] in NAMED_KIND for d in self.dig])
        assert len(self.ch_names) == is_eeg.sum()
        dig_names = [None] * len(self.dig)
        for ch_name_idx, dig_idx in enumerate(np.where(is_eeg)[0]):
            dig_names[dig_idx] = self.ch_names[ch_name_idx]

        return dig_names

    def get_positions(self):
        """Get all channel and fiducial positions.

        Returns
        -------
        positions : dict
            A dictionary of the positions for channels (``ch_pos``),
            coordinate frame (``coord_frame``), nasion (``nasion``),
            left preauricular point (``lpa``),
            right preauricular point (``rpa``),
            Head Shape Polhemus (``hsp``), and
            Head Position Indicator(``hpi``).
            E.g.::

                {
                    'ch_pos': {'EEG061': [0, 0, 0]},
                    'nasion': [0, 0, 1],
                    'coord_frame': 'mni_tal',
                    'lpa': [0, 1, 0],
                    'rpa': [1, 0, 0],
                    'hsp': None,
                    'hpi': None
                }
        """
        # get channel positions as dict
        ch_pos = self._get_ch_pos()

        # get coordframe and fiducial coordinates
        montage_bunch = _get_data_as_dict_from_dig(self.dig)
        coord_frame = _frame_to_str.get(montage_bunch.coord_frame)

        # return dictionary
        positions = dict(
            ch_pos=ch_pos,
            coord_frame=coord_frame,
            nasion=montage_bunch.nasion,
            lpa=montage_bunch.lpa,
            rpa=montage_bunch.rpa,
            hsp=montage_bunch.hsp,
            hpi=montage_bunch.hpi,
        )
        return positions

    @verbose
    def apply_trans(self, trans, verbose=None):
        """Apply a transformation matrix to the montage.

        Parameters
        ----------
        trans : instance of mne.transforms.Transform
            The transformation matrix to be applied.
        %(verbose)s
        """
        _validate_type(trans, Transform, 'trans')
        coord_frame = self.get_positions()['coord_frame']
        trans = _ensure_trans(trans, fro=coord_frame, to=trans['to'])
        for d in self.dig:
            d['r'] = apply_trans(trans, d['r'])
            d['coord_frame'] = trans['to']

    @verbose
    def add_estimated_fiducials(self, subject, subjects_dir=None,
                                verbose=None):
        """Estimate fiducials based on FreeSurfer ``fsaverage`` subject.

        This takes a montage with the ``mri`` coordinate frame,
        corresponding to the FreeSurfer RAS (xyz in the volume) T1w
        image of the specific subject. It will call
        :func:`mne.coreg.get_mni_fiducials` to estimate LPA, RPA and
        Nasion fiducial points.

        Parameters
        ----------
        %(subject)s
        %(subjects_dir)s
        %(verbose)s

        Returns
        -------
        inst : instance of DigMontage
            The instance, modified in-place.

        See Also
        --------
        :ref:`tut-source-alignment`

        Notes
        -----
        Since MNE uses the FIF data structure, it relies on the ``head``
        coordinate frame. Any coordinate frame can be transformed
        to ``head`` if the fiducials (i.e. LPA, RPA and Nasion) are
        defined. One can use this function to estimate those fiducials
        and then use ``mne.channels.compute_native_head_t(montage)``
        to get the head <-> MRI transform.
        """
        # get coordframe and fiducial coordinates
        montage_bunch = _get_data_as_dict_from_dig(self.dig)

        # get the coordinate frame and check that it's MRI
        if montage_bunch.coord_frame != FIFF.FIFFV_COORD_MRI:
            raise RuntimeError(
                f'Montage should be in the "mri" coordinate frame '
                f'to use `add_estimated_fiducials`. The current coordinate '
                f'frame is {montage_bunch.coord_frame}')

        # estimate LPA, nasion, RPA from FreeSurfer fsaverage
        fids_mri = list(get_mni_fiducials(subject, subjects_dir))

        # add those digpoints to front of montage
        self.dig = fids_mri + self.dig
        return self

    @verbose
    def add_mni_fiducials(self, subjects_dir=None, verbose=None):
        """Add fiducials to a montage in MNI space.

        Parameters
        ----------
        %(subjects_dir)s
        %(verbose)s

        Returns
        -------
        inst : instance of DigMontage
            The instance, modified in-place.

        Notes
        -----
        ``fsaverage`` is in MNI space and so its fiducials can be
        added to a montage in "mni_tal". MNI is an ACPC-aligned
        coordinate system (the posterior commissure is the origin)
        so since BIDS requires channel locations for ECoG, sEEG and
        DBS to be in ACPC space, this function can be used to allow
        those coordinate to be transformed to "head" space (origin
        between LPA and RPA).
        """
        montage_bunch = _get_data_as_dict_from_dig(self.dig)

        # get the coordinate frame and check that it's MNI TAL
        if montage_bunch.coord_frame != FIFF.FIFFV_MNE_COORD_MNI_TAL:
            raise RuntimeError(
                f'Montage should be in the "mni_tal" coordinate frame '
                f'to use `add_estimated_fiducials`. The current coordinate '
                f'frame is {montage_bunch.coord_frame}')

        fids_mni = get_mni_fiducials('fsaverage', subjects_dir)
        for fid in fids_mni:
            # "mri" and "mni_tal" are equivalent for fsaverage
            assert fid['coord_frame'] == FIFF.FIFFV_COORD_MRI
            fid['coord_frame'] = FIFF.FIFFV_MNE_COORD_MNI_TAL
        self.dig = fids_mni + self.dig
        return self

    @verbose
    def remove_fiducials(self, verbose=None):
        """Remove the fiducial points from a montage.

