1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
|
# -*- coding: utf-8 -*-
"""Functions for fitting head positions with (c)HPI coils."""
# Next, ``compute_head_pos`` can be used to:
#
# 1. Drop coils whose GOF are below ``gof_limit``. If fewer than 3 coils
# remain, abandon fitting for the chunk.
# 2. Fit dev_head_t quaternion (using ``_fit_chpi_quat_subset``),
# iteratively dropping coils (as long as 3 remain) to find the best GOF
# (using ``_fit_chpi_quat``).
# 3. If fewer than 3 coils meet the ``dist_limit`` criteria following
# projection of the fitted device coil locations into the head frame,
# abandon fitting for the chunk.
#
# The function ``filter_chpi`` uses the same linear model to filter cHPI
# and (optionally) line frequencies from the data.
# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
from functools import partial
import numpy as np
import itertools
from .event import find_events
from .io.base import BaseRaw
from .channels.channels import _get_meg_system
from .io.kit.constants import KIT
from .io.kit.kit import RawKIT as _RawKIT
from .io.meas_info import _simplify_info, Info
from .io.pick import (pick_types, pick_channels, pick_channels_regexp,
pick_info, _picks_to_idx)
from .io.proj import Projection, setup_proj
from .io.constants import FIFF
from .io.ctf.trans import _make_ctf_coord_trans_set
from .forward import (_magnetic_dipole_field_vec, _create_meg_coils,
_concatenate_coils)
from .cov import make_ad_hoc_cov, compute_whitener
from .dipole import _make_guesses
from .fixes import jit
from .preprocessing.maxwell import (_sss_basis, _prep_mf_coils,
_regularize_out, _get_mf_picks_fix_mags)
from .transforms import (apply_trans, invert_transform, _angle_between_quats,
quat_to_rot, rot_to_quat, _fit_matched_points,
_quat_to_affine, als_ras_trans)
from .utils import (verbose, logger, use_log_level, _check_fname, warn,
_validate_type, ProgressBar, _check_option, _pl,
_on_missing, _verbose_safe_false)
# Eventually we should add:
# hpicons
# high-passing of data during fits
# parsing cHPI coil information from acq pars, then to PSD if necessary
# ############################################################################
# Reading from text or FIF file
def read_head_pos(fname):
"""Read MaxFilter-formatted head position parameters.
Parameters
----------
fname : str
The filename to read. This can be produced by e.g.,
``maxfilter -headpos <name>.pos``.
Returns
-------
pos : array, shape (N, 10)
The position and quaternion parameters from cHPI fitting.
See Also
--------
write_head_pos
head_pos_to_trans_rot_t
Notes
-----
.. versionadded:: 0.12
"""
_check_fname(fname, must_exist=True, overwrite='read')
data = np.loadtxt(fname, skiprows=1) # first line is header, skip it
data.shape = (-1, 10) # ensure it's the right size even if empty
if np.isnan(data).any(): # make sure we didn't do something dumb
raise RuntimeError('positions could not be read properly from %s'
% fname)
return data
def write_head_pos(fname, pos):
"""Write MaxFilter-formatted head position parameters.
Parameters
----------
fname : str
The filename to write.
pos : array, shape (N, 10)
The position and quaternion parameters from cHPI fitting.
See Also
--------
read_head_pos
head_pos_to_trans_rot_t
Notes
-----
.. versionadded:: 0.12
"""
_check_fname(fname, overwrite=True)
pos = np.array(pos, np.float64)
if pos.ndim != 2 or pos.shape[1] != 10:
raise ValueError('pos must be a 2D array of shape (N, 10)')
with open(fname, 'wb') as fid:
fid.write(' Time q1 q2 q3 q4 q5 '
'q6 g-value error velocity\n'.encode('ASCII'))
for p in pos:
fmts = ['% 9.3f'] + ['% 8.5f'] * 9
fid.write(((' ' + ' '.join(fmts) + '\n')
% tuple(p)).encode('ASCII'))
def head_pos_to_trans_rot_t(quats):
"""Convert Maxfilter-formatted head position quaternions.
Parameters
----------
quats : ndarray, shape (N, 10)
MaxFilter-formatted position and quaternion parameters.
Returns
-------
translation : ndarray, shape (N, 3)
Translations at each time point.
rotation : ndarray, shape (N, 3, 3)
Rotations at each time point.
t : ndarray, shape (N,)
The time points.
See Also
--------
read_head_pos
write_head_pos
"""
t = quats[..., 0].copy()
rotation = quat_to_rot(quats[..., 1:4])
translation = quats[..., 4:7].copy()
return translation, rotation, t
@verbose
def extract_chpi_locs_ctf(raw, verbose=None):
r"""Extract cHPI locations from CTF data.
Parameters
----------
raw : instance of Raw
Raw data with CTF cHPI information.
%(verbose)s
Returns
-------
%(chpi_locs)s
Notes
-----
CTF continuous head monitoring stores the x,y,z location (m) of each chpi
coil as separate channels in the dataset:
- ``HLC001[123]\\*`` - nasion
- ``HLC002[123]\\*`` - lpa
- ``HLC003[123]\\*`` - rpa
This extracts these positions for use with
:func:`~mne.chpi.compute_head_pos`.
.. versionadded:: 0.20
"""
# Pick channels corresponding to the cHPI positions
hpi_picks = pick_channels_regexp(raw.info['ch_names'], 'HLC00[123][123].*')
# make sure we get 9 channels
if len(hpi_picks) != 9:
raise RuntimeError('Could not find all 9 cHPI channels')
# get indices in alphabetical order
sorted_picks = np.array(sorted(hpi_picks,
key=lambda k: raw.info['ch_names'][k]))
# make picks to match order of dig cardinial ident codes.
# LPA (HPIC002[123]-*), NAS(HPIC001[123]-*), RPA(HPIC003[123]-*)
hpi_picks = sorted_picks[[3, 4, 5, 0, 1, 2, 6, 7, 8]]
del sorted_picks
# process the entire run
time_sl = slice(0, len(raw.times))
chpi_data = raw[hpi_picks, time_sl][0]
# transforms
tmp_trans = _make_ctf_coord_trans_set(None, None)
ctf_dev_dev_t = tmp_trans['t_ctf_dev_dev']
del tmp_trans
# find indices where chpi locations change
indices = [0]
indices.extend(np.where(np.all(np.diff(chpi_data, axis=1), axis=0))[0] + 1)
# data in channels are in ctf device coordinates (cm)
rrs = chpi_data[:, indices].T.reshape(len(indices), 3, 3) # m
# map to mne device coords
rrs = apply_trans(ctf_dev_dev_t, rrs)
gofs = np.ones(rrs.shape[:2]) # not encoded, set all good
moments = np.zeros(rrs.shape) # not encoded, set all zero
times = raw.times[indices] + raw._first_time
return dict(rrs=rrs, gofs=gofs, times=times, moments=moments)
@verbose
def extract_chpi_locs_kit(raw, stim_channel='MISC 064', *, verbose=None):
"""Extract cHPI locations from KIT data.
