1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Denis Egnemann <denis.engemann@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
# Adam Li <adam2392@gmail.com>
# Daniel McCloy <dan@mccloy.info>
#
# License: BSD Style.
from collections import OrderedDict
import importlib
import inspect
import os
import os.path as op
from pathlib import Path
import sys
import zipfile
import tempfile
import numpy as np
from .config import _hcp_mmp_license_text, MNE_DATASETS
from ..label import read_labels_from_annot, Label, write_labels_to_annot
from ..utils import (get_config, set_config, logger, _validate_type,
verbose, get_subjects_dir, _pl, _safe_input)
from ..utils.docs import docdict, _docformat
_data_path_doc = """Get path to local copy of {name} dataset.
Parameters
----------
path : None | str
Location of where to look for the {name} dataset.
If None, the environment variable or config parameter
``{conf}`` is used. If it doesn't exist, the
"~/mne_data" directory is used. If the {name} dataset
is not found under the given path, the data
will be automatically downloaded to the specified folder.
force_update : bool
Force update of the {name} dataset even if a local copy exists.
Default is False.
update_path : bool | None
If True (default), set the ``{conf}`` in mne-python
config to the given path. If None, the user is prompted.
download : bool
If False and the {name} dataset has not been downloaded yet,
it will not be downloaded and the path will be returned as
'' (empty string). This is mostly used for debugging purposes
and can be safely ignored by most users.
%(verbose)s
Returns
-------
path : instance of Path
Path to {name} dataset directory.
"""
_data_path_doc_accept = _data_path_doc.split('%(verbose)s')
_data_path_doc_accept[-1] = '%(verbose)s' + _data_path_doc_accept[-1]
_data_path_doc_accept.insert(1, ' %(accept)s')
_data_path_doc_accept = ''.join(_data_path_doc_accept)
_data_path_doc = _docformat(_data_path_doc, docdict)
_data_path_doc_accept = _docformat(_data_path_doc_accept, docdict)
_version_doc = """Get version of the local {name} dataset.
Returns
-------
version : str | None
Version of the {name} local dataset, or None if the dataset
does not exist locally.
"""
def _dataset_version(path, name):
"""Get the version of the dataset."""
ver_fname = op.join(path, 'version.txt')
if op.exists(ver_fname):
with open(ver_fname, 'r') as fid:
version = fid.readline().strip() # version is on first line
else:
logger.debug(f'Version file missing: {ver_fname}')
# Sample dataset versioning was introduced after 0.3
# SPM dataset was introduced with 0.7
versions = dict(sample='0.7', spm='0.3')
version = versions.get(name, '0.0')
return version
def _get_path(path, key, name):
"""Get a dataset path."""
# 1. Input
_validate_type(path, ('path-like', None), path)
if path is not None:
return path
# 2. get_config(key) — unless key is None or "" (special get_config values)
# 3. get_config('MNE_DATA')
path = get_config(key or 'MNE_DATA', get_config('MNE_DATA'))
if path is not None:
if not op.exists(path):
msg = (f"Download location {path} as specified by MNE_DATA does "
f"not exist. Either create this directory manually and try "
f"again, or set MNE_DATA to an existing directory.")
raise FileNotFoundError(msg)
return Path(path)
# 4. ~/mne_data (but use a fake home during testing so we don't
# unnecessarily create ~/mne_data)
logger.info('Using default location ~/mne_data for %s...' % name)
path = op.join(os.getenv('_MNE_FAKE_HOME_DIR',
op.expanduser("~")), 'mne_data')
if not op.exists(path):
logger.info('Creating ~/mne_data')
try:
os.mkdir(path)
except OSError:
raise OSError("User does not have write permissions "
"at '%s', try giving the path as an "
"argument to data_path() where user has "
"write permissions, for ex:data_path"
"('/home/xyz/me2/')" % (path))
return Path(path)
def _do_path_update(path, update_path, key, name):
"""Update path."""
