1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
|
# -*- coding: utf-8 -*-
# Authors: Romain Trachel <trachelr@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Alexandre Barachant <alexandre.barachant@gmail.com>
# Clemens Brunner <clemens.brunner@gmail.com>
# Jean-Remi King <jeanremi.king@gmail.com>
#
# License: BSD-3-Clause
import copy as cp
import numpy as np
from .base import BaseEstimator
from .mixin import TransformerMixin
from ..cov import _regularized_covariance
from ..defaults import (_BORDER_DEFAULT, _EXTRAPOLATE_DEFAULT,
_INTERPOLATION_DEFAULT)
from ..fixes import pinv
from ..utils import fill_doc, _check_option, _validate_type, copy_doc, warn
from ..viz.utils import _warn_deprecated_vmin_vmax
# TODO ↓↓↓↓↓ remove after 1.3 release
_TITLE_WARNING_MSG = (
'The "title" parameter is deprecated and will be removed in version 1.4. '
'Use "fig.suptitle()" instead.')
@fill_doc
class CSP(TransformerMixin, BaseEstimator):
"""M/EEG signal decomposition using the Common Spatial Patterns (CSP).
This class can be used as a supervised decomposition to estimate spatial
filters for feature extraction. CSP in the context of EEG was first
described in :footcite:`KolesEtAl1990`; a comprehensive tutorial on CSP can
be found in :footcite:`BlankertzEtAl2008`. Multi-class solving is
implemented from :footcite:`Grosse-WentrupBuss2008`.
Parameters
----------
n_components : int (default 4)
The number of components to decompose M/EEG signals. This number should
be set by cross-validation.
reg : float | str | None (default None)
If not None (same as ``'empirical'``, default), allow regularization
for covariance estimation. If float (between 0 and 1), shrinkage is
used. For str values, ``reg`` will be passed as ``method`` to
:func:`mne.compute_covariance`.
log : None | bool (default None)
If ``transform_into`` equals ``'average_power'`` and ``log`` is None or
True, then apply a log transform to standardize features, else features
are z-scored. If ``transform_into`` is ``'csp_space'``, ``log`` must be
None.
cov_est : 'concat' | 'epoch' (default 'concat')
If ``'concat'``, covariance matrices are estimated on concatenated
epochs for each class. If ``'epoch'``, covariance matrices are
estimated on each epoch separately and then averaged over each class.
transform_into : 'average_power' | 'csp_space' (default 'average_power')
If 'average_power' then ``self.transform`` will return the average
power of each spatial filter. If ``'csp_space'``, ``self.transform``
will return the data in CSP space.
norm_trace : bool (default False)
Normalize class covariance by its trace. Trace normalization is a step
of the original CSP algorithm :footcite:`KolesEtAl1990` to eliminate
magnitude variations in the EEG between individuals. It is not applied
in more recent work :footcite:`BlankertzEtAl2008`,
:footcite:`Grosse-WentrupBuss2008` and can have a negative impact on
pattern order.
cov_method_params : dict | None
Parameters to pass to :func:`mne.compute_covariance`.
.. versionadded:: 0.16
%(rank_none)s
.. versionadded:: 0.17
component_order : 'mutual_info' | 'alternate' (default 'mutual_info')
If ``'mutual_info'`` order components by decreasing mutual information
(in the two-class case this uses a simplification which orders
components by decreasing absolute deviation of the eigenvalues from 0.5
:footcite:`BarachantEtAl2010`). For the two-class case, ``'alternate'``
orders components by starting with the largest eigenvalue, followed by
the smallest, the second-to-largest, the second-to-smallest, and so on
:footcite:`BlankertzEtAl2008`.
.. versionadded:: 0.21
Attributes
----------
filters_ : ndarray, shape (n_channels, n_channels)
If fit, the CSP components used to decompose the data, else None.
patterns_ : ndarray, shape (n_channels, n_channels)
If fit, the CSP patterns used to restore M/EEG signals, else None.
mean_ : ndarray, shape (n_components,)
If fit, the mean squared power for each component.
std_ : ndarray, shape (n_components,)
If fit, the std squared power for each component.