Parameters
----------
raw : instance of RawKIT
Raw data with KIT cHPI information.
stim_channel : str
The stimulus channel that encodes HPI measurement intervals.
%(verbose)s
Returns
-------
%(chpi_locs)s
Notes
-----
.. versionadded:: 0.23
"""
_validate_type(raw, (_RawKIT,), 'raw')
stim_chs = [
raw.info['ch_names'][pick] for pick in pick_types(
raw.info, stim=True, misc=True, ref_meg=False)]
_validate_type(stim_channel, str, 'stim_channel')
_check_option('stim_channel', stim_channel, stim_chs)
idx = raw.ch_names.index(stim_channel)
safe_false = _verbose_safe_false()
events_on = find_events(
raw, stim_channel=raw.ch_names[idx], output='onset',
verbose=safe_false)[:, 0]
events_off = find_events(
raw, stim_channel=raw.ch_names[idx], output='offset',
verbose=safe_false)[:, 0]
bad = False
if len(events_on) == 0 or len(events_off) == 0:
bad = True
else:
if events_on[-1] > events_off[-1]:
events_on = events_on[:-1]
if events_on.size != events_off.size or not \
(events_on < events_off).all():
bad = True
if bad:
raise RuntimeError(
f'Could not find appropriate cHPI intervals from {stim_channel}')
# use the midpoint for times
times = (events_on + events_off) / (2 * raw.info['sfreq'])
del events_on, events_off
# XXX remove first two rows. It is unknown currently if there is a way to
# determine from the con file the number of initial pulses that
# indicate the start of reading. The number is shown by opening the con
# file in MEG160, but I couldn't find the value in the .con file, so it
# may just always be 2...
times = times[2:]
n_coils = 5 # KIT always has 5 (hard-coded in reader)
header = raw._raw_extras[0]['dirs'][KIT.DIR_INDEX_CHPI_DATA]
dtype = np.dtype([('good', '<u4'), ('data', '<f8', (4,))])
assert dtype.itemsize == header['size'], (dtype.itemsize, header['size'])
all_data = list()
for fname in raw._filenames:
with open(fname, 'r') as fid:
fid.seek(header['offset'])
all_data.append(np.fromfile(
fid, dtype, count=header['count']).reshape(-1, n_coils))
data = np.concatenate(all_data)
extra = ''
if len(times) < len(data):
extra = f', truncating to {len(times)} based on events'
logger.info(f'Found {len(data)} cHPI measurement{_pl(len(data))}{extra}')
data = data[:len(times)]
# good is not currently used, but keep this in case we want it later
# good = data['good'] == 1
data = data['data']
rrs, gofs = data[:, :, :3], data[:, :, 3]
rrs = apply_trans(als_ras_trans, rrs)
moments = np.zeros(rrs.shape) # not encoded, set all zero
return dict(rrs=rrs, gofs=gofs, times=times, moments=moments)
# ############################################################################
# Estimate positions from data
@verbose
def get_chpi_info(info, on_missing='raise', verbose=None):
"""Retrieve cHPI information from the data.
Parameters
----------
%(info_not_none)s
%(on_missing_chpi)s
%(verbose)s
Returns
-------
hpi_freqs : array, shape (n_coils,)
The frequency used for each individual cHPI coil.
hpi_pick : int | None
The index of the ``STIM`` channel containing information about when
which cHPI coils were switched on.
hpi_on : array, shape (n_coils,)
The values coding for the "on" state of each individual cHPI coil.
Notes
-----
.. versionadded:: 0.24
"""
_validate_type(item=info, item_name='info', types=Info)
_check_option(parameter='on_missing', value=on_missing,
allowed_values=['ignore', 'raise', 'warn'])
if len(info['hpi_meas']) == 0 or \
('coil_freq' not in info['hpi_meas'][0]['hpi_coils'][0]):
_on_missing(on_missing,
msg='No appropriate cHPI information found in '
'info["hpi_meas"] and info["hpi_subsystem"]')
return np.empty(0), None, np.empty(0)
hpi_coils = sorted(info['hpi_meas'][-1]['hpi_coils'],
key=lambda x: x['number']) # ascending (info) order
# get frequencies
hpi_freqs = np.array([float(x['coil_freq']) for x in hpi_coils])
logger.info('Using %s HPI coils: %s Hz'
% (len(hpi_freqs), ' '.join(str(int(s)) for s in hpi_freqs)))
# how cHPI active is indicated in the FIF file
hpi_sub = info['hpi_subsystem']
hpi_pick = None # there is no pick!
if hpi_sub is not None:
if 'event_channel' in hpi_sub:
hpi_pick = pick_channels(info['ch_names'],
[hpi_sub['event_channel']])
hpi_pick = hpi_pick[0] if len(hpi_pick) > 0 else None
# grab codes indicating a coil is active
hpi_on = [coil['event_bits'][0] for coil in hpi_sub['hpi_coils']]
# not all HPI coils will actually be used
hpi_on = np.array([hpi_on[hc['number'] - 1] for hc in hpi_coils])
# mask for coils that may be active
hpi_mask = np.array([event_bit != 0 for event_bit in hpi_on])
hpi_on = hpi_on[hpi_mask]
hpi_freqs = hpi_freqs[hpi_mask]
else:
hpi_on = np.zeros(len(hpi_freqs))
return hpi_freqs, hpi_pick, hpi_on
@verbose
def _get_hpi_initial_fit(info, adjust=False, verbose=None):
"""Get HPI fit locations from raw."""
if info['hpi_results'] is None or len(info['hpi_results']) == 0:
raise RuntimeError('no initial cHPI head localization performed')
hpi_result = info['hpi_results'][-1]
hpi_dig = sorted([d for d in info['dig']
if d['kind'] == FIFF.FIFFV_POINT_HPI],
key=lambda x: x['ident']) # ascending (dig) order
if len(hpi_dig) == 0: # CTF data, probably
hpi_dig = sorted(hpi_result['dig_points'], key=lambda x: x['ident'])
if all(d['coord_frame'] in (FIFF.FIFFV_COORD_DEVICE,
FIFF.FIFFV_COORD_UNKNOWN)
for d in hpi_dig):
for dig in hpi_dig:
dig.update(r=apply_trans(info['dev_head_t'], dig['r']),
coord_frame=FIFF.FIFFV_COORD_HEAD)
# zero-based indexing, dig->info
# CTF does not populate some entries so we use .get here
pos_order = hpi_result.get('order', np.arange(1, len(hpi_dig) + 1)) - 1
used = hpi_result.get('used', np.arange(len(hpi_dig)))
dist_limit = hpi_result.get('dist_limit', 0.005)
good_limit = hpi_result.get('good_limit', 0.98)
goodness = hpi_result.get('goodness', np.ones(len(hpi_dig)))
# this shouldn't happen, eventually we could add the transforms
# necessary to put it in head coords
if not all(d['coord_frame'] == FIFF.FIFFV_COORD_HEAD for d in hpi_dig):
raise RuntimeError('cHPI coordinate frame incorrect')
# Give the user some info
logger.info('HPIFIT: %s coils digitized in order %s'
% (len(pos_order), ' '.join(str(o + 1) for o in pos_order)))
logger.debug('HPIFIT: %s coils accepted: %s'
% (len(used), ' '.join(str(h) for h in used)))
hpi_rrs = np.array([d['r'] for d in hpi_dig])[pos_order]
assert len(hpi_rrs) >= 3
# Fitting errors
hpi_rrs_fit = sorted([d for d in info['hpi_results'][-1]['dig_points']],
key=lambda x: x['ident'])
hpi_rrs_fit = np.array([d['r'] for d in hpi_rrs_fit])
# hpi_result['dig_points'] are in FIFFV_COORD_UNKNOWN coords, but this
# is probably a misnomer because it should be FIFFV_COORD_DEVICE for this
# to work
assert hpi_result['coord_trans']['to'] == FIFF.FIFFV_COORD_HEAD
hpi_rrs_fit = apply_trans(hpi_result['coord_trans']['trans'], hpi_rrs_fit)
if 'moments' in hpi_result:
logger.debug('Hpi coil moments (%d %d):'
% hpi_result['moments'].shape[::-1])
for moment in hpi_result['moments']:
logger.debug("%g %g %g" % tuple(moment))
errors = np.linalg.norm(hpi_rrs - hpi_rrs_fit, axis=1)
logger.debug('HPIFIT errors: %s mm.'
