1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
|
# -*- coding: utf-8 -*-
"""Coregistration between different coordinate frames."""
# Authors: Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: BSD-3-Clause
import configparser
import fnmatch
from glob import glob, iglob
import os
import os.path as op
import stat
import sys
import re
import shutil
from functools import reduce
import numpy as np
from .io import read_fiducials, write_fiducials, read_info
from .io.constants import FIFF
from .io.meas_info import Info
from .io._digitization import _get_data_as_dict_from_dig
# keep get_mni_fiducials for backward compat (no burden to keep in this
# namespace, too)
from ._freesurfer import (_read_mri_info, get_mni_fiducials, # noqa: F401
estimate_head_mri_t) # noqa: F401
from ._freesurfer import _import_nibabel
from .label import read_label, Label
from .source_space import (add_source_space_distances, read_source_spaces, # noqa: E501,F401
write_source_spaces)
from .surface import (read_surface, write_surface, _normalize_vectors,
complete_surface_info, decimate_surface,
_DistanceQuery)
from .bem import read_bem_surfaces, write_bem_surfaces
from .transforms import (rotation, rotation3d, scaling, translation, Transform,
_read_fs_xfm, _write_fs_xfm, invert_transform,
combine_transforms, _quat_to_euler,
_fit_matched_points, apply_trans,
rot_to_quat, _angle_between_quats)
from .channels import make_dig_montage
from .utils import (get_config, get_subjects_dir, logger, pformat, verbose,
warn, has_nibabel, fill_doc, _validate_type,
_check_subject, _check_option)
from .viz._3d import _fiducial_coords
# some path templates
trans_fname = os.path.join('{raw_dir}', '{subject}-trans.fif')
subject_dirname = os.path.join('{subjects_dir}', '{subject}')
bem_dirname = os.path.join(subject_dirname, 'bem')
mri_dirname = os.path.join(subject_dirname, 'mri')
mri_transforms_dirname = os.path.join(subject_dirname, 'mri', 'transforms')
surf_dirname = os.path.join(subject_dirname, 'surf')
bem_fname = os.path.join(bem_dirname, "{subject}-{name}.fif")
head_bem_fname = pformat(bem_fname, name='head')
head_sparse_fname = pformat(bem_fname, name='head-sparse')
fid_fname = pformat(bem_fname, name='fiducials')
fid_fname_general = os.path.join(bem_dirname, "{head}-fiducials.fif")
src_fname = os.path.join(bem_dirname, '{subject}-{spacing}-src.fif')
_head_fnames = (os.path.join(bem_dirname, 'outer_skin.surf'),
head_sparse_fname,
head_bem_fname)
_high_res_head_fnames = (os.path.join(bem_dirname, '{subject}-head-dense.fif'),
os.path.join(surf_dirname, 'lh.seghead'),
os.path.join(surf_dirname, 'lh.smseghead'))
def _map_fid_name_to_idx(name: str) -> int:
"""Map a fiducial name to its index in the DigMontage."""
name = name.lower()
if name == 'lpa':
return 0
elif name == 'nasion':
return 1
else:
assert name == 'rpa'
return 2
def _make_writable(fname):
"""Make a file writable."""
os.chmod(fname, stat.S_IMODE(os.lstat(fname)[stat.ST_MODE]) | 128) # write
def _make_writable_recursive(path):
"""Recursively set writable."""
if sys.platform.startswith('win'):
return # can't safely set perms
for root, dirs, files in os.walk(path, topdown=False):
for f in dirs + files:
_make_writable(os.path.join(root, f))
def _find_head_bem(subject, subjects_dir, high_res=False):
"""Find a high resolution head."""
# XXX this should be refactored with mne.surface.get_head_surf ...
fnames = _high_res_head_fnames if high_res else _head_fnames
for fname in fnames:
path = fname.format(subjects_dir=subjects_dir, subject=subject)
if os.path.exists(path):
return path
@fill_doc
def coregister_fiducials(info, fiducials, tol=0.01):
"""Create a head-MRI transform by aligning 3 fiducial points.
Parameters
----------
%(info_not_none)s
fiducials : str | list of dict
Fiducials in MRI coordinate space (either path to a ``*-fiducials.fif``
file or list of fiducials as returned by :func:`read_fiducials`.
Returns
-------
trans : Transform
The device-MRI transform.
.. note:: The :class:`mne.Info` object fiducials must be in the
head coordinate space.
"""
if isinstance(info, str):
info = read_info(info)
if isinstance(fiducials, str):
fiducials, coord_frame_to = read_fiducials(fiducials)
else:
coord_frame_to = FIFF.FIFFV_COORD_MRI
frames_from = {d['coord_frame'] for d in info['dig']}
if len(frames_from) > 1:
raise ValueError("info contains fiducials from different coordinate "
"frames")
else:
coord_frame_from = frames_from.pop()
coords_from = _fiducial_coords(info['dig'])
coords_to = _fiducial_coords(fiducials, coord_frame_to)
trans = fit_matched_points(coords_from, coords_to, tol=tol)
return Transform(coord_frame_from, coord_frame_to, trans)
@verbose
def create_default_subject(fs_home=None, update=False, subjects_dir=None,
verbose=None):
"""Create an average brain subject for subjects without structural MRI.
Create a copy of fsaverage from the Freesurfer directory in subjects_dir
and add auxiliary files from the mne package.
Parameters
----------
fs_home : None | str
The freesurfer home directory (only needed if FREESURFER_HOME is not
specified as environment variable).
update : bool
In cases where a copy of the fsaverage brain already exists in the
subjects_dir, this option allows to only copy files that don't already
exist in the fsaverage directory.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable
(os.environ['SUBJECTS_DIR']) as destination for the new subject.
%(verbose)s
Notes
-----
When no structural MRI is available for a subject, an average brain can be
substituted. Freesurfer comes with such an average brain model, and MNE
comes with some auxiliary files which make coregistration easier.
:py:func:`create_default_subject` copies the relevant
files from Freesurfer into the current subjects_dir, and also adds the
auxiliary files provided by MNE.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if fs_home is None:
fs_home = get_config('FREESURFER_HOME', fs_home)
if fs_home is None:
raise ValueError(
"FREESURFER_HOME environment variable not found. Please "
"specify the fs_home parameter in your call to "
"create_default_subject().")
# make sure freesurfer files exist
fs_src = os.path.join(fs_home, 'subjects', 'fsaverage')
if not os.path.exists(fs_src):
raise IOError('fsaverage not found at %r. Is fs_home specified '
'correctly?' % fs_src)
for name in ('label', 'mri', 'surf'):
dirname = os.path.join(fs_src, name)
if not os.path.isdir(dirname):
raise IOError("Freesurfer fsaverage seems to be incomplete: No "
"directory named %s found in %s" % (name, fs_src))
# make sure destination does not already exist
dest = os.path.join(subjects_dir, 'fsaverage')
if dest == fs_src:
raise IOError(
"Your subjects_dir points to the freesurfer subjects_dir (%r). "
"The default subject can not be created in the freesurfer "
"installation directory; please specify a different "
"subjects_dir." % subjects_dir)
elif (not update) and os.path.exists(dest):
raise IOError(
"Can not create fsaverage because %r already exists in "
"subjects_dir %r. Delete or rename the existing fsaverage "
"subject folder." % ('fsaverage', subjects_dir))
# copy fsaverage from freesurfer
logger.info("Copying fsaverage subject from freesurfer directory...")
if (not update) or not os.path.exists(dest):
shutil.copytree(fs_src, dest)
_make_writable_recursive(dest)
# copy files from mne
source_fname = os.path.join(os.path.dirname(__file__), 'data', 'fsaverage',
'fsaverage-%s.fif')
dest_bem = os.path.join(dest, 'bem')
if not os.path.exists(dest_bem):
os.mkdir(dest_bem)
logger.info("Copying auxiliary fsaverage files from mne...")
dest_fname = os.path.join(dest_bem, 'fsaverage-%s.fif')
_make_writable_recursive(dest_bem)
for name in ('fiducials', 'head', 'inner_skull-bem', 'trans'):
if not os.path.exists(dest_fname % name):
shutil.copy(source_fname % name, dest_bem)
def _decimate_points(pts, res=10):
"""Decimate the number of points using a voxel grid.