        Parameters
        ----------
        %(verbose)s

        Returns
        -------
        inst : instance of DigMontage
            The instance, modified in-place.

        Notes
        -----
        MNE will transform a montage to the internal "head" coordinate
        frame if the fiducials are present. Under most circumstances, this
        is ideal as it standardizes the coordinate frame for things like
        plotting. However, in some circumstances, such as saving a ``raw``
        with intracranial data to BIDS format, the coordinate frame
        should not be changed by removing fiducials.
        """
        for d in self.dig.copy():
            if d['kind'] == FIFF.FIFFV_POINT_CARDINAL:
                self.dig.remove(d)
        return self


VALID_SCALES = dict(mm=1e-3, cm=1e-2, m=1)


def _check_unit_and_get_scaling(unit):
    _check_option('unit', unit, sorted(VALID_SCALES.keys()))
    return VALID_SCALES[unit]


def transform_to_head(montage):
    """Transform a DigMontage object into head coordinate.

    Parameters
    ----------
    montage : instance of DigMontage
        The montage.

    Returns
    -------
    montage : instance of DigMontage
        The montage after transforming the points to head
        coordinate system.

    Notes
    -----
    This function requires that the LPA, RPA and Nasion fiducial
    points are available. If they are not, they will be added based by
    projecting the fiducials onto a sphere with radius equal to the average
    distance of each point to the origin (in the given coordinate frame).

    This function assumes that all fiducial points are in the same coordinate
    frame (e.g. 'unknown') and it will convert all the point in this coordinate
    system to Neuromag head coordinate system.

    .. versionchanged:: 1.2
       Fiducial points will be added automatically if the montage does not
       have them.
    """
    # Get fiducial points and their coord_frame
    native_head_t = compute_native_head_t(montage)
    montage = montage.copy()  # to avoid inplace modification
    if native_head_t['from'] != FIFF.FIFFV_COORD_HEAD:
        for d in montage.dig:
            if d['coord_frame'] == native_head_t['from']:
                d['r'] = apply_trans(native_head_t, d['r'])
                d['coord_frame'] = FIFF.FIFFV_COORD_HEAD
    _ensure_fiducials_head(montage.dig)
    return montage


def read_dig_dat(fname):
    r"""Read electrode positions from a ``*.dat`` file.

    .. Warning::
        This function was implemented based on ``*.dat`` files available from
        `Compumedics <https://compumedicsneuroscan.com/scan-acquire-
        configuration-files/>`__ and might not work as expected with novel
        files. If it does not read your files correctly please contact the
        mne-python developers.

    Parameters
    ----------
    fname : path-like
        File from which to read electrode locations.

    Returns
    -------
    montage : DigMontage
        The montage.

    See Also
    --------
    read_dig_captrak
    read_dig_dat
    read_dig_egi
    read_dig_fif
    read_dig_hpts
    read_dig_localite
    read_dig_polhemus_isotrak
    make_dig_montage

    Notes
    -----
    ``*.dat`` files are plain text files and can be inspected and amended with
    a plain text editor.
    """
    from ._standard_montage_utils import _check_dupes_odict
    fname = _check_fname(fname, overwrite='read', must_exist=True)

    with open(fname, 'r') as fid:
        lines = fid.readlines()

    ch_names, poss = list(), list()
    nasion = lpa = rpa = None
    for i, line in enumerate(lines):
        items = line.split()
        if not items:
            continue
        elif len(items) != 5:
            raise ValueError(
                "Error reading %s, line %s has unexpected number of entries:\n"
                "%s" % (fname, i, line.rstrip()))
        num = items[1]
        if num == '67':
            continue  # centroid
        pos = np.array([float(item) for item in items[2:]])
        if num == '78':
            nasion = pos
        elif num == '76':
            lpa = pos
        elif num == '82':
            rpa = pos
        else:
            ch_names.append(items[0])
            poss.append(pos)
    electrodes = _check_dupes_odict(ch_names, poss)
    return make_dig_montage(electrodes, nasion, lpa, rpa)


def read_dig_fif(fname):
    r"""Read digitized points from a .fif file.

    Note that electrode names are not present in the .fif file so
    they are here defined with the convention from VectorView
    systems (EEG001, EEG002, etc.)

    Parameters
    ----------
    fname : path-like
        FIF file from which to read digitization locations.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_dat
    read_dig_egi
    read_dig_captrak
    read_dig_polhemus_isotrak
    read_dig_hpts
    read_dig_localite
    make_dig_montage
    """
    _check_fname(fname, overwrite='read', must_exist=True)
    # Load the dig data
    f, tree = fiff_open(fname)[:2]
    with f as fid:
        dig = _read_dig_fif(fid, tree)

    ch_names = []
    for d in dig:
        if d['kind'] == FIFF.FIFFV_POINT_EEG:
            ch_names.append('EEG%03d' % d['ident'])

    montage = DigMontage(dig=dig, ch_names=ch_names)
    return montage


def read_dig_hpts(fname, unit='mm'):
    """Read historical .hpts mne-c files.