% ', '.join('%0.1f' % (1000. * e) for e in errors))
if errors.sum() < len(errors) * dist_limit:
logger.info('HPI consistency of isotrak and hpifit is OK.')
elif not adjust and (len(used) == len(hpi_dig)):
warn('HPI consistency of isotrak and hpifit is poor.')
else:
# adjust HPI coil locations using the hpifit transformation
for hi, (err, r_fit) in enumerate(zip(errors, hpi_rrs_fit)):
# transform to head frame
d = 1000 * err
if not adjust:
if err >= dist_limit:
warn('Discrepancy of HPI coil %d isotrak and hpifit is '
'%.1f mm!' % (hi + 1, d))
elif hi + 1 not in used:
if goodness[hi] >= good_limit:
logger.info('Note: HPI coil %d isotrak is adjusted by '
'%.1f mm!' % (hi + 1, d))
hpi_rrs[hi] = r_fit
else:
warn('Discrepancy of HPI coil %d isotrak and hpifit of '
'%.1f mm was not adjusted!' % (hi + 1, d))
logger.debug('HP fitting limits: err = %.1f mm, gval = %.3f.'
% (1000 * dist_limit, good_limit))
return hpi_rrs.astype(float)
def _magnetic_dipole_objective(x, B, B2, coils, whitener, too_close,
return_moment=False):
"""Project data onto right eigenvectors of whitened forward."""
fwd = _magnetic_dipole_field_vec(x[np.newaxis], coils, too_close)
out, u, s, one = _magnetic_dipole_delta(fwd, whitener, B, B2)
if return_moment:
one /= s
Q = np.dot(one, u.T)
out = (out, Q)
return out
@jit()
def _magnetic_dipole_delta(fwd, whitener, B, B2):
# Here we use .T to get whitener to Fortran order, which speeds things up
fwd = np.dot(fwd, whitener.T)
u, s, v = np.linalg.svd(fwd, full_matrices=False)
one = np.dot(v, B)
Bm2 = np.dot(one, one)
return B2 - Bm2, u, s, one
def _magnetic_dipole_delta_multi(whitened_fwd_svd, B, B2):
# Here we use .T to get whitener to Fortran order, which speeds things up
one = np.matmul(whitened_fwd_svd, B)
Bm2 = np.sum(one * one, axis=1)
return B2 - Bm2
def _fit_magnetic_dipole(B_orig, x0, too_close, whitener, coils, guesses):
"""Fit a single bit of data (x0 = pos)."""
from scipy.optimize import fmin_cobyla
B = np.dot(whitener, B_orig)
B2 = np.dot(B, B)
objective = partial(_magnetic_dipole_objective, B=B, B2=B2,
coils=coils, whitener=whitener,
too_close=too_close)
if guesses is not None:
res0 = objective(x0)
res = _magnetic_dipole_delta_multi(
guesses['whitened_fwd_svd'], B, B2)
assert res.shape == (guesses['rr'].shape[0],)
idx = np.argmin(res)
if res[idx] < res0:
x0 = guesses['rr'][idx]
x = fmin_cobyla(objective, x0, (), rhobeg=1e-3, rhoend=1e-5, disp=False)
gof, moment = objective(x, return_moment=True)
gof = 1. - gof / B2
return x, gof, moment
@jit()
def _chpi_objective(x, coil_dev_rrs, coil_head_rrs):
"""Compute objective function."""
d = np.dot(coil_dev_rrs, quat_to_rot(x[:3]).T)
d += x[3:]
d -= coil_head_rrs
d *= d
return d.sum()
def _fit_chpi_quat(coil_dev_rrs, coil_head_rrs):
"""Fit rotation and translation (quaternion) parameters for cHPI coils."""
denom = np.linalg.norm(coil_head_rrs - np.mean(coil_head_rrs, axis=0))
denom *= denom
# We could try to solve it the analytic way:
# XXX someday we could choose to weight these points by their goodness
# of fit somehow.
quat = _fit_matched_points(coil_dev_rrs, coil_head_rrs)[0]
gof = 1. - _chpi_objective(quat, coil_dev_rrs, coil_head_rrs) / denom
return quat, gof
def _fit_coil_order_dev_head_trans(dev_pnts, head_pnts, bias=True):
"""Compute Device to Head transform allowing for permutiatons of points."""
id_quat = np.zeros(6)
best_order = None
best_g = -999
best_quat = id_quat
for this_order in itertools.permutations(np.arange(len(head_pnts))):
head_pnts_tmp = head_pnts[np.array(this_order)]
this_quat, g = _fit_chpi_quat(dev_pnts, head_pnts_tmp)
assert np.linalg.det(quat_to_rot(this_quat[:3])) > 0.9999
if bias:
# For symmetrical arrangements, flips can produce roughly
# equivalent g values. To avoid this, heavily penalize
# large rotations.
rotation = _angle_between_quats(this_quat[:3], np.zeros(3))
check_g = g * max(1. - rotation / np.pi, 0) ** 0.25
else:
check_g = g
if check_g > best_g:
out_g = g
best_g = check_g
best_order = np.array(this_order)
best_quat = this_quat
# Convert Quaterion to transform
dev_head_t = _quat_to_affine(best_quat)
return dev_head_t, best_order, out_g
@verbose
def _setup_hpi_amplitude_fitting(info, t_window, remove_aliased=False,
ext_order=1, allow_empty=False, verbose=None):
"""Generate HPI structure for HPI localization."""