Create a voxel grid with a specified resolution and retain at most one
point per voxel. For each voxel, the point closest to its center is
retained.
Parameters
----------
pts : array, shape (n_points, 3)
The points making up the head shape.
res : scalar
The resolution of the voxel space (side length of each voxel).
Returns
-------
pts : array, shape = (n_points, 3)
The decimated points.
"""
from scipy.spatial.distance import cdist
pts = np.asarray(pts)
# find the bin edges for the voxel space
xmin, ymin, zmin = pts.min(0) - res / 2.
xmax, ymax, zmax = pts.max(0) + res
xax = np.arange(xmin, xmax, res)
yax = np.arange(ymin, ymax, res)
zax = np.arange(zmin, zmax, res)
# find voxels containing one or more point
H, _ = np.histogramdd(pts, bins=(xax, yax, zax), density=False)
xbins, ybins, zbins = np.nonzero(H)
x = xax[xbins]
y = yax[ybins]
z = zax[zbins]
mids = np.c_[x, y, z] + res / 2.
# each point belongs to at most one voxel center, so figure those out
# (cKDTree faster than BallTree for these small problems)
tree = _DistanceQuery(mids, method='cKDTree')
_, mid_idx = tree.query(pts)
# then figure out which to actually use based on proximity
# (take advantage of sorting the mid_idx to get our mapping of
# pts to nearest voxel midpoint)
sort_idx = np.argsort(mid_idx)
bounds = np.cumsum(
np.concatenate([[0], np.bincount(mid_idx, minlength=len(mids))]))
assert len(bounds) == len(mids) + 1
out = list()
for mi, mid in enumerate(mids):
# Now we do this:
#
# use_pts = pts[mid_idx == mi]
#
# But it's faster for many points than making a big boolean indexer
# over and over (esp. since each point can only belong to a single
# voxel).
use_pts = pts[sort_idx[bounds[mi]:bounds[mi + 1]]]
if not len(use_pts):
out.append([np.inf] * 3)
else:
out.append(
use_pts[np.argmin(cdist(use_pts, mid[np.newaxis])[:, 0])])
out = np.array(out, float).reshape(-1, 3)
out = out[np.abs(out - mids).max(axis=1) < res / 2.]
# """
return out
def _trans_from_params(param_info, params):
"""Convert transformation parameters into a transformation matrix."""
do_rotate, do_translate, do_scale = param_info
i = 0
trans = []
if do_rotate:
x, y, z = params[:3]
trans.append(rotation(x, y, z))
i += 3
if do_translate:
x, y, z = params[i:i + 3]
trans.insert(0, translation(x, y, z))
i += 3
if do_scale == 1:
s = params[i]
trans.append(scaling(s, s, s))
elif do_scale == 3:
x, y, z = params[i:i + 3]
trans.append(scaling(x, y, z))
trans = reduce(np.dot, trans)
return trans
_ALLOW_ANALITICAL = True
# XXX this function should be moved out of coreg as used elsewhere
def fit_matched_points(src_pts, tgt_pts, rotate=True, translate=True,
scale=False, tol=None, x0=None, out='trans',
weights=None):
"""Find a transform between matched sets of points.
This minimizes the squared distance between two matching sets of points.
Uses :func:`scipy.optimize.leastsq` to find a transformation involving
a combination of rotation, translation, and scaling (in that order).
Parameters
----------
src_pts : array, shape = (n, 3)
Points to which the transform should be applied.
tgt_pts : array, shape = (n, 3)
Points to which src_pts should be fitted. Each point in tgt_pts should
correspond to the point in src_pts with the same index.
rotate : bool
Allow rotation of the ``src_pts``.
translate : bool
Allow translation of the ``src_pts``.
scale : bool
Number of scaling parameters. With False, points are not scaled. With
True, points are scaled by the same factor along all axes.
tol : scalar | None
The error tolerance. If the distance between any of the matched points
exceeds this value in the solution, a RuntimeError is raised. With
None, no error check is performed.
x0 : None | tuple
Initial values for the fit parameters.
out : 'params' | 'trans'
In what format to return the estimate: 'params' returns a tuple with
the fit parameters; 'trans' returns a transformation matrix of shape
(4, 4).
Returns
-------
trans : array, shape (4, 4)
Transformation that, if applied to src_pts, minimizes the squared
distance to tgt_pts. Only returned if out=='trans'.
params : array, shape (n_params, )
A single tuple containing the rotation, translation, and scaling
parameters in that order (as applicable).
"""
src_pts = np.atleast_2d(src_pts)
tgt_pts = np.atleast_2d(tgt_pts)
if src_pts.shape != tgt_pts.shape:
raise ValueError("src_pts and tgt_pts must have same shape (got "
"{}, {})".format(src_pts.shape, tgt_pts.shape))
if weights is not None:
weights = np.asarray(weights, src_pts.dtype)
if weights.ndim != 1 or weights.size not in (src_pts.shape[0], 1):
raise ValueError("weights (shape=%s) must be None or have shape "
"(%s,)" % (weights.shape, src_pts.shape[0],))
weights = weights[:, np.newaxis]
param_info = (bool(rotate), bool(translate), int(scale))
del rotate, translate, scale
# very common use case, rigid transformation (maybe with one scale factor,
# with or without weighted errors)
if param_info in ((True, True, 0), (True, True, 1)) and _ALLOW_ANALITICAL:
src_pts = np.asarray(src_pts, float)
tgt_pts = np.asarray(tgt_pts, float)
if weights is not None:
weights = np.asarray(weights, float)
x, s = _fit_matched_points(
src_pts, tgt_pts, weights, bool(param_info[2]))
x[:3] = _quat_to_euler(x[:3])
x = np.concatenate((x, [s])) if param_info[2] else x
else:
x = _generic_fit(src_pts, tgt_pts, param_info, weights, x0)
# re-create the final transformation matrix
if (tol is not None) or (out == 'trans'):
trans = _trans_from_params(param_info, x)
# assess the error of the solution
if tol is not None:
src_pts = np.hstack((src_pts, np.ones((len(src_pts), 1))))
est_pts = np.dot(src_pts, trans.T)[:, :3]
err = np.sqrt(np.sum((est_pts - tgt_pts) ** 2, axis=1))
if np.any(err > tol):
raise RuntimeError("Error exceeds tolerance. Error = %r" % err)
if out == 'params':
return x
elif out == 'trans':
return trans
else:
raise ValueError("Invalid out parameter: %r. Needs to be 'params' or "
"'trans'." % out)
def _generic_fit(src_pts, tgt_pts, param_info, weights, x0):
from scipy.optimize import leastsq
if param_info[1]: # translate
src_pts = np.hstack((src_pts, np.ones((len(src_pts), 1))))
if param_info == (True, False, 0):
def error(x):
rx, ry, rz = x
trans = rotation3d(rx, ry, rz)
est = np.dot(src_pts, trans.T)
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0)
elif param_info == (True, True, 0):
def error(x):
rx, ry, rz, tx, ty, tz = x
trans = np.dot(translation(tx, ty, tz), rotation(rx, ry, rz))
est = np.dot(src_pts, trans.T)[:, :3]
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0, 0, 0, 0)
elif param_info == (True, True, 1):
def error(x):
rx, ry, rz, tx, ty, tz, s = x
trans = reduce(np.dot, (translation(tx, ty, tz),
rotation(rx, ry, rz),
scaling(s, s, s)))
est = np.dot(src_pts, trans.T)[:, :3]
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0, 0, 0, 0, 1)
elif param_info == (True, True, 3):
def error(x):
rx, ry, rz, tx, ty, tz, sx, sy, sz = x
trans = reduce(np.dot, (translation(tx, ty, tz),
rotation(rx, ry, rz),
scaling(sx, sy, sz)))
est = np.dot(src_pts, trans.T)[:, :3]
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0, 0, 0, 0, 1, 1, 1)
else:
raise NotImplementedError(
"The specified parameter combination is not implemented: "
"rotate=%r, translate=%r, scale=%r" % param_info)
x, _, _, _, _ = leastsq(error, x0, full_output=True)
return x
def _find_label_paths(subject='fsaverage', pattern=None, subjects_dir=None):
"""Find paths to label files in a subject's label directory.