    Parameters
    ----------
    fname : path-like
        The filepath of .hpts file.
    unit : 'm' | 'cm' | 'mm'
        Unit of the positions. Defaults to 'mm'.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_captrak
    read_dig_dat
    read_dig_egi
    read_dig_fif
    read_dig_localite
    read_dig_polhemus_isotrak
    make_dig_montage

    Notes
    -----
    The hpts format digitzer data file may contain comment lines starting
    with the pound sign (#) and data lines of the form::

         <*category*> <*identifier*> <*x/mm*> <*y/mm*> <*z/mm*>

    where:

    ``<*category*>``
        defines the type of points. Allowed categories are: ``hpi``,
        ``cardinal`` (fiducial), ``eeg``, and ``extra`` corresponding to
        head-position indicator coil locations, cardinal landmarks, EEG
        electrode locations, and additional head surface points,
        respectively.

    ``<*identifier*>``
        identifies the point. The identifiers are usually sequential
        numbers. For cardinal landmarks, 1 = left auricular point,
        2 = nasion, and 3 = right auricular point. For EEG electrodes,
        identifier = 0 signifies the reference electrode.

    ``<*x/mm*> , <*y/mm*> , <*z/mm*>``
        Location of the point, usually in the head coordinate system
        in millimeters. If your points are in [m] then unit parameter can
        be changed.

    For example::

        cardinal    2    -5.6729  -12.3873  -30.3671
        cardinal    1    -37.6782  -10.4957   91.5228
        cardinal    3    -131.3127    9.3976  -22.2363
        hpi    1    -30.4493  -11.8450   83.3601
        hpi    2    -122.5353    9.2232  -28.6828
        hpi    3    -6.8518  -47.0697  -37.0829
        hpi    4    7.3744  -50.6297  -12.1376
        hpi    5    -33.4264  -43.7352  -57.7756
        eeg    FP1  3.8676  -77.0439  -13.0212
        eeg    FP2  -31.9297  -70.6852  -57.4881
        eeg    F7  -6.1042  -68.2969   45.4939
        ...
    """
    from ._standard_montage_utils import _str_names, _str
    fname = _check_fname(fname, overwrite='read', must_exist=True)
    _scale = _check_unit_and_get_scaling(unit)

    out = np.genfromtxt(fname, comments='#',
                        dtype=(_str, _str, 'f8', 'f8', 'f8'))
    kind, label = _str_names(out['f0']), _str_names(out['f1'])
    kind = [k.lower() for k in kind]
    xyz = np.array([out['f%d' % ii] for ii in range(2, 5)]).T
    xyz *= _scale
    del _scale
    fid_idx_to_label = {'1': 'lpa', '2': 'nasion', '3': 'rpa'}
    fid = {fid_idx_to_label[label[ii]]: this_xyz
           for ii, this_xyz in enumerate(xyz) if kind[ii] == 'cardinal'}
    ch_pos = {label[ii]: this_xyz
              for ii, this_xyz in enumerate(xyz) if kind[ii] == 'eeg'}
    hpi = np.array([this_xyz for ii, this_xyz in enumerate(xyz)
                    if kind[ii] == 'hpi'])
    hpi.shape = (-1, 3)  # in case it's empty
    hsp = np.array([this_xyz for ii, this_xyz in enumerate(xyz)
                    if kind[ii] == 'extra'])
    hsp.shape = (-1, 3)  # in case it's empty
    return make_dig_montage(ch_pos=ch_pos, **fid, hpi=hpi, hsp=hsp)


def read_dig_egi(fname):
    """Read electrode locations from EGI system.

    Parameters
    ----------
    fname : path-like
        EGI MFF XML coordinates file from which to read digitization locations.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_captrak
    read_dig_dat
    read_dig_fif
    read_dig_hpts
    read_dig_localite
    read_dig_polhemus_isotrak
    make_dig_montage
    """
    _check_fname(fname, overwrite='read', must_exist=True)

    data = _read_dig_montage_egi(
        fname=fname,
        _scaling=1.,
        _all_data_kwargs_are_none=True
    )
    return make_dig_montage(**data)


def read_dig_captrak(fname):
    """Read electrode locations from CapTrak Brain Products system.

    Parameters
    ----------
    fname : path-like
        BrainVision CapTrak coordinates file from which to read EEG electrode
        locations. This is typically in XML format with the .bvct extension.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_dat
    read_dig_egi
    read_dig_fif
    read_dig_hpts
    read_dig_localite
    read_dig_polhemus_isotrak
    make_dig_montage
    """
    _check_fname(fname, overwrite='read', must_exist=True)
    data = _parse_brainvision_dig_montage(fname, scale=1e-3)

    return make_dig_montage(**data)


def read_dig_localite(fname, nasion=None, lpa=None, rpa=None):
    """Read Localite .csv file.