# grab basic info.
on_missing = 'raise' if not allow_empty else 'ignore'
hpi_freqs, hpi_pick, hpi_ons = get_chpi_info(info, on_missing=on_missing)
_validate_type(t_window, (str, 'numeric'), 't_window')
if info['line_freq'] is not None:
line_freqs = np.arange(info['line_freq'], info['sfreq'] / 3.,
info['line_freq'])
else:
line_freqs = np.zeros([0])
logger.info('Line interference frequencies: %s Hz'
% ' '.join(['%d' % lf for lf in line_freqs]))
# worry about resampled/filtered data.
# What to do e.g. if Raw has been resampled and some of our
# HPI freqs would now be aliased
highest = info.get('lowpass')
highest = info['sfreq'] / 2. if highest is None else highest
keepers = hpi_freqs <= highest
if remove_aliased:
hpi_freqs = hpi_freqs[keepers]
hpi_ons = hpi_ons[keepers]
elif not keepers.all():
raise RuntimeError('Found HPI frequencies %s above the lowpass '
'(or Nyquist) frequency %0.1f'
% (hpi_freqs[~keepers].tolist(), highest))
# calculate optimal window length.
if isinstance(t_window, str):
_check_option('t_window', t_window, ('auto',), extra='if a string')
if len(hpi_freqs):
all_freqs = np.concatenate((hpi_freqs, line_freqs))
delta_freqs = np.diff(np.unique(all_freqs))
t_window = max(5. / all_freqs.min(), 1. / delta_freqs.min())
else:
t_window = 0.2
t_window = float(t_window)
if t_window <= 0:
raise ValueError('t_window (%s) must be > 0' % (t_window,))
logger.info('Using time window: %0.1f ms' % (1000 * t_window,))
window_nsamp = np.rint(t_window * info['sfreq']).astype(int)
model = _setup_hpi_glm(hpi_freqs, line_freqs, info['sfreq'], window_nsamp)
inv_model = np.linalg.pinv(model)
inv_model_reord = _reorder_inv_model(inv_model, len(hpi_freqs))
proj, proj_op, meg_picks = _setup_ext_proj(info, ext_order)
# include mag and grad picks separately, for SNR computations
mag_picks = _picks_to_idx(info, 'mag', allow_empty=True)
grad_picks = _picks_to_idx(info, 'grad', allow_empty=True)
# Set up magnetic dipole fits
hpi = dict(
meg_picks=meg_picks, mag_picks=mag_picks, grad_picks=grad_picks,
hpi_pick=hpi_pick, model=model, inv_model=inv_model, t_window=t_window,
inv_model_reord=inv_model_reord, on=hpi_ons, n_window=window_nsamp,
proj=proj, proj_op=proj_op, freqs=hpi_freqs, line_freqs=line_freqs)
return hpi
def _setup_hpi_glm(hpi_freqs, line_freqs, sfreq, window_nsamp):
"""Initialize a general linear model for HPI amplitude estimation."""
slope = np.linspace(-0.5, 0.5, window_nsamp)[:, np.newaxis]
radians_per_sec = 2 * np.pi * np.arange(window_nsamp, dtype=float) / sfreq
f_t = hpi_freqs[np.newaxis, :] * radians_per_sec[:, np.newaxis]
l_t = line_freqs[np.newaxis, :] * radians_per_sec[:, np.newaxis]
model = [np.sin(f_t), np.cos(f_t), # hpi freqs
np.sin(l_t), np.cos(l_t), # line freqs
slope, np.ones_like(slope)] # drift, DC
return np.hstack(model)
@jit()
def _reorder_inv_model(inv_model, n_freqs):
# Reorder for faster computation
idx = np.arange(2 * n_freqs).reshape(2, n_freqs).T.ravel()
return inv_model[idx]
def _setup_ext_proj(info, ext_order):
from scipy import linalg
meg_picks = pick_types(info, meg=True, eeg=False, exclude='bads')
info = pick_info(_simplify_info(info), meg_picks) # makes a copy
_, _, _, _, mag_or_fine = _get_mf_picks_fix_mags(
info, int_order=0, ext_order=ext_order, ignore_ref=True,
verbose='error')
mf_coils = _prep_mf_coils(info, verbose='error')
ext = _sss_basis(
dict(origin=(0., 0., 0.), int_order=0, ext_order=ext_order),
mf_coils).T
out_removes = _regularize_out(0, 1, mag_or_fine, [])
ext = ext[~np.in1d(np.arange(len(ext)), out_removes)]
ext = linalg.orth(ext.T).T
assert ext.shape[1] == len(meg_picks)
proj = Projection(
kind=FIFF.FIFFV_PROJ_ITEM_HOMOG_FIELD, desc='SSS', active=False,
data=dict(data=ext, ncol=info['nchan'], col_names=info['ch_names'],
nrow=len(ext)))
with info._unlock():
info['projs'] = [proj]
proj_op, _ = setup_proj(
info, add_eeg_ref=False, activate=False, verbose=_verbose_safe_false())
assert proj_op.shape == (len(meg_picks),) * 2
return proj, proj_op, meg_picks
def _time_prefix(fit_time):
"""Format log messages."""
return (' t=%0.3f:' % fit_time).ljust(17)
def _fit_chpi_amplitudes(raw, time_sl, hpi, snr=False):
"""Fit amplitudes for each channel from each of the N cHPI sinusoids.
Returns
-------
sin_fit : ndarray, shape (n_freqs, n_channels)
The sin amplitudes matching each cHPI frequency.
Will be all nan if this time window should be skipped.
snr : ndarray, shape (n_freqs, 2)
Estimated SNR for this window, separately for mag and grad channels.
"""
# No need to detrend the data because our model has a DC term
with use_log_level(False):
# loads good channels
this_data = raw[hpi['meg_picks'], time_sl][0]
# which HPI coils to use
if hpi['hpi_pick'] is not None:
with use_log_level(False):
# loads hpi_stim channel
chpi_data = raw[hpi['hpi_pick'], time_sl][0]
ons = (np.round(chpi_data).astype(np.int64) &
hpi['on'][:, np.newaxis]).astype(bool)
n_on = ons.all(axis=-1).sum(axis=0)
if not (n_on >= 3).all():
return None
if snr:
return _fast_fit_snr(
this_data, len(hpi['freqs']), hpi['model'], hpi['inv_model'],
hpi['mag_picks'], hpi['grad_picks'])
return _fast_fit(this_data, hpi['proj_op'], len(hpi['freqs']),
hpi['model'], hpi['inv_model_reord'])
@jit()
def _fast_fit(this_data, proj, n_freqs, model, inv_model_reord):
# first or last window
if this_data.shape[1] != model.shape[0]:
model = model[:this_data.shape[1]]
inv_model_reord = _reorder_inv_model(np.linalg.pinv(model), n_freqs)
proj_data = proj @ this_data
X = inv_model_reord @ proj_data.T
sin_fit = np.zeros((n_freqs, X.shape[1]))
for fi in range(n_freqs):
# use SVD across all sensors to estimate the sinusoid phase
u, s, vt = np.linalg.svd(X[2 * fi:2 * fi + 2], full_matrices=False)
# the first component holds the predominant phase direction
# (so ignore the second, effectively doing s[1] = 0):
sin_fit[fi] = vt[0] * s[0]
return sin_fit
@jit()
def _fast_fit_snr(this_data, n_freqs, model, inv_model, mag_picks, grad_picks):
# first or last window
if this_data.shape[1] != model.shape[0]:
model = model[:this_data.shape[1]]
inv_model = np.linalg.pinv(model)
coefs = np.ascontiguousarray(inv_model) @ np.ascontiguousarray(this_data.T)
# average sin & cos terms (special property of sinusoids: power=A²/2)
hpi_power = (coefs[:n_freqs] ** 2 + coefs[n_freqs:(2 * n_freqs)] ** 2) / 2
resid = this_data - np.ascontiguousarray((model @ coefs).T)
# can't use np.var(..., axis=1) with Numba, so do it manually:
resid_mean = np.atleast_2d(resid.sum(axis=1) / resid.shape[1]).T
squared_devs = np.abs(resid - resid_mean) ** 2
resid_var = squared_devs.sum(axis=1) / squared_devs.shape[1]