Parameters
----------
subject : str
Name of the mri subject.
pattern : str | None
Pattern for finding the labels relative to the label directory in the
MRI subject directory (e.g., "aparc/*.label" will find all labels
in the "subject/label/aparc" directory). With None, find all labels.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable
(sys.environ['SUBJECTS_DIR'])
Returns
-------
paths : list
List of paths relative to the subject's label directory
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
subject_dir = os.path.join(subjects_dir, subject)
lbl_dir = os.path.join(subject_dir, 'label')
if pattern is None:
paths = []
for dirpath, _, filenames in os.walk(lbl_dir):
rel_dir = os.path.relpath(dirpath, lbl_dir)
for filename in fnmatch.filter(filenames, '*.label'):
path = os.path.join(rel_dir, filename)
paths.append(path)
else:
paths = [os.path.relpath(path, lbl_dir) for path in iglob(pattern)]
return paths
def _find_mri_paths(subject, skip_fiducials, subjects_dir):
"""Find all files of an mri relevant for source transformation.
Parameters
----------
subject : str
Name of the mri subject.
skip_fiducials : bool
Do not scale the MRI fiducials. If False, an IOError will be raised
if no fiducials file can be found.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable
(sys.environ['SUBJECTS_DIR'])
Returns
-------
paths : dict
Dictionary whose keys are relevant file type names (str), and whose
values are lists of paths.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
paths = {}
# directories to create
paths['dirs'] = [bem_dirname, surf_dirname]
# surf/ files
paths['surf'] = []
surf_fname = os.path.join(surf_dirname, '{name}')
surf_names = ('inflated', 'white', 'orig', 'orig_avg', 'inflated_avg',
'inflated_pre', 'pial', 'pial_avg', 'smoothwm', 'white_avg',
'seghead', 'smseghead')
if os.getenv('_MNE_FEW_SURFACES', '') == 'true': # for testing
surf_names = surf_names[:4]
for surf_name in surf_names:
for hemi in ('lh.', 'rh.'):
name = hemi + surf_name
path = surf_fname.format(subjects_dir=subjects_dir,
subject=subject, name=name)
if os.path.exists(path):
paths['surf'].append(pformat(surf_fname, name=name))
surf_fname = os.path.join(bem_dirname, '{name}')
surf_names = ('inner_skull.surf', 'outer_skull.surf', 'outer_skin.surf')
for surf_name in surf_names:
path = surf_fname.format(subjects_dir=subjects_dir,
subject=subject, name=surf_name)
if os.path.exists(path):
paths['surf'].append(pformat(surf_fname, name=surf_name))
del surf_names, surf_name, path, hemi
# BEM files
paths['bem'] = bem = []
path = head_bem_fname.format(subjects_dir=subjects_dir, subject=subject)
if os.path.exists(path):
bem.append('head')
bem_pattern = pformat(bem_fname, subjects_dir=subjects_dir,
subject=subject, name='*-bem')
re_pattern = pformat(bem_fname, subjects_dir=subjects_dir, subject=subject,
name='(.+)').replace('\\', '\\\\')
for path in iglob(bem_pattern):
match = re.match(re_pattern, path)
name = match.group(1)
bem.append(name)
del bem, path, bem_pattern, re_pattern
# fiducials
if skip_fiducials:
paths['fid'] = []
else:
paths['fid'] = _find_fiducials_files(subject, subjects_dir)
# check that we found at least one
if len(paths['fid']) == 0:
raise IOError("No fiducials file found for %s. The fiducials "
"file should be named "
"{subject}/bem/{subject}-fiducials.fif. In "
"order to scale an MRI without fiducials set "
"skip_fiducials=True." % subject)
# duplicate files (curvature and some surfaces)
paths['duplicate'] = []
path = os.path.join(surf_dirname, '{name}')
surf_fname = os.path.join(surf_dirname, '{name}')
surf_dup_names = ('curv', 'sphere', 'sphere.reg', 'sphere.reg.avg')
for surf_dup_name in surf_dup_names:
for hemi in ('lh.', 'rh.'):
name = hemi + surf_dup_name
path = surf_fname.format(subjects_dir=subjects_dir,
subject=subject, name=name)
if os.path.exists(path):
paths['duplicate'].append(pformat(surf_fname, name=name))
del surf_dup_name, name, path, hemi
# transform files (talairach)
paths['transforms'] = []
transform_fname = os.path.join(mri_transforms_dirname, 'talairach.xfm')
path = transform_fname.format(subjects_dir=subjects_dir, subject=subject)
if os.path.exists(path):
paths['transforms'].append(transform_fname)
del transform_fname, path
# find source space files
paths['src'] = src = []
bem_dir = bem_dirname.format(subjects_dir=subjects_dir, subject=subject)
fnames = fnmatch.filter(os.listdir(bem_dir), '*-src.fif')
prefix = subject + '-'
for fname in fnames:
if fname.startswith(prefix):
fname = "{subject}-%s" % fname[len(prefix):]
path = os.path.join(bem_dirname, fname)
src.append(path)
# find MRIs
mri_dir = mri_dirname.format(subjects_dir=subjects_dir, subject=subject)
fnames = fnmatch.filter(os.listdir(mri_dir), '*.mgz')
paths['mri'] = [os.path.join(mri_dir, f) for f in fnames]
return paths
def _find_fiducials_files(subject, subjects_dir):
"""Find fiducial files."""
fid = []
# standard fiducials
if os.path.exists(fid_fname.format(subjects_dir=subjects_dir,
subject=subject)):
fid.append(fid_fname)
# fiducials with subject name
pattern = pformat(fid_fname_general, subjects_dir=subjects_dir,
subject=subject, head='*')
regex = pformat(fid_fname_general, subjects_dir=subjects_dir,
subject=subject, head='(.+)').replace('\\', '\\\\')
for path in iglob(pattern):
match = re.match(regex, path)
head = match.group(1).replace(subject, '{subject}')
fid.append(pformat(fid_fname_general, head=head))
return fid
def _is_mri_subject(subject, subjects_dir=None):
"""Check whether a directory in subjects_dir is an mri subject directory.
Parameters
----------
subject : str
Name of the potential subject/directory.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
Returns
-------
is_mri_subject : bool
Whether ``subject`` is an mri subject.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
return bool(_find_head_bem(subject, subjects_dir) or
_find_head_bem(subject, subjects_dir, high_res=True))
def _is_scaled_mri_subject(subject, subjects_dir=None):
"""Check whether a directory in subjects_dir is a scaled mri subject.
Parameters
----------
subject : str
Name of the potential subject/directory.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
Returns
-------
is_scaled_mri_subject : bool
Whether ``subject`` is a scaled mri subject.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if not _is_mri_subject(subject, subjects_dir):
return False
fname = os.path.join(subjects_dir, subject, 'MRI scaling parameters.cfg')
return os.path.exists(fname)
def _mri_subject_has_bem(subject, subjects_dir=None):
"""Check whether an mri subject has a file matching the bem pattern.
Parameters
----------
subject : str
Name of the subject.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
Returns
-------
has_bem_file : bool
Whether ``subject`` has a bem file.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
pattern = bem_fname.format(subjects_dir=subjects_dir, subject=subject,
name='*-bem')
fnames = glob(pattern)
return bool(len(fnames))
def read_mri_cfg(subject, subjects_dir=None):
"""Read information from the cfg file of a scaled MRI brain.
Parameters
----------
subject : str
Name of the scaled MRI subject.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
Returns
-------
cfg : dict
Dictionary with entries from the MRI's cfg file.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
fname = os.path.join(subjects_dir, subject, 'MRI scaling parameters.cfg')
if not os.path.exists(fname):
raise IOError("%r does not seem to be a scaled mri subject: %r does "
"not exist." % (subject, fname))
logger.info("Reading MRI cfg file %s" % fname)
config = configparser.RawConfigParser()
config.read(fname)
n_params = config.getint("MRI Scaling", 'n_params')
if n_params == 1:
scale = config.getfloat("MRI Scaling", 'scale')
elif n_params == 3:
scale_str = config.get("MRI Scaling", 'scale')
scale = np.array([float(s) for s in scale_str.split()])
else:
raise ValueError("Invalid n_params value in MRI cfg: %i" % n_params)
out = {'subject_from': config.get("MRI Scaling", 'subject_from'),
'n_params': n_params, 'scale': scale}
return out
def _write_mri_config(fname, subject_from, subject_to, scale):
"""Write the cfg file describing a scaled MRI subject.