See Also
--------
mne.preprocessing.Xdawn, SPoC
References
----------
.. footbibliography::
"""
def __init__(self, n_components=4, reg=None, log=None, cov_est='concat',
transform_into='average_power', norm_trace=False,
cov_method_params=None, rank=None,
component_order='mutual_info'):
# Init default CSP
if not isinstance(n_components, int):
raise ValueError('n_components must be an integer.')
self.n_components = n_components
self.rank = rank
self.reg = reg
# Init default cov_est
if not (cov_est == "concat" or cov_est == "epoch"):
raise ValueError("unknown covariance estimation method")
self.cov_est = cov_est
# Init default transform_into
self.transform_into = _check_option('transform_into', transform_into,
['average_power', 'csp_space'])
# Init default log
if transform_into == 'average_power':
if log is not None and not isinstance(log, bool):
raise ValueError('log must be a boolean if transform_into == '
'"average_power".')
else:
if log is not None:
raise ValueError('log must be a None if transform_into == '
'"csp_space".')
self.log = log
_validate_type(norm_trace, bool, 'norm_trace')
self.norm_trace = norm_trace
self.cov_method_params = cov_method_params
self.component_order = _check_option('component_order',
component_order,
('mutual_info', 'alternate'))
def _check_Xy(self, X, y=None):
"""Check input data."""
if not isinstance(X, np.ndarray):
raise ValueError("X should be of type ndarray (got %s)."
% type(X))
if y is not None:
if len(X) != len(y) or len(y) < 1:
raise ValueError('X and y must have the same length.')
if X.ndim < 3:
raise ValueError('X must have at least 3 dimensions.')
def fit(self, X, y):
"""Estimate the CSP decomposition on epochs.
Parameters
----------
X : ndarray, shape (n_epochs, n_channels, n_times)
The data on which to estimate the CSP.
y : array, shape (n_epochs,)
The class for each epoch.
Returns
-------
self : instance of CSP
Returns the modified instance.
"""
self._check_Xy(X, y)
self._classes = np.unique(y)
n_classes = len(self._classes)
if n_classes < 2:
raise ValueError("n_classes must be >= 2.")
if n_classes > 2 and self.component_order == 'alternate':
raise ValueError("component_order='alternate' requires two "
"classes, but data contains {} classes; use "
"component_order='mutual_info' "
"instead.".format(n_classes))
covs, sample_weights = self._compute_covariance_matrices(X, y)
eigen_vectors, eigen_values = self._decompose_covs(covs,
sample_weights)
ix = self._order_components(covs, sample_weights, eigen_vectors,
eigen_values, self.component_order)
eigen_vectors = eigen_vectors[:, ix]
self.filters_ = eigen_vectors.T
self.patterns_ = pinv(eigen_vectors)
pick_filters = self.filters_[:self.n_components]
X = np.asarray([np.dot(pick_filters, epoch) for epoch in X])
# compute features (mean power)
X = (X ** 2).mean(axis=2)
# To standardize features
self.mean_ = X.mean(axis=0)
self.std_ = X.std(axis=0)
return self
def transform(self, X):
"""Estimate epochs sources given the CSP filters.
Parameters
----------
X : array, shape (n_epochs, n_channels, n_times)
The data.
Returns
-------
X : ndarray
If self.transform_into == 'average_power' then returns the power of
CSP features averaged over time and shape (n_epochs, n_sources)
If self.transform_into == 'csp_space' then returns the data in CSP
space and shape is (n_epochs, n_sources, n_times).