    Parameters
    ----------
    fname : path-like
        File name.
    nasion : str | None
        Name of nasion fiducial point.
    lpa : str | None
        Name of left preauricular fiducial point.
    rpa : str | None
        Name of right preauricular fiducial point.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_captrak
    read_dig_dat
    read_dig_egi
    read_dig_fif
    read_dig_hpts
    read_dig_polhemus_isotrak
    make_dig_montage
    """
    ch_pos = {}
    with open(fname) as f:
        f.readline()  # skip first row
        for row in f:
            _, name, x, y, z = row.split(",")
            ch_pos[name] = np.array((float(x), float(y), float(z))) / 1000

    if nasion is not None:
        nasion = ch_pos.pop(nasion)
    if lpa is not None:
        lpa = ch_pos.pop(lpa)
    if rpa is not None:
        rpa = ch_pos.pop(rpa)

    return make_dig_montage(ch_pos, nasion, lpa, rpa)


def _get_montage_in_head(montage):
    coords = set([d['coord_frame'] for d in montage.dig])
    montage = montage.copy()
    if len(coords) == 1 and coords.pop() == FIFF.FIFFV_COORD_HEAD:
        _ensure_fiducials_head(montage.dig)
        return montage
    else:
        return transform_to_head(montage)


def _set_montage_fnirs(info, montage):
    """Set the montage for fNIRS data.

    This needs to be different to electrodes as each channel has three
    coordinates that need to be set. For each channel there is a source optode
    location, a detector optode location, and a channel midpoint that must be
    stored. This function modifies info['chs'][#]['loc'] and info['dig'] in
    place.
    """
    from ..preprocessing.nirs import _validate_nirs_info
    # Validate that the fNIRS info is correctly formatted
    picks = _validate_nirs_info(info)

    # Modify info['chs'][#]['loc'] in place
    num_ficiduals = len(montage.dig) - len(montage.ch_names)
    for ch_idx in picks:
        ch = info['chs'][ch_idx]['ch_name']
        source, detector = ch.split(' ')[0].split('_')
        source_pos = montage.dig[montage.ch_names.index(source)
                                 + num_ficiduals]['r']
        detector_pos = montage.dig[montage.ch_names.index(detector)
                                   + num_ficiduals]['r']

        info['chs'][ch_idx]['loc'][3:6] = source_pos
        info['chs'][ch_idx]['loc'][6:9] = detector_pos
        midpoint = (source_pos + detector_pos) / 2
        info['chs'][ch_idx]['loc'][:3] = midpoint
        info['chs'][ch_idx]['coord_frame'] = FIFF.FIFFV_COORD_HEAD

    # Modify info['dig'] in place
    with info._unlock():
        info['dig'] = montage.dig


@fill_doc
def _set_montage(info, montage, match_case=True, match_alias=False,
                 on_missing='raise'):
    """Apply montage to data.

    With a DigMontage, this function will replace the digitizer info with
    the values specified for the particular montage.

    Usually, a montage is expected to contain the positions of all EEG
    electrodes and a warning is raised when this is not the case.

    Parameters
    ----------
    %(info_not_none)s
    %(montage)s
    %(match_case)s
    %(match_alias)s
    %(on_missing_montage)s

    Notes
    -----
    This function will change the info variable in place.
    """
    _validate_type(montage, (DigMontage, None, str), 'montage')
    if montage is None:
        # Next line modifies info['dig'] in place
        with info._unlock():
            info['dig'] = None
        for ch in info['chs']:
            # Next line modifies info['chs'][#]['loc'] in place
            ch['loc'] = np.full(12, np.nan)
        return
    if isinstance(montage, str):  # load builtin montage
        _check_option(
            parameter='montage', value=montage,
            allowed_values=[m.name for m in _BUILTIN_STANDARD_MONTAGES]
        )
        montage = make_standard_montage(montage)

    mnt_head = _get_montage_in_head(montage)
    del montage

    def _backcompat_value(pos, ref_pos):
        if any(np.isnan(pos)):
            return np.full(6, np.nan)
        else:
            return np.concatenate((pos, ref_pos))

    # get the channels in the montage in head
    ch_pos = mnt_head._get_ch_pos()

    # only get the eeg, seeg, dbs, ecog channels
    picks = pick_types(
        info, meg=False, eeg=True, seeg=True, dbs=True, ecog=True,
        exclude=())
    non_picks = np.setdiff1d(np.arange(info['nchan']), picks)

    # get the reference position from the loc[3:6]
    chs = [info['chs'][ii] for ii in picks]
    non_names = [info['chs'][ii]['ch_name'] for ii in non_picks]
    del picks
    ref_pos = [ch['loc'][3:6] for ch in chs]

    # keep reference location from EEG-like channels if they
    # already exist and are all the same.
    custom_eeg_ref_dig = False
    # Note: ref position is an empty list for fieldtrip data
    if ref_pos:
        if all([np.equal(ref_pos[0], pos).all() for pos in ref_pos]) \
                and not np.equal(ref_pos[0], [0, 0, 0]).all():
            eeg_ref_pos = ref_pos[0]
            # since we have an EEG reference position, we have
            # to add it into the info['dig'] as EEG000
            custom_eeg_ref_dig = True
    if not custom_eeg_ref_dig:
        refs = set(ch_pos) & {'EEG000', 'REF'}
        assert len(refs) <= 1
        eeg_ref_pos = np.zeros(3) if not refs else ch_pos.pop(refs.pop())