Parameters
----------
fname : str
Target file.
subject_from : str
Name of the source MRI subject.
subject_to : str
Name of the scaled MRI subject.
scale : float | array_like, shape = (3,)
The scaling parameter.
"""
scale = np.asarray(scale)
if np.isscalar(scale) or scale.shape == ():
n_params = 1
else:
n_params = 3
config = configparser.RawConfigParser()
config.add_section("MRI Scaling")
config.set("MRI Scaling", 'subject_from', subject_from)
config.set("MRI Scaling", 'subject_to', subject_to)
config.set("MRI Scaling", 'n_params', str(n_params))
if n_params == 1:
config.set("MRI Scaling", 'scale', str(scale))
else:
config.set("MRI Scaling", 'scale', ' '.join([str(s) for s in scale]))
config.set("MRI Scaling", 'version', '1')
with open(fname, 'w') as fid:
config.write(fid)
def _scale_params(subject_to, subject_from, scale, subjects_dir):
"""Assemble parameters for scaling.
Returns
-------
subjects_dir : str
Subjects directory.
subject_from : str
Name of the source subject.
scale : array
Scaling factor, either shape=() for uniform scaling or shape=(3,) for
non-uniform scaling.
uniform : bool
Whether scaling is uniform.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if (subject_from is None) != (scale is None):
raise TypeError("Need to provide either both subject_from and scale "
"parameters, or neither.")
if subject_from is None:
cfg = read_mri_cfg(subject_to, subjects_dir)
subject_from = cfg['subject_from']
n_params = cfg['n_params']
assert n_params in (1, 3)
scale = cfg['scale']
scale = np.atleast_1d(scale)
if scale.ndim != 1 or scale.shape[0] not in (1, 3):
raise ValueError("Invalid shape for scale parameter. Need scalar "
"or array of length 3. Got shape %s."
% (scale.shape,))
n_params = len(scale)
return subjects_dir, subject_from, scale, n_params == 1
@verbose
def scale_bem(subject_to, bem_name, subject_from=None, scale=None,
subjects_dir=None, *, on_defects='raise', verbose=None):
"""Scale a bem file.
Parameters
----------
subject_to : str
Name of the scaled MRI subject (the destination mri subject).
bem_name : str
Name of the bem file. For example, to scale
``fsaverage-inner_skull-bem.fif``, the bem_name would be
"inner_skull-bem".
subject_from : None | str
The subject from which to read the source space. If None, subject_from
is read from subject_to's config file.
scale : None | float | array, shape = (3,)
Scaling factor. Has to be specified if subjects_from is specified,
otherwise it is read from subject_to's config file.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
%(on_defects)s
.. versionadded:: 1.0
%(verbose)s
"""
subjects_dir, subject_from, scale, uniform = \
_scale_params(subject_to, subject_from, scale, subjects_dir)
src = bem_fname.format(subjects_dir=subjects_dir, subject=subject_from,
name=bem_name)
dst = bem_fname.format(subjects_dir=subjects_dir, subject=subject_to,
name=bem_name)
if os.path.exists(dst):
raise IOError("File already exists: %s" % dst)
surfs = read_bem_surfaces(src, on_defects=on_defects)
for surf in surfs:
surf['rr'] *= scale
if not uniform:
assert len(surf['nn']) > 0
surf['nn'] /= scale
_normalize_vectors(surf['nn'])
write_bem_surfaces(dst, surfs)
def scale_labels(subject_to, pattern=None, overwrite=False, subject_from=None,
scale=None, subjects_dir=None):
r"""Scale labels to match a brain that was previously created by scaling.
Parameters
----------
subject_to : str
Name of the scaled MRI subject (the destination brain).
pattern : str | None
Pattern for finding the labels relative to the label directory in the
MRI subject directory (e.g., "lh.BA3a.label" will scale
"fsaverage/label/lh.BA3a.label"; "aparc/\*.label" will find all labels
in the "fsaverage/label/aparc" directory). With None, scale all labels.
overwrite : bool
Overwrite any label file that already exists for subject_to (otherwise
existing labels are skipped).
subject_from : None | str
Name of the original MRI subject (the brain that was scaled to create
subject_to). If None, the value is read from subject_to's cfg file.
scale : None | float | array_like, shape = (3,)
Scaling parameter. If None, the value is read from subject_to's cfg
file.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
"""
subjects_dir, subject_from, scale, _ = _scale_params(
subject_to, subject_from, scale, subjects_dir)
# find labels
paths = _find_label_paths(subject_from, pattern, subjects_dir)
if not paths:
return
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
src_root = os.path.join(subjects_dir, subject_from, 'label')
dst_root = os.path.join(subjects_dir, subject_to, 'label')
# scale labels
for fname in paths:
dst = os.path.join(dst_root, fname)
if not overwrite and os.path.exists(dst):
continue
dirname = os.path.dirname(dst)
if not os.path.exists(dirname):
os.makedirs(dirname)
src = os.path.join(src_root, fname)
l_old = read_label(src)
pos = l_old.pos * scale
l_new = Label(l_old.vertices, pos, l_old.values, l_old.hemi,
l_old.comment, subject=subject_to)
l_new.save(dst)
@verbose
def scale_mri(subject_from, subject_to, scale, overwrite=False,
subjects_dir=None, skip_fiducials=False, labels=True,
annot=False, *, on_defects='raise', verbose=None):
"""Create a scaled copy of an MRI subject.
Parameters
----------
subject_from : str
Name of the subject providing the MRI.
subject_to : str
New subject name for which to save the scaled MRI.
scale : float | array_like, shape = (3,)
The scaling factor (one or 3 parameters).
overwrite : bool
If an MRI already exists for subject_to, overwrite it.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
skip_fiducials : bool
Do not scale the MRI fiducials. If False (default), an IOError will be
raised if no fiducials file can be found.
labels : bool
Also scale all labels (default True).
annot : bool
Copy ``*.annot`` files to the new location (default False).
%(on_defects)s
.. versionadded:: 1.0
%(verbose)s
See Also
--------
scale_bem : Add a scaled BEM to a scaled MRI.
scale_labels : Add labels to a scaled MRI.
scale_source_space : Add a source space to a scaled MRI.
Notes
-----
This function will automatically call :func:`scale_bem`,
:func:`scale_labels`, and :func:`scale_source_space` based on expected
filename patterns in the subject directory.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
paths = _find_mri_paths(subject_from, skip_fiducials, subjects_dir)
scale = np.atleast_1d(scale)
if scale.shape == (3,):
if np.isclose(scale[1], scale[0]) and np.isclose(scale[2], scale[0]):
scale = scale[0] # speed up scaling conditionals using a singleton
elif scale.shape != (1,):
raise ValueError('scale must have shape (3,) or (1,), got %s'
% (scale.shape,))
# make sure we have an empty target directory
dest = subject_dirname.format(subject=subject_to,
subjects_dir=subjects_dir)
if os.path.exists(dest):
if not overwrite:
raise IOError("Subject directory for %s already exists: %r"
% (subject_to, dest))
shutil.rmtree(dest)
logger.debug('create empty directory structure')
for dirname in paths['dirs']:
dir_ = dirname.format(subject=subject_to, subjects_dir=subjects_dir)
os.makedirs(dir_)
logger.debug('save MRI scaling parameters')
fname = os.path.join(dest, 'MRI scaling parameters.cfg')
_write_mri_config(fname, subject_from, subject_to, scale)
logger.debug('surf files [in mm]')
for fname in paths['surf']:
src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
src = os.path.realpath(src)
dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
pts, tri = read_surface(src)
write_surface(dest, pts * scale, tri)
logger.debug('BEM files [in m]')
for bem_name in paths['bem']:
scale_bem(subject_to, bem_name, subject_from, scale, subjects_dir,
on_defects=on_defects, verbose=False)
logger.debug('fiducials [in m]')
for fname in paths['fid']:
src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
src = os.path.realpath(src)
pts, cframe = read_fiducials(src, verbose=False)
for pt in pts:
pt['r'] = pt['r'] * scale
dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
write_fiducials(dest, pts, cframe, overwrite=True, verbose=False)
logger.debug('MRIs [nibabel]')
os.mkdir(mri_dirname.format(subjects_dir=subjects_dir,
subject=subject_to))
for fname in paths['mri']:
mri_name = os.path.basename(fname)
_scale_mri(subject_to, mri_name, subject_from, scale, subjects_dir)
logger.debug('Transforms')
for mri_name in paths['mri']:
if mri_name.endswith('T1.mgz'):
os.mkdir(mri_transforms_dirname.format(subjects_dir=subjects_dir,
subject=subject_to))
for fname in paths['transforms']:
xfm_name = os.path.basename(fname)
_scale_xfm(subject_to, xfm_name, mri_name,
subject_from, scale, subjects_dir)
break
logger.debug('duplicate files')
for fname in paths['duplicate']:
src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
shutil.copyfile(src, dest)
logger.debug('source spaces')
for fname in paths['src']:
src_name = os.path.basename(fname)
scale_source_space(subject_to, src_name, subject_from, scale,
subjects_dir, verbose=False)
logger.debug('labels [in m]')
os.mkdir(os.path.join(subjects_dir, subject_to, 'label'))
if labels:
scale_labels(subject_to, subject_from=subject_from, scale=scale,
subjects_dir=subjects_dir)
logger.debug('copy *.annot files')
# they don't contain scale-dependent information
if annot:
src_pattern = os.path.join(subjects_dir, subject_from, 'label',
'*.annot')
dst_dir = os.path.join(subjects_dir, subject_to, 'label')
for src_file in iglob(src_pattern):
shutil.copy(src_file, dst_dir)
@verbose
def scale_source_space(subject_to, src_name, subject_from=None, scale=None,
subjects_dir=None, n_jobs=None, verbose=None):
"""Scale a source space for an mri created with scale_mri().