"""
if not isinstance(X, np.ndarray):
raise ValueError("X should be of type ndarray (got %s)." % type(X))
if self.filters_ is None:
raise RuntimeError('No filters available. Please first fit CSP '
'decomposition.')
pick_filters = self.filters_[:self.n_components]
X = np.asarray([np.dot(pick_filters, epoch) for epoch in X])
# compute features (mean band power)
if self.transform_into == 'average_power':
X = (X ** 2).mean(axis=2)
log = True if self.log is None else self.log
if log:
X = np.log(X)
else:
X -= self.mean_
X /= self.std_
return X
@copy_doc(TransformerMixin.fit_transform)
def fit_transform(self, X, y, **fit_params): # noqa: D102
return super().fit_transform(X, y=y, **fit_params)
@fill_doc
def plot_patterns(
self, info, components=None, *, average=None, ch_type=None,
scalings=None, sensors=True, show_names=False, mask=None,
mask_params=None, contours=6, outlines='head', sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT, border=_BORDER_DEFAULT, res=64,
size=1, cmap='RdBu_r', vlim=(None, None), vmin=None, vmax=None,
cnorm=None, colorbar=True, cbar_fmt='%3.1f', units=None,
axes=None, name_format='CSP%01d', title=None, nrows=1,
ncols='auto', show=True):
"""Plot topographic patterns of components.
The patterns explain how the measured data was generated from the
neural sources (a.k.a. the forward model).
Parameters
----------
%(info_not_none)s Used for fitting. If not available, consider using
:func:`mne.create_info`.
components : float | array of float | None
The patterns to plot. If ``None``, all components will be shown.
%(average_plot_evoked_topomap)s
%(ch_type_topomap)s
scalings : dict | float | None
The scalings of the channel types to be applied for plotting.
If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_patterns_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 1.3
%(border_topomap)s
.. versionadded:: 1.3
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap)s
.. versionadded:: 1.3
%(vmin_vmax_topomap)s
.. deprecated:: v1.4
The ``vmin`` and ``vmax`` parameters will be removed in version
1.4. Please use the ``vlim`` parameter instead.
%(cnorm)s
.. versionadded:: 1.3
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
%(units_topomap)s
%(axes_evoked_plot_topomap)s
name_format : str
String format for topomap values. Defaults to "CSP%%01d".
%(title_none)s
.. deprecated:: v1.4
The ``title`` parameter will be removed in version 1.4. Please
use :meth:`fig.suptitle()<matplotlib.figure.Figure.suptitle>`
instead.
%(nrows_ncols_topomap)s
.. versionadded:: 1.3
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
"""
from .. import EvokedArray
vlim = _warn_deprecated_vmin_vmax(vlim, vmin, vmax, '1.4')
if units is None:
units = 'AU'
if components is None:
components = np.arange(self.n_components)
# set sampling frequency to have 1 component per time point
info = cp.deepcopy(info)
with info._unlock():
info['sfreq'] = 1.
# create an evoked
patterns = EvokedArray(self.patterns_.T, info, tmin=0)
# the call plot_topomap
fig = patterns.plot_topomap(
times=components, average=average, ch_type=ch_type,
scalings=scalings, sensors=sensors, show_names=show_names,
mask=mask, mask_params=mask_params, contours=contours,
outlines=outlines, sphere=sphere, image_interp=image_interp,
extrapolate=extrapolate, border=border, res=res, size=size,
cmap=cmap, vlim=vlim, cnorm=cnorm, colorbar=colorbar,
cbar_fmt=cbar_fmt, units=units, axes=axes, time_format=name_format,
nrows=nrows, ncols=ncols, show=show)
if title is not None:
warn(_TITLE_WARNING_MSG, FutureWarning)
fig.suptitle(title)
return fig
@fill_doc
def plot_filters(
self, info, components=None, *, average=None, ch_type=None,
scalings=None, sensors=True, show_names=False, mask=None,
mask_params=None, contours=6, outlines='head', sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT, border=_BORDER_DEFAULT, res=64,
size=1, cmap='RdBu_r', vlim=(None, None), vmin=None, vmax=None,
cnorm=None, colorbar=True, cbar_fmt='%3.1f', units=None,
axes=None, name_format='CSP%01d', title=None, nrows=1,
ncols='auto', show=True):
"""Plot topographic filters of components.
The filters are used to extract discriminant neural sources from
the measured data (a.k.a. the backward model).
Parameters
----------
%(info_not_none)s Used for fitting. If not available, consider using
:func:`mne.create_info`.
components : float | array of float | None
The patterns to plot. If ``None``, all components will be shown.
%(average_plot_evoked_topomap)s
%(ch_type_topomap)s
scalings : dict | float | None
The scalings of the channel types to be applied for plotting.