    # This raises based on info being subset/superset of montage
    info_names = [ch['ch_name'] for ch in chs]
    dig_names = mnt_head._get_dig_names()
    ref_names = [None, 'EEG000', 'REF']

    if match_case:
        info_names_use = info_names
        dig_names_use = dig_names
        non_names_use = non_names
    else:
        ch_pos_use = OrderedDict(
            (name.lower(), pos) for name, pos in ch_pos.items())
        info_names_use = [name.lower() for name in info_names]
        dig_names_use = [name.lower() if name is not None else name
                         for name in dig_names]
        non_names_use = [name.lower() for name in non_names]
        ref_names = [name.lower() if name is not None else name
                     for name in ref_names]
        n_dup = len(ch_pos) - len(ch_pos_use)
        if n_dup:
            raise ValueError('Cannot use match_case=False as %s montage '
                             'name(s) require case sensitivity' % n_dup)
        n_dup = len(info_names_use) - len(set(info_names_use))
        if n_dup:
            raise ValueError('Cannot use match_case=False as %s channel '
                             'name(s) require case sensitivity' % n_dup)
        ch_pos = ch_pos_use
        del ch_pos_use
    del dig_names

    # use lookup table to match unrecognized channel names to known aliases
    if match_alias:
        alias_dict = (match_alias if isinstance(match_alias, dict) else
                      CHANNEL_LOC_ALIASES)
        if not match_case:
            alias_dict = {
                ch_name.lower(): ch_alias.lower()
                for ch_name, ch_alias in alias_dict.items()
            }

        # excluded ch_alias not in info, to prevent unnecessary mapping and
        # warning messages based on aliases.
        alias_dict = {
            ch_name: ch_alias
            for ch_name, ch_alias in alias_dict.items()
        }
        info_names_use = [
            alias_dict.get(ch_name, ch_name) for ch_name in info_names_use
        ]
        non_names_use = [
            alias_dict.get(ch_name, ch_name) for ch_name in non_names_use
        ]

    # warn user if there is not a full overlap of montage with info_chs
    missing = np.where([use not in ch_pos for use in info_names_use])[0]
    if len(missing):  # DigMontage is subset of info
        missing_names = [info_names[ii] for ii in missing]
        missing_coord_msg = (
            'DigMontage is only a subset of info. There are '
            f'{len(missing)} channel position{_pl(missing)} '
            'not present in the DigMontage. The required channels are:\n\n'
            f'{missing_names}.\n\nConsider using inst.set_channel_types '
            'if these are not EEG channels, or use the on_missing '
            'parameter if the channel positions are allowed to be unknown '
            'in your analyses.'
        )
        _on_missing(on_missing, missing_coord_msg)

        # set ch coordinates and names from digmontage or nan coords
        for ii in missing:
            ch_pos[info_names_use[ii]] = [np.nan] * 3
    del info_names

    assert len(non_names_use) == len(non_names)
    # There are no issues here with fNIRS being in non_names_use because
    # these names are like "D1_S1_760" and the ch_pos for a fNIRS montage
    # will have entries "D1" and "S1".
    extra = np.where([non in ch_pos for non in non_names_use])[0]
    if len(extra):
        types = '/'.join(sorted(set(
            channel_type(info, non_picks[ii]) for ii in extra)))
        names = [non_names[ii] for ii in extra]
        warn(f'Not setting position{_pl(extra)} of {len(extra)} {types} '
             f'channel{_pl(extra)} found in montage:\n{names}\n'
             'Consider setting the channel types to be of '
             f'{_docdict["montage_types"]} '
             'using inst.set_channel_types before calling inst.set_montage, '
             'or omit these channels when creating your montage.')

    for ch, use in zip(chs, info_names_use):
        # Next line modifies info['chs'][#]['loc'] in place
        if use in ch_pos:
            ch['loc'][:6] = _backcompat_value(ch_pos[use], eeg_ref_pos)
        ch['coord_frame'] = FIFF.FIFFV_COORD_HEAD
    del ch_pos

    # XXX this is probably wrong as it uses the order from the montage
    # rather than the order of our info['ch_names'] ...
    digpoints = [
        mnt_head.dig[ii] for ii, name in enumerate(dig_names_use)
        if name in (info_names_use + ref_names)]

    # get a copy of the old dig
    if info['dig'] is not None:
        old_dig = info['dig'].copy()
    else:
        old_dig = []

    # determine if needed to add an extra EEG REF DigPoint
    if custom_eeg_ref_dig:
        # ref_name = 'EEG000' if match_case else 'eeg000'
        ref_dig_dict = {'kind': FIFF.FIFFV_POINT_EEG,
                        'r': eeg_ref_pos,
                        'ident': 0,
                        'coord_frame': info['dig'].pop()['coord_frame']}
        ref_dig_point = _format_dig_points([ref_dig_dict])[0]
        # only append the reference dig point if it was already
        # in the old dig
        if ref_dig_point in old_dig:
            digpoints.append(ref_dig_point)
    # Next line modifies info['dig'] in place
    with info._unlock():
        info['dig'] = _format_dig_points(digpoints, enforce_order=True)
    del digpoints

    # TODO: Ideally we would have a check like this, but read_raw_bids for ECoG
    # allows for a montage to be set without any fiducials, then silently the
    # info['dig'] can end up in the MNI_TAL frame... only because in our
    # conversion code, UNKNOWN is treated differently from any other frame
    # (e.g., MNI_TAL). We should clean this up at some point...
    # missing_fids = sum(
    #     d['kind'] == FIFF.FIFFV_POINT_CARDINAL for d in info['dig'][:3]) != 3
    # if missing_fids:
    #     raise RuntimeError(
    #         'Could not find all three fiducials in the montage, this should '
    #         'not happen. Please contact MNE-Python developers.')