Parameters
----------
subject_to : str
Name of the scaled MRI subject (the destination mri subject).
src_name : str
Source space name. Can be a spacing parameter (e.g., ``'7'``,
``'ico4'``, ``'oct6'``) or a file name of a source space file relative
to the bem directory; if the file name contains the subject name, it
should be indicated as "{subject}" in ``src_name`` (e.g.,
``"{subject}-my_source_space-src.fif"``).
subject_from : None | str
The subject from which to read the source space. If None, subject_from
is read from subject_to's config file.
scale : None | float | array, shape = (3,)
Scaling factor. Has to be specified if subjects_from is specified,
otherwise it is read from subject_to's config file.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
n_jobs : int
Number of jobs to run in parallel if recomputing distances (only
applies if scale is an array of length 3, and will not use more cores
than there are source spaces).
%(verbose)s
Notes
-----
When scaling volume source spaces, the source (vertex) locations are
scaled, but the reference to the MRI volume is left unchanged. Transforms
are updated so that source estimates can be plotted on the original MRI
volume.
"""
subjects_dir, subject_from, scale, uniform = \
_scale_params(subject_to, subject_from, scale, subjects_dir)
# if n_params==1 scale is a scalar; if n_params==3 scale is a (3,) array
# find the source space file names
if src_name.isdigit():
spacing = src_name # spacing in mm
src_pattern = src_fname
else:
match = re.match(r"(oct|ico|vol)-?(\d+)$", src_name)
if match:
spacing = '-'.join(match.groups())
src_pattern = src_fname
else:
spacing = None
src_pattern = os.path.join(bem_dirname, src_name)
src = src_pattern.format(subjects_dir=subjects_dir, subject=subject_from,
spacing=spacing)
dst = src_pattern.format(subjects_dir=subjects_dir, subject=subject_to,
spacing=spacing)
# read and scale the source space [in m]
sss = read_source_spaces(src)
logger.info("scaling source space %s: %s -> %s", spacing, subject_from,
subject_to)
logger.info("Scale factor: %s", scale)
add_dist = False
for ss in sss:
ss['subject_his_id'] = subject_to
ss['rr'] *= scale
# additional tags for volume source spaces
for key in ('vox_mri_t', 'src_mri_t'):
# maintain transform to original MRI volume ss['mri_volume_name']
if key in ss:
ss[key]['trans'][:3] *= scale[:, np.newaxis]
# distances and patch info
if uniform:
if ss['dist'] is not None:
ss['dist'] *= scale[0]
# Sometimes this is read-only due to how it's read
ss['nearest_dist'] = ss['nearest_dist'] * scale
ss['dist_limit'] = ss['dist_limit'] * scale
else: # non-uniform scaling
ss['nn'] /= scale
_normalize_vectors(ss['nn'])
if ss['dist'] is not None:
add_dist = True
dist_limit = float(np.abs(sss[0]['dist_limit']))
elif ss['nearest'] is not None:
add_dist = True
dist_limit = 0
if add_dist:
logger.info("Recomputing distances, this might take a while")
add_source_space_distances(sss, dist_limit, n_jobs)
write_source_spaces(dst, sss)
def _scale_mri(subject_to, mri_fname, subject_from, scale, subjects_dir):
"""Scale an MRI by setting its affine."""
subjects_dir, subject_from, scale, _ = _scale_params(
subject_to, subject_from, scale, subjects_dir)
nibabel = _import_nibabel('scale an MRI')
fname_from = op.join(mri_dirname.format(
subjects_dir=subjects_dir, subject=subject_from), mri_fname)
fname_to = op.join(mri_dirname.format(
subjects_dir=subjects_dir, subject=subject_to), mri_fname)
img = nibabel.load(fname_from)
zooms = np.array(img.header.get_zooms())
zooms[[0, 2, 1]] *= scale
img.header.set_zooms(zooms)
# Hack to fix nibabel problems, see
# https://github.com/nipy/nibabel/issues/619
img._affine = img.header.get_affine() # or could use None
nibabel.save(img, fname_to)
def _scale_xfm(subject_to, xfm_fname, mri_name, subject_from, scale,
subjects_dir):
"""Scale a transform."""
subjects_dir, subject_from, scale, _ = _scale_params(
subject_to, subject_from, scale, subjects_dir)
# The nibabel warning should already be there in MRI step, if applicable,
# as we only get here if T1.mgz is present (and thus a scaling was
# attempted) so we can silently return here.
if not has_nibabel():
return
fname_from = os.path.join(
mri_transforms_dirname.format(
subjects_dir=subjects_dir, subject=subject_from), xfm_fname)
fname_to = op.join(
mri_transforms_dirname.format(
subjects_dir=subjects_dir, subject=subject_to), xfm_fname)
assert op.isfile(fname_from), fname_from
assert op.isdir(op.dirname(fname_to)), op.dirname(fname_to)
# The "talairach.xfm" file stores the ras_mni transform.
#
# For "from" subj F, "to" subj T, F->T scaling S, some equivalent vertex
# positions F_x and T_x in MRI (Freesurfer RAS) coords, knowing that
# we have T_x = S @ F_x, we want to have the same MNI coords computed
# for these vertices:
#
# T_mri_mni @ T_x = F_mri_mni @ F_x
#
# We need to find the correct T_ras_mni (talaraich.xfm file) that yields
# this. So we derive (where † indicates inversion):
#
# T_mri_mni @ S @ F_x = F_mri_mni @ F_x
# T_mri_mni @ S = F_mri_mni
# T_ras_mni @ T_mri_ras @ S = F_ras_mni @ F_mri_ras
# T_ras_mni @ T_mri_ras = F_ras_mni @ F_mri_ras @ S⁻¹
# T_ras_mni = F_ras_mni @ F_mri_ras @ S⁻¹ @ T_ras_mri
#
# prepare the scale (S) transform
scale = np.atleast_1d(scale)
scale = np.tile(scale, 3) if len(scale) == 1 else scale
S = Transform('mri', 'mri', scaling(*scale)) # F_mri->T_mri
#
# Get the necessary transforms of the "from" subject
#
xfm, kind = _read_fs_xfm(fname_from)
assert kind == 'MNI Transform File', kind
_, _, F_mri_ras, _, _ = _read_mri_info(mri_name, units='mm')
F_ras_mni = Transform('ras', 'mni_tal', xfm)
del xfm
#
# Get the necessary transforms of the "to" subject
#
mri_name = op.join(mri_dirname.format(
subjects_dir=subjects_dir, subject=subject_to), op.basename(mri_name))
_, _, T_mri_ras, _, _ = _read_mri_info(mri_name, units='mm')
T_ras_mri = invert_transform(T_mri_ras)
del mri_name, T_mri_ras
# Finally we construct as above:
#
# T_ras_mni = F_ras_mni @ F_mri_ras @ S⁻¹ @ T_ras_mri
#
# By moving right to left through the equation.
T_ras_mni = \
combine_transforms(
combine_transforms(
combine_transforms(
T_ras_mri, invert_transform(S), 'ras', 'mri'),
F_mri_ras, 'ras', 'ras'),
F_ras_mni, 'ras', 'mni_tal')
_write_fs_xfm(fname_to, T_ras_mni['trans'], kind)
def _read_surface(filename, *, on_defects):
bem = dict()
if filename is not None and op.exists(filename):
if filename.endswith('.fif'):
bem = read_bem_surfaces(
filename, on_defects=on_defects, verbose=False
)[0]
else:
try:
bem = read_surface(filename, return_dict=True)[2]
bem['rr'] *= 1e-3
complete_surface_info(bem, copy=False)
except Exception:
raise ValueError(
"Error loading surface from %s (see "
"Terminal for details)." % filename)
return bem
@fill_doc
class Coregistration(object):
"""Class for MRI<->head coregistration.