path = op.abspath(path)
identical = get_config(key, '', use_env=False) == path
if not identical:
if update_path is None:
update_path = True
if '--update-dataset-path' in sys.argv:
answer = 'y'
else:
msg = ('Do you want to set the path:\n %s\nas the default '
'%s dataset path in the mne-python config [y]/n? '
% (path, name))
answer = _safe_input(msg, alt='pass update_path=True')
if answer.lower() == 'n':
update_path = False
if update_path:
set_config(key, str(path), set_env=False)
return path
# This is meant to be semi-public: let packages like mne-bids use it to make
# sure they don't accidentally set download=True in their tests, too
_MODULES_TO_ENSURE_DOWNLOAD_IS_FALSE_IN_TESTS = ('mne',)
def _check_in_testing_and_raise(name, download):
"""Check if we're in an MNE test and raise an error if download!=False."""
root_dirs = [
importlib.import_module(ns)
for ns in _MODULES_TO_ENSURE_DOWNLOAD_IS_FALSE_IN_TESTS]
root_dirs = [str(Path(ns.__file__).parent) for ns in root_dirs]
check = False
func = None
frame = inspect.currentframe()
try:
# First, traverse out of the data_path() call
while frame:
if frame.f_code.co_name in ('data_path', 'load_data'):
func = frame.f_code.co_name
frame = frame.f_back.f_back # out of verbose decorator
break
frame = frame.f_back
# Next, see what the caller was
while frame:
fname = frame.f_code.co_filename
if fname is not None:
fname = Path(fname)
# in mne namespace, and
# (can't use is_relative_to here until 3.9)
if any(str(fname).startswith(rd) for rd in root_dirs) and (
# in tests/*.py
fname.parent.stem == 'tests' or
# or in a conftest.py
fname.stem == 'conftest.py'):
check = True
break
frame = frame.f_back
finally:
del frame
if check and download is not False:
raise RuntimeError(
f'Do not download dataset {repr(name)} in tests, pass '
f'{func}(download=False) to prevent accidental downloads')
def _download_mne_dataset(name, processor, path, force_update,
update_path, download, accept=False):
"""Aux function for downloading internal MNE datasets."""
import pooch
from mne.datasets._fetch import fetch_dataset
_check_in_testing_and_raise(name, download)
# import pooch library for handling the dataset downloading
dataset_params = MNE_DATASETS[name]
dataset_params['dataset_name'] = name
config_key = MNE_DATASETS[name]['config_key']
folder_name = MNE_DATASETS[name]['folder_name']
# get download path for specific dataset
path = _get_path(path=path, key=config_key, name=name)
# instantiate processor that unzips file
if processor == 'nested_untar':
processor_ = pooch.Untar(extract_dir=op.join(path, folder_name))
elif processor == 'nested_unzip':
processor_ = pooch.Unzip(extract_dir=op.join(path, folder_name))
else:
processor_ = processor
# handle case of multiple sub-datasets with different urls
if name == 'visual_92_categories':
dataset_params = []
for name in ['visual_92_categories_1', 'visual_92_categories_2']:
this_dataset = MNE_DATASETS[name]
this_dataset['dataset_name'] = name
dataset_params.append(this_dataset)
return fetch_dataset(dataset_params=dataset_params, processor=processor_,
path=path, force_update=force_update,
update_path=update_path, download=download,
accept=accept)
def _get_version(name):
"""Get a dataset version."""
from mne.datasets._fetch import fetch_dataset
if not has_dataset(name):
return None
dataset_params = MNE_DATASETS[name]
dataset_params['dataset_name'] = name
config_key = MNE_DATASETS[name]['config_key']
# get download path for specific dataset
path = _get_path(path=None, key=config_key, name=name)
return fetch_dataset(dataset_params, path=path,
return_version=True)[1]
def has_dataset(name):
"""Check for presence of a dataset.
Parameters
----------
name : str | dict
The dataset to check. Strings refer to one of the supported datasets
listed :ref:`here <datasets>`. A :class:`dict` can be used to check for
user-defined datasets (see the Notes section of :func:`fetch_dataset`),
and must contain keys ``dataset_name``, ``archive_name``, ``url``,
``folder_name``, ``hash``.
Returns
-------
has : bool
True if the dataset is present.