    # Handle fNIRS with source, detector and channel
    fnirs_picks = _picks_to_idx(info, 'fnirs', allow_empty=True)
    if len(fnirs_picks) > 0:
        _set_montage_fnirs(info, mnt_head)


def _read_isotrak_elp_points(fname):
    """Read Polhemus Isotrak digitizer data from a ``.elp`` file.

    Parameters
    ----------
    fname : str
        The filepath of .elp Polhemus Isotrak file.

    Returns
    -------
    out : dict of arrays
        The dictionary containing locations for 'nasion', 'lpa', 'rpa'
        and 'points'.
    """
    value_pattern = r"\-?\d+\.?\d*e?\-?\d*"
    coord_pattern = r"({0})\s+({0})\s+({0})\s*$".format(value_pattern)

    with open(fname) as fid:
        file_str = fid.read()

    points_str = [m.groups() for m in re.finditer(coord_pattern, file_str,
                                                  re.MULTILINE)]
    points = np.array(points_str, dtype=float)

    return {
        'nasion': points[0], 'lpa': points[1], 'rpa': points[2],
        'points': points[3:]
    }


def _read_isotrak_hsp_points(fname):
    """Read Polhemus Isotrak digitizer data from a ``.hsp`` file.

    Parameters
    ----------
    fname : str
        The filepath of .hsp Polhemus Isotrak file.

    Returns
    -------
    out : dict of arrays
        The dictionary containing locations for 'nasion', 'lpa', 'rpa'
        and 'points'.
    """
    def get_hsp_fiducial(line):
        return np.fromstring(line.replace('%F', ''), dtype=float, sep='\t')

    with open(fname) as ff:
        for line in ff:
            if 'position of fiducials' in line.lower():
                break

        nasion = get_hsp_fiducial(ff.readline())
        lpa = get_hsp_fiducial(ff.readline())
        rpa = get_hsp_fiducial(ff.readline())

        _ = ff.readline()
        line = ff.readline()
        if line:
            n_points, n_cols = np.fromstring(line, dtype=int, sep='\t')
            points = np.fromstring(
                string=ff.read(), dtype=float, sep='\t',
            ).reshape(-1, n_cols)
            assert points.shape[0] == n_points
        else:
            points = np.empty((0, 3))

    return {
        'nasion': nasion, 'lpa': lpa, 'rpa': rpa, 'points': points
    }


def read_dig_polhemus_isotrak(fname, ch_names=None, unit='m'):
    """Read Polhemus digitizer data from a file.

    Parameters
    ----------
    fname : path-like
        The filepath of Polhemus ISOTrak formatted file.
        File extension is expected to be '.hsp', '.elp' or '.eeg'.
    ch_names : None | list of str
        The names of the points. This will make the points
        considered as EEG channels. If None, channels will be assumed
        to be HPI if the extension is ``'.elp'``, and extra headshape
        points otherwise.
    unit : 'm' | 'cm' | 'mm'
        Unit of the digitizer file. Polhemus ISOTrak systems data is usually
        exported in meters. Defaults to 'm'.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    make_dig_montage
    read_polhemus_fastscan
    read_dig_captrak
    read_dig_dat
    read_dig_egi
    read_dig_fif
    read_dig_localite
    """
    VALID_FILE_EXT = ('.hsp', '.elp', '.eeg')
    fname = _check_fname(fname, overwrite='read', must_exist=True)
    _scale = _check_unit_and_get_scaling(unit)

    _, ext = op.splitext(fname)
    _check_option('fname', ext, VALID_FILE_EXT)

    if ext == '.elp':
        data = _read_isotrak_elp_points(fname)
    else:
        # Default case we read points as hsp since is the most likely scenario
        data = _read_isotrak_hsp_points(fname)

    if _scale != 1:
        data = {key: val * _scale for key, val in data.items()}
    else:
        pass  # noqa

    if ch_names is None:
        keyword = 'hpi' if ext == '.elp' else 'hsp'
        data[keyword] = data.pop('points')

    else:
        points = data.pop('points')
        if points.shape[0] == len(ch_names):
            data['ch_pos'] = OrderedDict(zip(ch_names, points))
        else:
            raise ValueError((
                "Length of ``ch_names`` does not match the number of points"
                " in {fname}. Expected ``ch_names`` length {n_points:d},"
                " given {n_chnames:d}"
            ).format(
                fname=fname, n_points=points.shape[0], n_chnames=len(ch_names)
            ))

    return make_dig_montage(**data)


def _is_polhemus_fastscan(fname):
    header = ''
    with open(fname, 'r') as fid:
        for line in fid:
            if not line.startswith('%'):
                break
            header += line

    return 'FastSCAN' in header


@verbose
def read_polhemus_fastscan(fname, unit='mm', on_header_missing='raise', *,
                           verbose=None):
    """Read Polhemus FastSCAN digitizer data from a ``.txt`` file.