# output array will be (n_freqs, 3 * n_ch_types). The 3 columns for each
# channel type are the SNR, the mean cHPI power and the residual variance
# (which gets tiled to shape (n_freqs,) because it's a scalar).
snrs = np.empty((n_freqs, 0))
# average power & compute residual variance separately for each ch type
for _picks in (mag_picks, grad_picks):
if len(_picks):
avg_power = hpi_power[:, _picks].sum(axis=1) / len(_picks)
avg_resid = resid_var[_picks].mean() * np.ones(n_freqs)
snr = 10 * np.log10(avg_power / avg_resid)
snrs = np.hstack((snrs, np.stack((snr, avg_power, avg_resid), 1)))
return snrs
def _check_chpi_param(chpi_, name):
if name == 'chpi_locs':
want_ndims = dict(times=1, rrs=3, moments=3, gofs=2)
extra_keys = list()
else:
assert name == 'chpi_amplitudes'
want_ndims = dict(times=1, slopes=3)
extra_keys = ['proj']
_validate_type(chpi_, dict, name)
want_keys = list(want_ndims.keys()) + extra_keys
if set(want_keys).symmetric_difference(chpi_):
raise ValueError('%s must be a dict with entries %s, got %s'
% (name, want_keys, sorted(chpi_.keys())))
n_times = None
for key, want_ndim in want_ndims.items():
key_str = '%s[%s]' % (name, key)
val = chpi_[key]
_validate_type(val, np.ndarray, key_str)
shape = val.shape
if val.ndim != want_ndim:
raise ValueError('%s must have ndim=%d, got %d'
% (key_str, want_ndim, val.ndim))
if n_times is None and key != 'proj':
n_times = shape[0]
if n_times != shape[0] and key != 'proj':
raise ValueError('%s have inconsistent number of time '
'points in %s' % (name, want_keys))
if name == 'chpi_locs':
n_coils = chpi_['rrs'].shape[1]
for key in ('gofs', 'moments'):
val = chpi_[key]
if val.shape[1] != n_coils:
raise ValueError('chpi_locs["rrs"] had values for %d coils but'
' chpi_locs["%s"] had values for %d coils'
% (n_coils, key, val.shape[1]))
for key in ('rrs', 'moments'):
val = chpi_[key]
if val.shape[2] != 3:
raise ValueError('chpi_locs["%s"].shape[2] must be 3, got '
'shape %s' % (key, shape))
else:
assert name == 'chpi_amplitudes'
slopes, proj = chpi_['slopes'], chpi_['proj']
_validate_type(proj, Projection, 'chpi_amplitudes["proj"]')
n_ch = len(proj['data']['col_names'])
if slopes.shape[0] != n_times or slopes.shape[2] != n_ch:
raise ValueError('slopes must have shape[0]==%d and shape[2]==%d,'
' got shape %s' % (n_times, n_ch, slopes.shape))
@verbose
def compute_head_pos(info, chpi_locs, dist_limit=0.005, gof_limit=0.98,
adjust_dig=False, verbose=None):
"""Compute time-varying head positions.
Parameters
----------
%(info_not_none)s
%(chpi_locs)s
Typically obtained by :func:`~mne.chpi.compute_chpi_locs` or
:func:`~mne.chpi.extract_chpi_locs_ctf`.
dist_limit : float
Minimum distance (m) to accept for coil position fitting.
gof_limit : float
Minimum goodness of fit to accept for each coil.
%(adjust_dig_chpi)s
%(verbose)s
Returns
-------
quats : ndarray, shape (n_pos, 10)
The ``[t, q1, q2, q3, x, y, z, gof, err, v]`` for each fit.
See Also
--------
compute_chpi_locs
extract_chpi_locs_ctf
read_head_pos
write_head_pos
Notes
-----
.. versionadded:: 0.20
"""
_check_chpi_param(chpi_locs, 'chpi_locs')
_validate_type(info, Info, 'info')
hpi_dig_head_rrs = _get_hpi_initial_fit(info, adjust=adjust_dig,
verbose='error')
n_coils = len(hpi_dig_head_rrs)
coil_dev_rrs = apply_trans(invert_transform(info['dev_head_t']),
hpi_dig_head_rrs)
dev_head_t = info['dev_head_t']['trans']
pos_0 = dev_head_t[:3, 3]
last = dict(quat_fit_time=-0.1, coil_dev_rrs=coil_dev_rrs,
quat=np.concatenate([rot_to_quat(dev_head_t[:3, :3]),
dev_head_t[:3, 3]]))
del coil_dev_rrs
quats = []
for fit_time, this_coil_dev_rrs, g_coils in zip(
*(chpi_locs[key] for key in ('times', 'rrs', 'gofs'))):
use_idx = np.where(g_coils >= gof_limit)[0]
#
# 1. Check number of good ones
#
if len(use_idx) < 3:
msg = (_time_prefix(fit_time) + '%s/%s good HPI fits, cannot '
'determine the transformation (%s GOF)!'
% (len(use_idx), n_coils,
', '.join('%0.2f' % g for g in g_coils)))
warn(msg)
continue
#
# 2. Fit the head translation and rotation params (minimize error
# between coil positions and the head coil digitization
# positions) iteratively using different sets of coils.
#
this_quat, g, use_idx = _fit_chpi_quat_subset(
this_coil_dev_rrs, hpi_dig_head_rrs, use_idx)
#
# 3. Stop if < 3 good
#
# Convert quaterion to transform
this_dev_head_t = _quat_to_affine(this_quat)
est_coil_head_rrs = apply_trans(this_dev_head_t, this_coil_dev_rrs)
errs = np.linalg.norm(hpi_dig_head_rrs - est_coil_head_rrs, axis=1)
n_good = ((g_coils >= gof_limit) & (errs < dist_limit)).sum()
if n_good < 3:
warn(_time_prefix(fit_time) + '%s/%s good HPI fits, cannot '
'determine the transformation (%s mm/GOF)!'