"""
from mne.datasets._fetch import fetch_dataset
if isinstance(name, dict):
dataset_name = name['dataset_name']
dataset_params = name
else:
dataset_name = 'spm' if name == 'spm_face' else name
dataset_params = MNE_DATASETS[dataset_name]
dataset_params['dataset_name'] = dataset_name
config_key = dataset_params['config_key']
# get download path for specific dataset
path = _get_path(path=None, key=config_key, name=dataset_name)
dp = fetch_dataset(dataset_params, path=path, download=False,
check_version=False)
if dataset_name.startswith('bst_'):
check = dataset_name
else:
check = MNE_DATASETS[dataset_name]['folder_name']
return str(dp).endswith(check)
@verbose
def _download_all_example_data(verbose=True):
"""Download all datasets used in examples and tutorials."""
# This function is designed primarily to be used by CircleCI, to:
#
# 1. Streamline data downloading
# 2. Make CircleCI fail early (rather than later) if some necessary data
# cannot be retrieved.
# 3. Avoid download statuses and timing biases in rendered examples.
#
# verbose=True by default so we get nice status messages.
# Consider adding datasets from here to CircleCI for PR-auto-build
from . import (sample, testing, misc, spm_face, somato, brainstorm,
eegbci, multimodal, opm, hf_sef, mtrf, fieldtrip_cmc,
kiloword, phantom_4dbti, sleep_physionet, limo,
fnirs_motor, refmeg_noise, fetch_infant_template,
fetch_fsaverage, ssvep, erp_core, epilepsy_ecog,
fetch_phantom)
sample_path = sample.data_path()
testing.data_path()
misc.data_path()
spm_face.data_path()
somato.data_path()
hf_sef.data_path()
multimodal.data_path()
fnirs_motor.data_path()
opm.data_path()
mtrf.data_path()
fieldtrip_cmc.data_path()
kiloword.data_path()
phantom_4dbti.data_path()
refmeg_noise.data_path()
ssvep.data_path()
epilepsy_ecog.data_path()
brainstorm.bst_raw.data_path(accept=True)
brainstorm.bst_auditory.data_path(accept=True)
brainstorm.bst_resting.data_path(accept=True)
phantom_path = brainstorm.bst_phantom_elekta.data_path(accept=True)
fetch_phantom('otaniemi', subjects_dir=phantom_path)
brainstorm.bst_phantom_ctf.data_path(accept=True)
eegbci.load_data(1, [6, 10, 14], update_path=True)
for subj in range(4):
eegbci.load_data(subj + 1, runs=[3], update_path=True)
sleep_physionet.age.fetch_data(subjects=[0, 1], recording=[1])
# If the user has SUBJECTS_DIR, respect it, if not, set it to the EEG one
# (probably on CircleCI, or otherwise advanced user)
fetch_fsaverage(None)
fetch_infant_template('6mo')
fetch_hcp_mmp_parcellation(
subjects_dir=sample_path / 'subjects', accept=True)
limo.load_data(subject=1, update_path=True)
erp_core.data_path()
@verbose
def fetch_aparc_sub_parcellation(subjects_dir=None, verbose=None):
"""Fetch the modified subdivided aparc parcellation.
This will download and install the subdivided aparc parcellation
:footcite:'KhanEtAl2018' files for
FreeSurfer's fsaverage to the specified directory.
Parameters
----------
subjects_dir : str | None
The subjects directory to use. The file will be placed in
``subjects_dir + '/fsaverage/label'``.
%(verbose)s
References
----------
.. footbibliography::
"""
import pooch
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
destination = op.join(subjects_dir, 'fsaverage', 'label')
urls = dict(lh='https://osf.io/p92yb/download',
rh='https://osf.io/4kxny/download')
hashes = dict(lh='9e4d8d6b90242b7e4b0145353436ef77',
rh='dd6464db8e7762d969fc1d8087cd211b')
for hemi in ('lh', 'rh'):
fname = f'{hemi}.aparc_sub.annot'
fpath = op.join(destination, fname)
if not op.isfile(fpath):
pooch.retrieve(
url=urls[hemi],
known_hash=f"md5:{hashes[hemi]}",
path=destination,
fname=fname
)
@verbose
def fetch_hcp_mmp_parcellation(subjects_dir=None, combine=True, *,
accept=False, verbose=None):
"""Fetch the HCP-MMP parcellation.