Parameters
----------
info : instance of Info | None
The measurement info.
%(subject)s
%(subjects_dir)s
%(fiducials)s
%(on_defects)s
.. versionadded:: 1.0
Attributes
----------
fiducials : instance of DigMontage
A montage containing the MRI fiducials.
trans : instance of Transform
MRI<->Head coordinate transformation.
See Also
--------
mne.scale_mri
Notes
-----
Internal computation quantities parameters are in the following units:
- rotation are in radians
- translation are in m
- scale are in scale proportion
If using a scale mode, the :func:`~mne.scale_mri` should be used
to create a surrogate MRI subject with the proper scale factors.
"""
def __init__(self, info, subject, subjects_dir=None, fiducials='auto', *,
on_defects='raise'):
_validate_type(info, (Info, None), 'info')
self._info = info
self._subject = _check_subject(subject, subject)
self._subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
self._scale_mode = None
self._on_defects = on_defects
self._rot_trans = None
self._default_parameters = \
np.array([0., 0., 0., 0., 0., 0., 1., 1., 1.])
self._rotation = self._default_parameters[:3]
self._translation = self._default_parameters[3:6]
self._scale = self._default_parameters[6:9]
self._icp_iterations = 20
self._icp_angle = 0.2
self._icp_distance = 0.2
self._icp_scale = 0.2
self._icp_fid_matches = ('nearest', 'matched')
self._icp_fid_match = self._icp_fid_matches[0]
self._lpa_weight = 1.
self._nasion_weight = 10.
self._rpa_weight = 1.
self._hsp_weight = 1.
self._eeg_weight = 1.
self._hpi_weight = 1.
self._extra_points_filter = None
self._setup_digs()
self._setup_bem()
self._fid_filename = None
self._setup_fiducials(fiducials)
self.reset()
def _setup_digs(self):
if self._info is None:
self._dig_dict = dict(
hpi=np.zeros((1, 3)),
dig_ch_pos_location=np.zeros((1, 3)),
hsp=np.zeros((1, 3)),
rpa=np.zeros((1, 3)),
nasion=np.zeros((1, 3)),
lpa=np.zeros((1, 3)),
)
else:
self._dig_dict = _get_data_as_dict_from_dig(
dig=self._info['dig'],
exclude_ref_channel=False
)
# adjustments:
# set weights to 0 for None input
# convert fids to float arrays
for k, w_atr in zip(['nasion', 'lpa', 'rpa', 'hsp', 'hpi'],
['_nasion_weight', '_lpa_weight',
'_rpa_weight', '_hsp_weight', '_hpi_weight']):
if self._dig_dict[k] is None:
self._dig_dict[k] = np.zeros((0, 3))
setattr(self, w_atr, 0)
elif k in ['rpa', 'nasion', 'lpa']:
self._dig_dict[k] = np.array([self._dig_dict[k]], float)
def _setup_bem(self):
# find high-res head model (if possible)
high_res_path = _find_head_bem(self._subject, self._subjects_dir,
high_res=True)
low_res_path = _find_head_bem(self._subject, self._subjects_dir,
high_res=False)
if high_res_path is None and low_res_path is None:
raise RuntimeError("No standard head model was "
f"found for subject {self._subject}")
if high_res_path is not None:
self._bem_high_res = _read_surface(
high_res_path, on_defects=self._on_defects
)
logger.info(f'Using high resolution head model in {high_res_path}')
else:
self._bem_high_res = _read_surface(
low_res_path, on_defects=self._on_defects
)
logger.info(f'Using low resolution head model in {low_res_path}')
if low_res_path is None:
# This should be very rare!
warn('No low-resolution head found, decimating high resolution '
'mesh (%d vertices): %s' % (len(self._bem_high_res['rr']),
high_res_path,))
# Create one from the high res one, which we know we have
rr, tris = decimate_surface(self._bem_high_res['rr'],
self._bem_high_res['tris'],
n_triangles=5120)
# directly set the attributes of bem_low_res
self._bem_low_res = complete_surface_info(
dict(rr=rr, tris=tris), copy=False, verbose=False)
else:
self._bem_low_res = _read_surface(
low_res_path, on_defects=self._on_defects
)
def _setup_fiducials(self, fids):
_validate_type(fids, (str, dict, list))
# find fiducials file
fid_accurate = None
if fids == 'auto':
fid_files = _find_fiducials_files(self._subject,
self._subjects_dir)
if len(fid_files) > 0:
# Read fiducials from disk
fid_filename = fid_files[0].format(
subjects_dir=self._subjects_dir, subject=self._subject)
logger.info(f'Using fiducials from: {fid_filename}.')
fids, _ = read_fiducials(fid_filename)
fid_accurate = True
self._fid_filename = fid_filename
else:
fids = 'estimated'
if fids == 'estimated':
logger.info('Estimating fiducials from fsaverage.')
fid_accurate = False
fids = get_mni_fiducials(self._subject, self._subjects_dir)
fid_accurate = True if fid_accurate is None else fid_accurate
if isinstance(fids, list):
fid_coords = _fiducial_coords(fids)
else:
assert isinstance(fids, dict)
fid_coords = np.array([fids['lpa'], fids['nasion'], fids['rpa']],
dtype=float)
self._fid_points = fid_coords
self._fid_accurate = fid_accurate
# does not seem to happen by itself ... so hard code it:
self._reset_fiducials()
def _reset_fiducials(self):
dig_montage = make_dig_montage(
lpa=self._fid_points[0],
nasion=self._fid_points[1],
rpa=self._fid_points[2],
coord_frame='mri'
)
self.fiducials = dig_montage
def _update_params(self, rot=None, tra=None, sca=None,
force_update=False):
if force_update and tra is None:
tra = self._translation
rot_changed = False
if rot is not None:
rot_changed = True
self._last_rotation = self._rotation.copy()
self._rotation = rot
tra_changed = False
if rot_changed or tra is not None:
if tra is None:
tra = self._translation
tra_changed = True
self._last_translation = self._translation.copy()
self._translation = tra
self._head_mri_t = rotation(*self._rotation).T
self._head_mri_t[:3, 3] = \
-np.dot(self._head_mri_t[:3, :3], tra)
self._transformed_dig_hpi = \
apply_trans(self._head_mri_t, self._dig_dict['hpi'])
self._transformed_dig_eeg = \
apply_trans(
self._head_mri_t, self._dig_dict['dig_ch_pos_location'])
self._transformed_dig_extra = \
apply_trans(self._head_mri_t,
self._filtered_extra_points)
self._transformed_orig_dig_extra = \
apply_trans(self._head_mri_t, self._dig_dict['hsp'])
self._mri_head_t = rotation(*self._rotation)
self._mri_head_t[:3, 3] = np.array(tra)
if tra_changed or sca is not None:
if sca is None:
sca = self._scale
self._last_scale = self._scale.copy()
self._scale = sca
self._mri_trans = np.eye(4)
self._mri_trans[:, :3] *= sca
self._transformed_high_res_mri_points = \
apply_trans(self._mri_trans,
self._processed_high_res_mri_points)
self._update_nearest_calc()
if tra_changed:
self._nearest_transformed_high_res_mri_idx_orig_hsp = \
self._nearest_calc.query(self._transformed_orig_dig_extra)[1]
self._nearest_transformed_high_res_mri_idx_hpi = \
self._nearest_calc.query(self._transformed_dig_hpi)[1]
self._nearest_transformed_high_res_mri_idx_eeg = \
self._nearest_calc.query(self._transformed_dig_eeg)[1]
self._nearest_transformed_high_res_mri_idx_rpa = \
self._nearest_calc.query(
apply_trans(self._head_mri_t, self._dig_dict['rpa']))[1]
self._nearest_transformed_high_res_mri_idx_nasion = \
self._nearest_calc.query(
apply_trans(self._head_mri_t, self._dig_dict['nasion']))[1]
self._nearest_transformed_high_res_mri_idx_lpa = \
self._nearest_calc.query(
apply_trans(self._head_mri_t, self._dig_dict['lpa']))[1]
def set_scale_mode(self, scale_mode):
"""Select how to fit the scale parameters.