% (n_good, n_coils,
', '.join(f'{1000 * e:0.1f}::{g:0.2f}'
for e, g in zip(errs, g_coils))))
continue
# velocities, in device coords, of HPI coils
dt = fit_time - last['quat_fit_time']
vs = tuple(1000. * np.linalg.norm(last['coil_dev_rrs'] -
this_coil_dev_rrs, axis=1) / dt)
logger.info(_time_prefix(fit_time) +
('%s/%s good HPI fits, movements [mm/s] = ' +
' / '.join(['% 8.1f'] * n_coils))
% ((n_good, n_coils) + vs))
# Log results
# MaxFilter averages over a 200 ms window for display, but we don't
for ii in range(n_coils):
if ii in use_idx:
start, end = ' ', '/'
else:
start, end = '(', ')'
log_str = (' ' + start +
'{0:6.1f} {1:6.1f} {2:6.1f} / ' +
'{3:6.1f} {4:6.1f} {5:6.1f} / ' +
'g = {6:0.3f} err = {7:4.1f} ' +
end)
vals = np.concatenate((1000 * hpi_dig_head_rrs[ii],
1000 * est_coil_head_rrs[ii],
[g_coils[ii], 1000 * errs[ii]]))
if len(use_idx) >= 3:
if ii <= 2:
log_str += '{8:6.3f} {9:6.3f} {10:6.3f}'
vals = np.concatenate(
(vals, this_dev_head_t[ii, :3]))
elif ii == 3:
log_str += '{8:6.1f} {9:6.1f} {10:6.1f}'
vals = np.concatenate(
(vals, this_dev_head_t[:3, 3] * 1000.))
logger.debug(log_str.format(*vals))
# resulting errors in head coil positions
d = np.linalg.norm(last['quat'][3:] - this_quat[3:]) # m
r = _angle_between_quats(last['quat'][:3], this_quat[:3]) / dt
v = d / dt # m/sec
d = 100 * np.linalg.norm(this_quat[3:] - pos_0) # dis from 1st
logger.debug(' #t = %0.3f, #e = %0.2f cm, #g = %0.3f, '
'#v = %0.2f cm/s, #r = %0.2f rad/s, #d = %0.2f cm'
% (fit_time, 100 * errs.mean(), g, 100 * v, r, d))
logger.debug(' #t = %0.3f, #q = %s '
% (fit_time, ' '.join(map('{:8.5f}'.format, this_quat))))
quats.append(np.concatenate(([fit_time], this_quat, [g],
[errs[use_idx].mean()], [v])))
last['quat_fit_time'] = fit_time
last['quat'] = this_quat
last['coil_dev_rrs'] = this_coil_dev_rrs
quats = np.array(quats, np.float64)
quats = np.zeros((0, 10)) if quats.size == 0 else quats
return quats
def _fit_chpi_quat_subset(coil_dev_rrs, coil_head_rrs, use_idx):
quat, g = _fit_chpi_quat(coil_dev_rrs[use_idx], coil_head_rrs[use_idx])
out_idx = use_idx.copy()
if len(use_idx) > 3: # try dropping one (recursively)
for di in range(len(use_idx)):
this_use_idx = list(use_idx[:di]) + list(use_idx[di + 1:])
this_quat, this_g, this_use_idx = _fit_chpi_quat_subset(
coil_dev_rrs, coil_head_rrs, this_use_idx)
if this_g > g:
quat, g, out_idx = this_quat, this_g, this_use_idx
return quat, g, np.array(out_idx, int)
@jit()
def _unit_quat_constraint(x):
"""Constrain our 3 quaternion rot params (ignoring w) to have norm <= 1."""
return 1 - (x * x).sum()
@verbose
def compute_chpi_snr(raw, t_step_min=0.01, t_window='auto', ext_order=1,
tmin=0, tmax=None, verbose=None):
"""Compute time-varying estimates of cHPI SNR.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information.
t_step_min : float
Minimum time step to use.
%(t_window_chpi_t)s
%(ext_order_chpi)s
%(tmin_raw)s
%(tmax_raw)s
%(verbose)s
Returns
-------
chpi_snrs : dict
The time-varying cHPI SNR estimates, with entries "times", "freqs",
"snr_mag", "power_mag", and "resid_mag" (and/or "snr_grad",
"power_grad", and "resid_grad", depending on which channel types are
present in ``raw``).
See Also
--------
mne.chpi.compute_chpi_locs, mne.chpi.compute_chpi_amplitudes
Notes
-----
.. versionadded:: 0.24
"""
return _compute_chpi_amp_or_snr(raw, t_step_min, t_window, ext_order,
tmin, tmax, verbose, snr=True)
@verbose
def compute_chpi_amplitudes(raw, t_step_min=0.01, t_window='auto',
ext_order=1, tmin=0, tmax=None, verbose=None):
"""Compute time-varying cHPI amplitudes.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information.
t_step_min : float
Minimum time step to use.
%(t_window_chpi_t)s
%(ext_order_chpi)s
%(tmin_raw)s
%(tmax_raw)s
%(verbose)s
Returns
-------
%(chpi_amplitudes)s
See Also
--------
mne.chpi.compute_chpi_locs, mne.chpi.compute_chpi_snr
Notes
-----
This function will:
1. Get HPI frequencies, HPI status channel, HPI status bits,
and digitization order using ``_setup_hpi_amplitude_fitting``.
2. Window data using ``t_window`` (half before and half after ``t``) and
``t_step_min``.
3. Use a linear model (DC + linear slope + sin + cos terms) to fit
sinusoidal amplitudes to MEG channels.
It uses SVD to determine the phase/amplitude of the sinusoids.
In "auto" mode, ``t_window`` will be set to the longer of:
1. Five cycles of the lowest HPI or line frequency.
Ensures that the frequency estimate is stable.
2. The reciprocal of the smallest difference between HPI and line freqs.
Ensures that neighboring frequencies can be disambiguated.
The output is meant to be used with :func:`~mne.chpi.compute_chpi_locs`.
.. versionadded:: 0.20
"""
return _compute_chpi_amp_or_snr(raw, t_step_min, t_window, ext_order,
tmin, tmax, verbose)
def _compute_chpi_amp_or_snr(raw, t_step_min=0.01, t_window='auto',
ext_order=1, tmin=0, tmax=None, verbose=None,
snr=False):
"""Compute cHPI amplitude or SNR.
See compute_chpi_amplitudes for parameter descriptions. One additional
boolean parameter ``snr`` signals whether to return SNR instead of
amplitude.