This will download and install the HCP-MMP parcellation
:footcite:`GlasserEtAl2016` files for FreeSurfer's fsaverage
:footcite:`Mills2016` to the specified directory.
Parameters
----------
subjects_dir : str | None
The subjects directory to use. The file will be placed in
``subjects_dir + '/fsaverage/label'``.
combine : bool
If True, also produce the combined/reduced set of 23 labels per
hemisphere as ``HCPMMP1_combined.annot``
:footcite:`GlasserEtAl2016supp`.
%(accept)s
%(verbose)s
Notes
-----
Use of this parcellation is subject to terms of use on the
`HCP-MMP webpage <https://balsa.wustl.edu/WN56>`_.
References
----------
.. footbibliography::
"""
import pooch
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
destination = op.join(subjects_dir, 'fsaverage', 'label')
fnames = [op.join(destination, '%s.HCPMMP1.annot' % hemi)
for hemi in ('lh', 'rh')]
urls = dict(lh='https://ndownloader.figshare.com/files/5528816',
rh='https://ndownloader.figshare.com/files/5528819')
hashes = dict(lh='46a102b59b2fb1bb4bd62d51bf02e975',
rh='75e96b331940227bbcb07c1c791c2463')
if not all(op.isfile(fname) for fname in fnames):
if accept or '--accept-hcpmmp-license' in sys.argv:
answer = 'y'
else:
answer = _safe_input('%s\nAgree (y/[n])? ' % _hcp_mmp_license_text)
if answer.lower() != 'y':
raise RuntimeError('You must agree to the license to use this '
'dataset')
for hemi, fpath in zip(('lh', 'rh'), fnames):
if not op.isfile(fpath):
fname = op.basename(fpath)
pooch.retrieve(
url=urls[hemi],
known_hash=f"md5:{hashes[hemi]}",
path=destination,
fname=fname
)
if combine:
fnames = [op.join(destination, '%s.HCPMMP1_combined.annot' % hemi)
for hemi in ('lh', 'rh')]
if all(op.isfile(fname) for fname in fnames):
return
# otherwise, let's make them
logger.info('Creating combined labels')
groups = OrderedDict([
('Primary Visual Cortex (V1)',
('V1',)),
('Early Visual Cortex',
('V2', 'V3', 'V4')),
('Dorsal Stream Visual Cortex',
('V3A', 'V3B', 'V6', 'V6A', 'V7', 'IPS1')),
('Ventral Stream Visual Cortex',
('V8', 'VVC', 'PIT', 'FFC', 'VMV1', 'VMV2', 'VMV3')),
('MT+ Complex and Neighboring Visual Areas',
('V3CD', 'LO1', 'LO2', 'LO3', 'V4t', 'FST', 'MT', 'MST', 'PH')),
('Somatosensory and Motor Cortex',
('4', '3a', '3b', '1', '2')),
('Paracentral Lobular and Mid Cingulate Cortex',
('24dd', '24dv', '6mp', '6ma', 'SCEF', '5m', '5L', '5mv',)),
('Premotor Cortex',
('55b', '6d', '6a', 'FEF', '6v', '6r', 'PEF')),
('Posterior Opercular Cortex',
('43', 'FOP1', 'OP4', 'OP1', 'OP2-3', 'PFcm')),
('Early Auditory Cortex',
('A1', 'LBelt', 'MBelt', 'PBelt', 'RI')),
('Auditory Association Cortex',
('A4', 'A5', 'STSdp', 'STSda', 'STSvp', 'STSva', 'STGa', 'TA2',)),
('Insular and Frontal Opercular Cortex',
('52', 'PI', 'Ig', 'PoI1', 'PoI2', 'FOP2', 'FOP3',
'MI', 'AVI', 'AAIC', 'Pir', 'FOP4', 'FOP5')),
('Medial Temporal Cortex',
('H', 'PreS', 'EC', 'PeEc', 'PHA1', 'PHA2', 'PHA3',)),
('Lateral Temporal Cortex',
('PHT', 'TE1p', 'TE1m', 'TE1a', 'TE2p', 'TE2a',
'TGv', 'TGd', 'TF',)),
('Temporo-Parieto-Occipital Junction',
('TPOJ1', 'TPOJ2', 'TPOJ3', 'STV', 'PSL',)),
('Superior Parietal Cortex',
('LIPv', 'LIPd', 'VIP', 'AIP', 'MIP',
'7PC', '7AL', '7Am', '7PL', '7Pm',)),