    Parameters
    ----------
    fname : path-like
        The path of .txt Polhemus FastSCAN file.
    unit : 'm' | 'cm' | 'mm'
        Unit of the digitizer file. Polhemus FastSCAN systems data is usually
        exported in millimeters. Defaults to 'mm'.
    %(on_header_missing)s
    %(verbose)s

    Returns
    -------
    points : array, shape (n_points, 3)
        The digitization points in digitizer coordinates.

    See Also
    --------
    read_dig_polhemus_isotrak
    make_dig_montage
    """
    VALID_FILE_EXT = ['.txt']
    fname = _check_fname(fname, overwrite='read', must_exist=True)
    _scale = _check_unit_and_get_scaling(unit)

    _, ext = op.splitext(fname)
    _check_option('fname', ext, VALID_FILE_EXT)

    if not _is_polhemus_fastscan(fname):
        msg = "%s does not contain a valid Polhemus FastSCAN header" % fname
        _on_missing(on_header_missing, msg)

    points = _scale * np.loadtxt(fname, comments='%', ndmin=2)
    _check_dig_shape(points)
    return points


def _read_eeglab_locations(fname):
    ch_names = np.genfromtxt(fname, dtype=str, usecols=3).tolist()
    topo = np.loadtxt(fname, dtype=float, usecols=[1, 2])
    sph = _topo_to_sph(topo)
    pos = _sph_to_cart(sph)
    pos[:, [0, 1]] = pos[:, [1, 0]] * [-1, 1]

    return ch_names, pos


def read_custom_montage(fname, head_size=HEAD_SIZE_DEFAULT, coord_frame=None):
    """Read a montage from a file.

    Parameters
    ----------
    fname : path-like
        File extension is expected to be:
        '.loc' or '.locs' or '.eloc' (for EEGLAB files),
        '.sfp' (BESA/EGI files), '.csd',
        '.elc', '.txt', '.csd', '.elp' (BESA spherical),
        '.bvef' (BrainVision files),
        '.csv', '.tsv', '.xyz' (XYZ coordinates).
    head_size : float | None
        The size of the head (radius, in [m]). If ``None``, returns the values
        read from the montage file with no modification. Defaults to 0.095m.
    coord_frame : str | None
        The coordinate frame of the points. Usually this is "unknown"
        for native digitizer space. Defaults to None, which is "unknown" for
        most readers but "head" for EEGLAB.

        .. versionadded:: 0.20

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    make_dig_montage
    make_standard_montage

    Notes
    -----
    The function is a helper to read electrode positions you may have
    in various formats. Most of these format are weakly specified
    in terms of units, coordinate systems. It implies that setting
    a montage using a DigMontage produced by this function may
    be problematic. If you use a standard/template (eg. 10/20,
    10/10 or 10/05) we recommend you use :func:`make_standard_montage`.
    If you can have positions in memory you can also use
    :func:`make_dig_montage` that takes arrays as input.
    """
    from ._standard_montage_utils import (
        _read_theta_phi_in_degrees, _read_sfp, _read_csd, _read_elc,
        _read_elp_besa, _read_brainvision, _read_xyz
    )
    SUPPORTED_FILE_EXT = {
        'eeglab': ('.loc', '.locs', '.eloc', ),
        'hydrocel': ('.sfp', ),
        'matlab': ('.csd', ),
        'asa electrode': ('.elc', ),
        'generic (Theta-phi in degrees)': ('.txt', ),
        'standard BESA spherical': ('.elp', ),  # NB: not same as polhemus elp
        'brainvision': ('.bvef', ),
        'xyz': ('.csv', '.tsv', '.xyz'),
    }

    fname = _check_fname(fname, overwrite='read', must_exist=True)
    _, ext = op.splitext(fname)
    _check_option('fname', ext, list(sum(SUPPORTED_FILE_EXT.values(), ())))

    if ext in SUPPORTED_FILE_EXT['eeglab']:
        if head_size is None:
            raise ValueError(
                "``head_size`` cannot be None for '{}'".format(ext))
        ch_names, pos = _read_eeglab_locations(fname)
        scale = head_size / np.median(np.linalg.norm(pos, axis=-1))
        pos *= scale

        montage = make_dig_montage(
            ch_pos=OrderedDict(zip(ch_names, pos)),
            coord_frame='head',
        )

    elif ext in SUPPORTED_FILE_EXT['hydrocel']:
        montage = _read_sfp(fname, head_size=head_size)

    elif ext in SUPPORTED_FILE_EXT['matlab']:
        montage = _read_csd(fname, head_size=head_size)

    elif ext in SUPPORTED_FILE_EXT['asa electrode']:
        montage = _read_elc(fname, head_size=head_size)

    elif ext in SUPPORTED_FILE_EXT['generic (Theta-phi in degrees)']:
        if head_size is None:
            raise ValueError(
                "``head_size`` cannot be None for '{}'".format(ext))
        montage = _read_theta_phi_in_degrees(fname, head_size=head_size,
                                             fid_names=('Nz', 'LPA', 'RPA'))

    elif ext in SUPPORTED_FILE_EXT['standard BESA spherical']:
        montage = _read_elp_besa(fname, head_size)

    elif ext in SUPPORTED_FILE_EXT['brainvision']:
        montage = _read_brainvision(fname, head_size)

    elif ext in SUPPORTED_FILE_EXT['xyz']:
        montage = _read_xyz(fname)

    if coord_frame is not None:
        coord_frame = _coord_frame_const(coord_frame)
        for d in montage.dig:
            d['coord_frame'] = coord_frame

    return montage


def compute_dev_head_t(montage):
    """Compute device to head transform from a DigMontage.