"""
hpi = _setup_hpi_amplitude_fitting(raw.info, t_window, ext_order=ext_order)
tmin, tmax = raw._tmin_tmax_to_start_stop(tmin, tmax)
tmin = tmin / raw.info['sfreq']
tmax = tmax / raw.info['sfreq']
need_win = hpi['t_window'] / 2.
fit_idxs = raw.time_as_index(np.arange(
tmin + need_win, tmax, t_step_min), use_rounding=True)
logger.info('Fitting %d HPI coil locations at up to %s time points '
'(%0.1f sec duration)'
% (len(hpi['freqs']), len(fit_idxs), tmax - tmin))
del tmin, tmax
sin_fits = dict()
sin_fits['proj'] = hpi['proj']
sin_fits['times'] = np.round(fit_idxs + raw.first_samp -
hpi['n_window'] / 2.) / raw.info['sfreq']
n_times = len(sin_fits['times'])
n_freqs = len(hpi['freqs'])
n_chans = len(sin_fits['proj']['data']['col_names'])
if snr:
del sin_fits['proj']
sin_fits['freqs'] = hpi['freqs']
ch_types = raw.get_channel_types()
grad_offset = 3 if 'mag' in ch_types else 0
for ch_type in ('mag', 'grad'):
if ch_type in ch_types:
for key in ('snr', 'power', 'resid'):
cols = 1 if key == 'resid' else n_freqs
sin_fits[f'{ch_type}_{key}'] = np.empty((n_times, cols))
else:
sin_fits['slopes'] = np.empty((n_times, n_freqs, n_chans))
message = f"cHPI {'SNRs' if snr else 'amplitudes'}"
for mi, midpt in enumerate(ProgressBar(fit_idxs, mesg=message)):
#
# 0. determine samples to fit.
#
time_sl = midpt - hpi['n_window'] // 2
time_sl = slice(max(time_sl, 0),
min(time_sl + hpi['n_window'], len(raw.times)))
#
# 1. Fit amplitudes for each channel from each of the N sinusoids
#
amps_or_snrs = _fit_chpi_amplitudes(raw, time_sl, hpi, snr)
if snr:
# unpack the SNR estimates. mag & grad are returned in one array
# (because of Numba) so take care with which column is which.
# note that mean residual is a scalar (same for all HPI freqs) but
# is returned as a (tiled) vector (again, because Numba) so that's
# why below we take amps_or_snrs[0, 2] instead of [:, 2]
ch_types = raw.get_channel_types()
if 'mag' in ch_types:
sin_fits['mag_snr'][mi] = amps_or_snrs[:, 0] # SNR
sin_fits['mag_power'][mi] = amps_or_snrs[:, 1] # mean power
sin_fits['mag_resid'][mi] = amps_or_snrs[0, 2] # mean resid
if 'grad' in ch_types:
sin_fits['grad_snr'][mi] = amps_or_snrs[:, grad_offset]
sin_fits['grad_power'][mi] = amps_or_snrs[:, grad_offset + 1]
sin_fits['grad_resid'][mi] = amps_or_snrs[0, grad_offset + 2]
else:
sin_fits['slopes'][mi] = amps_or_snrs
return sin_fits
@verbose
def compute_chpi_locs(info, chpi_amplitudes, t_step_max=1., too_close='raise',
adjust_dig=False, verbose=None):
"""Compute locations of each cHPI coils over time.
Parameters
----------
%(info_not_none)s
%(chpi_amplitudes)s
Typically obtained by :func:`mne.chpi.compute_chpi_amplitudes`.
t_step_max : float
Maximum time step to use.
too_close : str
How to handle HPI positions too close to the sensors,
can be 'raise' (default), 'warning', or 'info'.
%(adjust_dig_chpi)s
%(verbose)s
Returns
-------
%(chpi_locs)s
See Also
--------
compute_chpi_amplitudes
compute_head_pos
read_head_pos
write_head_pos
extract_chpi_locs_ctf
Notes
-----
This function is designed to take the output of
:func:`mne.chpi.compute_chpi_amplitudes` and:
1. Get HPI coil locations (as digitized in ``info['dig']``) in head coords.
2. If the amplitudes are 98%% correlated with last position
(and Δt < t_step_max), skip fitting.
3. Fit magnetic dipoles using the amplitudes for each coil frequency.
The number of fitted points ``n_pos`` will depend on the velocity of head
movements as well as ``t_step_max`` (and ``t_step_min`` from
:func:`mne.chpi.compute_chpi_amplitudes`).
.. versionadded:: 0.20
"""
# Set up magnetic dipole fits
_check_option('too_close', too_close, ['raise', 'warning', 'info'])
_check_chpi_param(chpi_amplitudes, 'chpi_amplitudes')
_validate_type(info, Info, 'info')
sin_fits = chpi_amplitudes # use the old name below
del chpi_amplitudes
proj = sin_fits['proj']
meg_picks = pick_channels(
info['ch_names'], proj['data']['col_names'], ordered=True)
info = pick_info(info, meg_picks) # makes a copy
with info._unlock():
info['projs'] = [proj]
del meg_picks, proj
meg_coils = _concatenate_coils(_create_meg_coils(info['chs'], 'accurate'))
# Set up external model for interference suppression
safe_false = _verbose_safe_false()
cov = make_ad_hoc_cov(info, verbose=safe_false)
whitener, _ = compute_whitener(cov, info, verbose=safe_false)
# Make some location guesses (1 cm grid)
R = np.linalg.norm(meg_coils[0], axis=1).min()
guesses = _make_guesses(dict(R=R, r0=np.zeros(3)), 0.01, 0., 0.005,
verbose=safe_false)[0]['rr']
logger.info('Computing %d HPI location guesses (1 cm grid in a %0.1f cm '
'sphere)' % (len(guesses), R * 100))
fwd = _magnetic_dipole_field_vec(guesses, meg_coils, too_close)
fwd = np.dot(fwd, whitener.T)
fwd.shape = (guesses.shape[0], 3, -1)
fwd = np.linalg.svd(fwd, full_matrices=False)[2]
guesses = dict(rr=guesses, whitened_fwd_svd=fwd)
del fwd, R
iter_ = list(zip(sin_fits['times'], sin_fits['slopes']))
chpi_locs = dict(times=[], rrs=[], gofs=[], moments=[])
# setup last iteration structure
hpi_dig_dev_rrs = apply_trans(
invert_transform(info['dev_head_t'])['trans'],
_get_hpi_initial_fit(info, adjust=adjust_dig))
last = dict(sin_fit=None, coil_fit_time=sin_fits['times'][0] - 1,
coil_dev_rrs=hpi_dig_dev_rrs)
n_hpi = len(hpi_dig_dev_rrs)
del hpi_dig_dev_rrs
for fit_time, sin_fit in ProgressBar(iter_, mesg='cHPI locations '):
# skip this window if bad
if not np.isfinite(sin_fit).all():
continue
# check if data has sufficiently changed
if last['sin_fit'] is not None: # first iteration
corrs = np.array(
[np.corrcoef(s, l)[0, 1]
for s, l in zip(sin_fit, last['sin_fit'])])
corrs *= corrs
# check to see if we need to continue
if fit_time - last['coil_fit_time'] <= t_step_max - 1e-7 and \
(corrs > 0.98).sum() >= 3:
# don't need to refit data
continue
# update 'last' sin_fit *before* inplace sign mult
last['sin_fit'] = sin_fit.copy()
#
# 2. Fit magnetic dipole for each coil to obtain coil positions
# in device coordinates
#
coil_fits = [_fit_magnetic_dipole(f, x0, too_close, whitener,
meg_coils, guesses)
for f, x0 in zip(sin_fit, last['coil_dev_rrs'])]
rrs, gofs, moments = zip(*coil_fits)
chpi_locs['times'].append(fit_time)
chpi_locs['rrs'].append(rrs)
chpi_locs['gofs'].append(gofs)
chpi_locs['moments'].append(moments)
last['coil_fit_time'] = fit_time
last['coil_dev_rrs'] = rrs
n_times = len(chpi_locs['times'])
shapes = dict(
times=(n_times,),
rrs=(n_times, n_hpi, 3),
gofs=(n_times, n_hpi),
moments=(n_times, n_hpi, 3),
)
for key, val in chpi_locs.items():
chpi_locs[key] = np.array(val, float).reshape(shapes[key])
return chpi_locs
def _chpi_locs_to_times_dig(chpi_locs):
"""Reformat chpi_locs as list of dig (dict)."""