('Inferior Parietal Cortex',
('PGp', 'PGs', 'PGi', 'PFm', 'PF', 'PFt', 'PFop',
'IP0', 'IP1', 'IP2',)),
('Posterior Cingulate Cortex',
('DVT', 'ProS', 'POS1', 'POS2', 'RSC', 'v23ab', 'd23ab',
'31pv', '31pd', '31a', '23d', '23c', 'PCV', '7m',)),
('Anterior Cingulate and Medial Prefrontal Cortex',
('33pr', 'p24pr', 'a24pr', 'p24', 'a24', 'p32pr', 'a32pr', 'd32',
'p32', 's32', '8BM', '9m', '10v', '10r', '25',)),
('Orbital and Polar Frontal Cortex',
('47s', '47m', 'a47r', '11l', '13l',
'a10p', 'p10p', '10pp', '10d', 'OFC', 'pOFC',)),
('Inferior Frontal Cortex',
('44', '45', 'IFJp', 'IFJa', 'IFSp', 'IFSa', '47l', 'p47r',)),
('DorsoLateral Prefrontal Cortex',
('8C', '8Av', 'i6-8', 's6-8', 'SFL', '8BL', '9p', '9a', '8Ad',
'p9-46v', 'a9-46v', '46', '9-46d',)),
('???',
('???',))])
assert len(groups) == 23
labels_out = list()
for hemi in ('lh', 'rh'):
labels = read_labels_from_annot('fsaverage', 'HCPMMP1', hemi=hemi,
subjects_dir=subjects_dir,
sort=False)
label_names = [
'???' if label.name.startswith('???') else
label.name.split('_')[1] for label in labels]
used = np.zeros(len(labels), bool)
for key, want in groups.items():
assert '\t' not in key
these_labels = [li for li, label_name in enumerate(label_names)
if label_name in want]
assert not used[these_labels].any()
assert len(these_labels) == len(want)
used[these_labels] = True
these_labels = [labels[li] for li in these_labels]
# take a weighted average to get the color
# (here color == task activation)
w = np.array([len(label.vertices) for label in these_labels])
w = w / float(w.sum())
color = np.dot(w, [label.color for label in these_labels])
these_labels = sum(these_labels,
Label([], subject='fsaverage', hemi=hemi))
these_labels.name = key
these_labels.color = color
labels_out.append(these_labels)
assert used.all()
assert len(labels_out) == 46
for hemi, side in (('lh', 'left'), ('rh', 'right')):
table_name = './%s.fsaverage164.label.gii' % (side,)
write_labels_to_annot(labels_out, 'fsaverage', 'HCPMMP1_combined',
hemi=hemi, subjects_dir=subjects_dir,
sort=False, table_name=table_name)
def _manifest_check_download(manifest_path, destination, url, hash_):
import pooch
with open(manifest_path, 'r') as fid:
names = [name.strip() for name in fid.readlines()]
manifest_path = op.basename(manifest_path)
need = list()
for name in names:
if not op.isfile(op.join(destination, name)):
need.append(name)
logger.info('%d file%s missing from %s in %s'
% (len(need), _pl(need), manifest_path, destination))
if len(need) > 0:
with tempfile.TemporaryDirectory() as path:
logger.info('Downloading missing files remotely')
fname_path = op.join(path, 'temp.zip')
pooch.retrieve(
url=url,
known_hash=f"md5:{hash_}",
path=path,
fname=op.basename(fname_path)
)
logger.info('Extracting missing file%s' % (_pl(need),))
with zipfile.ZipFile(fname_path, 'r') as ff:
members = set(f for f in ff.namelist() if not f.endswith('/'))
missing = sorted(members.symmetric_difference(set(names)))
if len(missing):
raise RuntimeError('Zip file did not have correct names:'
'\n%s' % ('\n'.join(missing)))
for name in need:
ff.extract(name, path=destination)
logger.info('Successfully extracted %d file%s'
% (len(need), _pl(need)))
|