    Parameters
    ----------
    montage : DigMontage
        The `~mne.channels.DigMontage` must contain the fiducials in head
        coordinate system and hpi points in both head and
        meg device coordinate system.

    Returns
    -------
    dev_head_t : Transform
        A Device-to-Head transformation matrix.
    """
    _, coord_frame = _get_fid_coords(montage.dig)
    if coord_frame != FIFF.FIFFV_COORD_HEAD:
        raise ValueError('montage should have been set to head coordinate '
                         'system with transform_to_head function.')

    hpi_head = np.array(
        [d['r'] for d in montage.dig
         if (d['kind'] == FIFF.FIFFV_POINT_HPI and
             d['coord_frame'] == FIFF.FIFFV_COORD_HEAD)], float)
    hpi_dev = np.array(
        [d['r'] for d in montage.dig
         if (d['kind'] == FIFF.FIFFV_POINT_HPI and
         d['coord_frame'] == FIFF.FIFFV_COORD_DEVICE)], float)

    if not (len(hpi_head) == len(hpi_dev) and len(hpi_dev) > 0):
        raise ValueError((
            "To compute Device-to-Head transformation, the same number of HPI"
            " points in device and head coordinates is required. (Got {dev}"
            " points in device and {head} points in head coordinate systems)"
        ).format(dev=len(hpi_dev), head=len(hpi_head)))

    trans = _quat_to_affine(_fit_matched_points(hpi_dev, hpi_head)[0])
    return Transform(fro='meg', to='head', trans=trans)


@verbose
def compute_native_head_t(montage, *, on_missing='warn', verbose=None):
    """Compute the native-to-head transformation for a montage.

    This uses the fiducials in the native space to transform to compute the
    transform to the head coordinate frame.

    Parameters
    ----------
    montage : instance of DigMontage
        The montage.
    %(on_missing_fiducials)s

        .. versionadded:: 1.2
    %(verbose)s

    Returns
    -------
    native_head_t : instance of Transform
        A native-to-head transformation matrix.
    """
    # Get fiducial points and their coord_frame
    fid_coords, coord_frame = _get_fid_coords(montage.dig, raise_error=False)
    if coord_frame is None:
        coord_frame = FIFF.FIFFV_COORD_UNKNOWN
    if coord_frame == FIFF.FIFFV_COORD_HEAD:
        native_head_t = np.eye(4)
    else:
        fid_keys = ('nasion', 'lpa', 'rpa')
        for key in fid_keys:
            if fid_coords[key] is None:
                msg = (
                    f'Fiducial point {key} not found, assuming identity '
                    f'{_verbose_frames[coord_frame]} to head transformation')
                _on_missing(on_missing, msg, error_klass=RuntimeError)
                native_head_t = np.eye(4)
                break
        else:
            native_head_t = get_ras_to_neuromag_trans(
                *[fid_coords[key] for key in fid_keys])
    return Transform(coord_frame, 'head', native_head_t)


def make_standard_montage(kind, head_size='auto'):
    """Read a generic (built-in) standard montage that ships with MNE-Python.

    Parameters
    ----------
    kind : str
        The name of the montage to use.

        .. note::
            You can retrieve the names of all
            built-in montages via :func:`mne.channels.get_builtin_montages`.
    head_size : float | None | str
        The head size (radius, in meters) to use for spherical montages.
        Can be None to not scale the read sizes. ``'auto'`` (default) will
        use 95mm for all montages except the ``'standard*'``, ``'mgh*'``, and
        ``'artinis*'``, which are already in fsaverage's MRI coordinates
        (same as MNI).

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    get_builtin_montages
    make_dig_montage
    read_custom_montage

    Notes
    -----
    Individualized (digitized) electrode positions should be read in using
    :func:`read_dig_captrak`, :func:`read_dig_dat`, :func:`read_dig_egi`,
    :func:`read_dig_fif`, :func:`read_dig_polhemus_isotrak`,
    :func:`read_dig_hpts`, or manually made with :func:`make_dig_montage`.

    .. versionadded:: 0.19.0
    """
    from ._standard_montage_utils import standard_montage_look_up_table
    _validate_type(kind, str, 'kind')
    _check_option(
        parameter='kind', value=kind,
        allowed_values=[m.name for m in _BUILTIN_STANDARD_MONTAGES]
    )
    _validate_type(head_size, ('numeric', str, None), 'head_size')
    if isinstance(head_size, str):
        _check_option('head_size', head_size, ('auto',), extra='when str')
        if kind.startswith(('standard', 'mgh', 'artinis')):
            head_size = None
        else:
            head_size = HEAD_SIZE_DEFAULT
    return standard_montage_look_up_table[kind](head_size=head_size)


def _check_dig_shape(pts):
    _validate_type(pts, np.ndarray, 'points')
    if pts.ndim != 2 or pts.shape[-1] != 3:
        raise ValueError(
            f'Points must be of shape (n, 3) instead of {pts.shape}')