Parameters
----------
scale_mode : None | str
The scale mode can be 'uniform', '3-axis' or disabled.
Defaults to None.
* 'uniform': 1 scale factor is recovered.
* '3-axis': 3 scale factors are recovered.
* None: do not scale the MRI.
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._scale_mode = scale_mode
return self
def set_grow_hair(self, value):
"""Compensate for hair on the digitizer head shape.
Parameters
----------
value : float
Move the back of the MRI head outwards by ``value`` (mm).
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._grow_hair = value
self._update_params(force_update=True)
return self
def set_rotation(self, rot):
"""Set the rotation parameter.
Parameters
----------
rot : array, shape (3,)
The rotation parameter (in radians).
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._update_params(rot=np.array(rot))
return self
def set_translation(self, tra):
"""Set the translation parameter.
Parameters
----------
tra : array, shape (3,)
The translation parameter (in m.).
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._update_params(tra=np.array(tra))
return self
def set_scale(self, sca):
"""Set the scale parameter.
Parameters
----------
sca : array, shape (3,)
The scale parameter.
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._update_params(sca=np.array(sca))
return self
def _update_nearest_calc(self):
self._nearest_calc = _DistanceQuery(
self._processed_high_res_mri_points * self._scale)
@property
def _filtered_extra_points(self):
if self._extra_points_filter is None:
return self._dig_dict['hsp']
else:
return self._dig_dict['hsp'][self._extra_points_filter]
@property
def _parameters(self):
return np.concatenate((self._rotation, self._translation, self._scale))
@property
def _last_parameters(self):
return np.concatenate((self._last_rotation,
self._last_translation, self._last_scale))
@property
def _changes(self):
move = np.linalg.norm(self._last_translation - self._translation) * 1e3
angle = np.rad2deg(_angle_between_quats(
rot_to_quat(rotation(*self._rotation)[:3, :3]),
rot_to_quat(rotation(*self._last_rotation)[:3, :3])))
percs = 100 * (self._scale - self._last_scale) / self._last_scale
return move, angle, percs
@property
def _nearest_transformed_high_res_mri_idx_hsp(self):
return self._nearest_calc.query(
apply_trans(self._head_mri_t, self._filtered_extra_points))[1]
@property
def _has_hsp_data(self):
return (self._has_mri_data and
len(self._nearest_transformed_high_res_mri_idx_hsp) > 0)
@property
def _has_hpi_data(self):
return (self._has_mri_data and
len(self._nearest_transformed_high_res_mri_idx_hpi) > 0)
@property
def _has_eeg_data(self):
return (self._has_mri_data and
len(self._nearest_transformed_high_res_mri_idx_eeg) > 0)
@property
def _has_lpa_data(self):
mri_point = self.fiducials.dig[_map_fid_name_to_idx('lpa')]
assert mri_point['ident'] == FIFF.FIFFV_POINT_LPA
has_mri_data = np.any(mri_point['r'])
has_head_data = np.any(self._dig_dict['lpa'])
return has_mri_data and has_head_data
@property
def _has_nasion_data(self):
mri_point = self.fiducials.dig[_map_fid_name_to_idx('nasion')]
assert mri_point['ident'] == FIFF.FIFFV_POINT_NASION
has_mri_data = np.any(mri_point['r'])
has_head_data = np.any(self._dig_dict['nasion'])
return has_mri_data and has_head_data
@property
def _has_rpa_data(self):
mri_point = self.fiducials.dig[_map_fid_name_to_idx('rpa')]
assert mri_point['ident'] == FIFF.FIFFV_POINT_RPA
has_mri_data = np.any(mri_point['r'])
has_head_data = np.any(self._dig_dict['rpa'])
return has_mri_data and has_head_data
@property
def _processed_high_res_mri_points(self):
return self._get_processed_mri_points('high')
@property
def _processed_low_res_mri_points(self):
return self._get_processed_mri_points('low')
def _get_processed_mri_points(self, res):
bem = self._bem_low_res if res == 'low' else self._bem_high_res
points = bem['rr'].copy()
if self._grow_hair:
assert len(bem['nn']) # should be guaranteed by _read_surface
scaled_hair_dist = (1e-3 * self._grow_hair /
np.array(self._scale))
hair = points[:, 2] > points[:, 1]
points[hair] += bem['nn'][hair] * scaled_hair_dist
return points
@property
def _has_mri_data(self):
return len(self._transformed_high_res_mri_points) > 0
@property
def _has_dig_data(self):
return (self._has_mri_data and
len(self._nearest_transformed_high_res_mri_idx_hsp) > 0)
@property
def _orig_hsp_point_distance(self):
mri_points = self._transformed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_orig_hsp]
hsp_points = self._transformed_orig_dig_extra
return np.linalg.norm(mri_points - hsp_points, axis=-1)
def _log_dig_mri_distance(self, prefix):
errs_nearest = self.compute_dig_mri_distances()
logger.info(f'{prefix} median distance: '
f'{np.median(errs_nearest * 1000):6.2f} mm')
@property
def scale(self):
"""Get the current scale factor.
Returns
-------
scale : ndarray, shape (3,)
The scale factors.
"""
return self._scale.copy()
@verbose
def fit_fiducials(self, lpa_weight=1., nasion_weight=10., rpa_weight=1.,
verbose=None):
"""Find rotation and translation to fit all 3 fiducials.
Parameters
----------
lpa_weight : float
Relative weight for LPA. The default value is 1.
nasion_weight : float
Relative weight for nasion. The default value is 10.
rpa_weight : float
Relative weight for RPA. The default value is 1.
%(verbose)s
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
logger.info('Aligning using fiducials')
self._log_dig_mri_distance('Start')
n_scale_params = self._n_scale_params
if n_scale_params == 3:
# enforce 1 even for 3-axis here (3 points is not enough)
logger.info("Enforcing 1 scaling parameter for fit "
"with fiducials.")
n_scale_params = 1
self._lpa_weight = lpa_weight
self._nasion_weight = nasion_weight
self._rpa_weight = rpa_weight
head_pts = np.vstack((self._dig_dict['lpa'],
self._dig_dict['nasion'],
self._dig_dict['rpa']))
mri_pts = np.vstack(
(self.fiducials.dig[0]['r'], # LPA
self.fiducials.dig[1]['r'], # Nasion
self.fiducials.dig[2]['r']) # RPA
)
weights = [lpa_weight, nasion_weight, rpa_weight]
if n_scale_params == 0:
mri_pts *= self._scale # not done in fit_matched_points
x0 = self._parameters
x0 = x0[:6 + n_scale_params]
est = fit_matched_points(mri_pts, head_pts, x0=x0, out='params',
scale=n_scale_params, weights=weights)
if n_scale_params == 0:
self._update_params(rot=est[:3], tra=est[3:6])
else:
assert est.size == 7
est = np.concatenate([est, [est[-1]] * 2])
assert est.size == 9
self._update_params(rot=est[:3], tra=est[3:6], sca=est[6:9])
self._log_dig_mri_distance('End ')
return self
def _setup_icp(self, n_scale_params):
head_pts = list()
mri_pts = list()
weights = list()
if self._has_dig_data and self._hsp_weight > 0: # should be true
head_pts.append(self._filtered_extra_points)
mri_pts.append(self._processed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_hsp])
weights.append(np.full(len(head_pts[-1]), self._hsp_weight))
for key in ('lpa', 'nasion', 'rpa'):
if getattr(self, f'_has_{key}_data'):
head_pts.append(self._dig_dict[key])
if self._icp_fid_match == 'matched':
idx = _map_fid_name_to_idx(name=key)
p = self.fiducials.dig[idx]['r'].reshape(1, -1)
mri_pts.append(p)
else:
assert self._icp_fid_match == 'nearest'
mri_pts.append(self._processed_high_res_mri_points[
getattr(
self,
'_nearest_transformed_high_res_mri_idx_%s'
% (key,))])
weights.append(np.full(len(mri_pts[-1]),
getattr(self, '_%s_weight' % key)))
if self._has_eeg_data and self._eeg_weight > 0:
head_pts.append(self._dig_dict['dig_ch_pos_location'])
mri_pts.append(self._processed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_eeg])
weights.append(np.full(len(mri_pts[-1]), self._eeg_weight))
if self._has_hpi_data and self._hpi_weight > 0:
head_pts.append(self._dig_dict['hpi'])
mri_pts.append(self._processed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_hpi])
weights.append(np.full(len(mri_pts[-1]), self._hpi_weight))
head_pts = np.concatenate(head_pts)
mri_pts = np.concatenate(mri_pts)
weights = np.concatenate(weights)
if n_scale_params == 0:
mri_pts *= self._scale # not done in fit_matched_points
return head_pts, mri_pts, weights
def set_fid_match(self, match):
"""Set the strategy for fitting anatomical landmark (fiducial) points.