dig = list()
for rrs, gofs in zip(*(chpi_locs[key] for key in ('rrs', 'gofs'))):
dig.append([{'r': rr, 'ident': idx, 'gof': gof,
'kind': FIFF.FIFFV_POINT_HPI,
'coord_frame': FIFF.FIFFV_COORD_DEVICE}
for idx, (rr, gof) in enumerate(zip(rrs, gofs), 1)])
return chpi_locs['times'], dig
@verbose
def filter_chpi(raw, include_line=True, t_step=0.01, t_window='auto',
ext_order=1, allow_line_only=False, verbose=None):
"""Remove cHPI and line noise from data.
.. note:: This function will only work properly if cHPI was on
during the recording.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information. Must be preloaded. Operates in-place.
include_line : bool
If True, also filter line noise.
t_step : float
Time step to use for estimation, default is 0.01 (10 ms).
%(t_window_chpi_t)s
%(ext_order_chpi)s
allow_line_only : bool
If True, allow filtering line noise only. The default is False,
which only allows the function to run when cHPI information is present.
.. versionadded:: 0.20
%(verbose)s
Returns
-------
raw : instance of Raw
The raw data.
Notes
-----
cHPI signals are in general not stationary, because head movements act
like amplitude modulators on cHPI signals. Thus it is recommended to
to use this procedure, which uses an iterative fitting method, to
remove cHPI signals, as opposed to notch filtering.
.. versionadded:: 0.12
"""
_validate_type(raw, BaseRaw, 'raw')
if not raw.preload:
raise RuntimeError('raw data must be preloaded')
t_step = float(t_step)
if t_step <= 0:
raise ValueError('t_step (%s) must be > 0' % (t_step,))
n_step = int(np.ceil(t_step * raw.info['sfreq']))
if include_line and raw.info['line_freq'] is None:
raise RuntimeError('include_line=True but raw.info["line_freq"] is '
'None, consider setting it to the line frequency')
hpi = _setup_hpi_amplitude_fitting(
raw.info, t_window, remove_aliased=True, ext_order=ext_order,
allow_empty=allow_line_only, verbose=_verbose_safe_false())
fit_idxs = np.arange(0, len(raw.times) + hpi['n_window'] // 2, n_step)
n_freqs = len(hpi['freqs'])
n_remove = 2 * n_freqs
meg_picks = pick_types(raw.info, meg=True, exclude=()) # filter all chs
n_times = len(raw.times)
msg = 'Removing %s cHPI' % n_freqs
if include_line:
n_remove += 2 * len(hpi['line_freqs'])
msg += ' and %s line harmonic' % len(hpi['line_freqs'])
msg += ' frequencies from %s MEG channels' % len(meg_picks)
recon = np.dot(hpi['model'][:, :n_remove], hpi['inv_model'][:n_remove]).T
logger.info(msg)
chunks = list() # the chunks to subtract
last_endpt = 0
pb = ProgressBar(fit_idxs, mesg='Filtering')
for ii, midpt in enumerate(pb):
left_edge = midpt - hpi['n_window'] // 2
time_sl = slice(max(left_edge, 0),
min(left_edge + hpi['n_window'], len(raw.times)))
this_len = time_sl.stop - time_sl.start
if this_len == hpi['n_window']:
this_recon = recon
else: # first or last window
model = hpi['model'][:this_len]
inv_model = np.linalg.pinv(model)
this_recon = np.dot(model[:, :n_remove], inv_model[:n_remove]).T
this_data = raw._data[meg_picks, time_sl]
subt_pt = min(midpt + n_step, n_times)
if last_endpt != subt_pt:
fit_left_edge = left_edge - time_sl.start + hpi['n_window'] // 2
fit_sl = slice(fit_left_edge,
fit_left_edge + (subt_pt - last_endpt))
chunks.append((subt_pt, np.dot(this_data, this_recon[:, fit_sl])))
last_endpt = subt_pt
# Consume (trailing) chunks that are now safe to remove because
# our windows will no longer touch them
if ii < len(fit_idxs) - 1:
next_left_edge = fit_idxs[ii + 1] - hpi['n_window'] // 2
else:
next_left_edge = np.inf
while len(chunks) > 0 and chunks[0][0] <= next_left_edge:
right_edge, chunk = chunks.pop(0)
raw._data[meg_picks,
right_edge - chunk.shape[1]:right_edge] -= chunk
return raw
def _compute_good_distances(hpi_coil_dists, new_pos, dist_limit=0.005):
"""Compute good coils based on distances."""
from scipy.spatial.distance import cdist
these_dists = cdist(new_pos, new_pos)
these_dists = np.abs(hpi_coil_dists - these_dists)
# there is probably a better algorithm for finding the bad ones...
good = False
use_mask = np.ones(len(hpi_coil_dists), bool)
while not good:
d = these_dists[use_mask][:, use_mask]
d_bad = (d > dist_limit)
good = not d_bad.any()
if not good:
if use_mask.sum() == 2:
use_mask[:] = False
break # failure
# exclude next worst point
badness = (d * d_bad).sum(axis=0)
exclude_coils = np.where(use_mask)[0][np.argmax(badness)]
use_mask[exclude_coils] = False
return use_mask, these_dists
@verbose
def get_active_chpi(raw, *, on_missing='raise', verbose=None):
"""Determine how many HPI coils were active for a time point.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information.
%(on_missing_chpi)s
%(verbose)s
Returns
-------
n_active : array, shape (n_times)
The number of active cHPIs for every timepoint in raw.
Notes
-----
.. versionadded:: 1.2
"""
# get meg system
system, _ = _get_meg_system(raw.info)
# check whether we have a neuromag system
if system not in ['122m', '306m']:
raise NotImplementedError(('Identifying active HPI channels'
' is not implemented for other systems'
' than neuromag.'))
# extract hpi info
chpi_info = get_chpi_info(raw.info, on_missing=on_missing)
if len(chpi_info[2]) == 0:
return np.zeros_like(raw.times)
# extract hpi time series and infer which one was on
chpi_ts = raw[chpi_info[1]][0].astype(int)
chpi_active = (chpi_ts & chpi_info[2][:, np.newaxis]).astype(bool)
return chpi_active.sum(axis=0)
|