Parameters
----------
match : 'nearest' | 'matched'
Alignment strategy; ``'nearest'`` aligns anatomical landmarks to
any point on the head surface; ``'matched'`` aligns to the fiducial
points in the MRI.
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
_check_option('match', match, self._icp_fid_matches)
self._icp_fid_match = match
return self
@verbose
def fit_icp(self, n_iterations=20, lpa_weight=1., nasion_weight=10.,
rpa_weight=1., hsp_weight=1., eeg_weight=1., hpi_weight=1.,
callback=None, verbose=None):
"""Find MRI scaling, translation, and rotation to match HSP.
Parameters
----------
n_iterations : int
Maximum number of iterations.
lpa_weight : float
Relative weight for LPA. The default value is 1.
nasion_weight : float
Relative weight for nasion. The default value is 10.
rpa_weight : float
Relative weight for RPA. The default value is 1.
hsp_weight : float
Relative weight for HSP. The default value is 1.
eeg_weight : float
Relative weight for EEG. The default value is 1.
hpi_weight : float
Relative weight for HPI. The default value is 1.
callback : callable | None
A function to call on each iteration. Useful for status message
updates. It will be passed the keyword arguments ``iteration``
and ``n_iterations``.
%(verbose)s
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
logger.info('Aligning using ICP')
self._log_dig_mri_distance('Start ')
n_scale_params = self._n_scale_params
self._lpa_weight = lpa_weight
self._nasion_weight = nasion_weight
self._rpa_weight = rpa_weight
self._hsp_weight = hsp_weight
self._eeg_weight = eeg_weight
self._hsp_weight = hpi_weight
# Initial guess (current state)
est = self._parameters
est = est[:[6, 7, None, 9][n_scale_params]]
# Do the fits, assigning and evaluating at each step
for iteration in range(n_iterations):
head_pts, mri_pts, weights = self._setup_icp(n_scale_params)
est = fit_matched_points(mri_pts, head_pts, scale=n_scale_params,
x0=est, out='params', weights=weights)
if n_scale_params == 0:
self._update_params(rot=est[:3], tra=est[3:6])
elif n_scale_params == 1:
est = np.array(list(est) + [est[-1]] * 2)
self._update_params(rot=est[:3], tra=est[3:6], sca=est[6:9])
else:
self._update_params(rot=est[:3], tra=est[3:6], sca=est[6:9])
angle, move, scale = self._changes
self._log_dig_mri_distance(f' ICP {iteration + 1:2d} ')
if callback is not None:
callback(iteration, n_iterations)
if angle <= self._icp_angle and move <= self._icp_distance and \
all(scale <= self._icp_scale):
break
self._log_dig_mri_distance('End ')
return self
@property
def _n_scale_params(self):
if self._scale_mode is None:
n_scale_params = 0
elif self._scale_mode == 'uniform':
n_scale_params = 1
else:
n_scale_params = 3
return n_scale_params
def omit_head_shape_points(self, distance):
"""Exclude head shape points that are far away from the MRI head.
Parameters
----------
distance : float
Exclude all points that are further away from the MRI head than
this distance (in m.). A value of distance <= 0 excludes nothing.
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
distance = float(distance)
if distance <= 0:
return
# find the new filter
mask = self._orig_hsp_point_distance <= distance
n_excluded = np.sum(~mask)
logger.info("Coregistration: Excluding %i head shape points with "
"distance >= %.3f m.", n_excluded, distance)
# set the filter
self._extra_points_filter = mask
self._update_params(force_update=True)
return self
def compute_dig_mri_distances(self):
"""Compute distance between head shape points and MRI skin surface.
Returns
-------
dist : array, shape (n_points,)
The distance of the head shape points to the MRI skin surface.
See Also
--------
mne.dig_mri_distances
"""
# we don't use `dig_mri_distances` here because it should be much
# faster to use our already-determined nearest points
hsp_points, mri_points, _ = self._setup_icp(0)
hsp_points = apply_trans(self._head_mri_t, hsp_points)
return np.linalg.norm(mri_points - hsp_points, axis=-1)
@property
def trans(self):
"""The head->mri :class:`~mne.transforms.Transform`."""
return Transform('head', 'mri', self._head_mri_t)
def reset(self):
"""Reset all the parameters affecting the coregistration.
Returns
-------
self : Coregistration
The modified Coregistration object.
"""
self._grow_hair = 0.
self.set_rotation(self._default_parameters[:3])
self.set_translation(self._default_parameters[3:6])
self.set_scale(self._default_parameters[6:9])
self._extra_points_filter = None
self._update_nearest_calc()
return self
def _get_fiducials_distance(self):
distance = dict()
for key in ('lpa', 'nasion', 'rpa'):
idx = _map_fid_name_to_idx(name=key)
fid = self.fiducials.dig[idx]['r'].reshape(1, -1)
transformed_mri = apply_trans(self._mri_trans, fid)
transformed_hsp = apply_trans(
self._head_mri_t, self._dig_dict[key])
distance[key] = np.linalg.norm(
np.ravel(transformed_mri - transformed_hsp))
return np.array(list(distance.values())) * 1e3
def _get_fiducials_distance_str(self):
dists = self._get_fiducials_distance()
return f"Fiducials: {dists[0]:.1f}, {dists[1]:.1f}, {dists[2]:.1f} mm"
def _get_point_distance(self):
mri_points = list()
hsp_points = list()
if self._hsp_weight > 0 and self._has_hsp_data:
mri_points.append(self._transformed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_hsp])
hsp_points.append(self._transformed_dig_extra)
assert len(mri_points[-1]) == len(hsp_points[-1])
if self._eeg_weight > 0 and self._has_eeg_data:
mri_points.append(self._transformed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_eeg])
hsp_points.append(self._transformed_dig_eeg)
assert len(mri_points[-1]) == len(hsp_points[-1])
if self._hpi_weight > 0 and self._has_hpi_data:
mri_points.append(self._transformed_high_res_mri_points[
self._nearest_transformed_high_res_mri_idx_hpi])
hsp_points.append(self._transformed_dig_hpi)
assert len(mri_points[-1]) == len(hsp_points[-1])
if all(len(h) == 0 for h in hsp_points):
return None
mri_points = np.concatenate(mri_points)
hsp_points = np.concatenate(hsp_points)
return np.linalg.norm(mri_points - hsp_points, axis=-1)
def _get_point_distance_str(self):
point_distance = self._get_point_distance()
if point_distance is None:
return ""
dists = 1e3 * point_distance
av_dist = np.mean(dists)
std_dist = np.std(dists)
kinds = [kind for kind, check in
(('HSP', self._hsp_weight > 0 and self._has_hsp_data),
('EEG', self._eeg_weight > 0 and self._has_eeg_data),
('HPI', self._hpi_weight > 0 and self._has_hpi_data))
if check]
kinds = '+'.join(kinds)
return f"{len(dists)} {kinds}: {av_dist:.1f} ± {std_dist:.1f} mm"
|