If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
%(sensors_topomap)s
%(show_names_topomap)s
%(mask_patterns_topomap)s
%(mask_params_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 1.3
%(border_topomap)s
.. versionadded:: 1.3
%(res_topomap)s
%(size_topomap)s
%(cmap_topomap)s
%(vlim_plot_topomap_psd)s
.. versionadded:: 1.3
%(vmin_vmax_topomap)s
.. deprecated:: v1.4
The ``vmin`` and ``vmax`` parameters will be removed in version
1.4. Please use the ``vlim`` parameter instead.
%(cnorm)s
.. versionadded:: 1.3
%(colorbar_topomap)s
%(cbar_fmt_topomap)s
%(units_topomap)s
%(axes_evoked_plot_topomap)s
name_format : str
String format for topomap values. Defaults to "CSP%%01d".
%(title_none)s
.. deprecated:: v1.4
The ``title`` parameter will be removed in version 1.4. Please
use :meth:`fig.suptitle()<matplotlib.figure.Figure.suptitle>`
instead.
%(nrows_ncols_topomap)s
.. versionadded:: 1.3
%(show)s
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
"""
from .. import EvokedArray
vlim = _warn_deprecated_vmin_vmax(vlim, vmin, vmax, '1.4')
if units is None:
units = 'AU'
if components is None:
components = np.arange(self.n_components)
# set sampling frequency to have 1 component per time point
info = cp.deepcopy(info)
with info._unlock():
info['sfreq'] = 1.
# create an evoked
filters = EvokedArray(self.filters_.T, info, tmin=0)
# the call plot_topomap
fig = filters.plot_topomap(
times=components, average=average, ch_type=ch_type,
scalings=scalings, sensors=sensors, show_names=show_names,
mask=mask, mask_params=mask_params, contours=contours,
outlines=outlines, sphere=sphere, image_interp=image_interp,
extrapolate=extrapolate, border=border, res=res, size=size,
cmap=cmap, vlim=vlim, cnorm=cnorm, colorbar=colorbar,
cbar_fmt=cbar_fmt, units=units, axes=axes, time_format=name_format,
nrows=nrows, ncols=ncols, show=show)
if title is not None:
warn(_TITLE_WARNING_MSG, FutureWarning)
fig.suptitle(title)
return fig
def _compute_covariance_matrices(self, X, y):
_, n_channels, _ = X.shape
if self.cov_est == "concat":
cov_estimator = self._concat_cov
elif self.cov_est == "epoch":
cov_estimator = self._epoch_cov
covs = []
sample_weights = []
for this_class in self._classes:
cov, weight = cov_estimator(X[y == this_class])
if self.norm_trace:
cov /= np.trace(cov)
covs.append(cov)
sample_weights.append(weight)
return np.stack(covs), np.array(sample_weights)
def _concat_cov(self, x_class):
"""Concatenate epochs before computing the covariance."""
_, n_channels, _ = x_class.shape
x_class = np.transpose(x_class, [1, 0, 2])
x_class = x_class.reshape(n_channels, -1)
cov = _regularized_covariance(
x_class, reg=self.reg, method_params=self.cov_method_params,
rank=self.rank)
weight = x_class.shape[0]
return cov, weight
def _epoch_cov(self, x_class):
"""Mean of per-epoch covariances."""
cov = sum(_regularized_covariance(
this_X, reg=self.reg,
method_params=self.cov_method_params,
rank=self.rank) for this_X in x_class)
cov /= len(x_class)
weight = len(x_class)
return cov, weight
def _decompose_covs(self, covs, sample_weights):
from scipy import linalg
n_classes = len(covs)
if n_classes == 2:
eigen_values, eigen_vectors = linalg.eigh(covs[0], covs.sum(0))
else:
# The multiclass case is adapted from
# http://github.com/alexandrebarachant/pyRiemann
eigen_vectors, D = _ajd_pham(covs)
eigen_vectors = self._normalize_eigenvectors(eigen_vectors.T, covs,
sample_weights)
eigen_values = None
return eigen_vectors, eigen_values
def _compute_mutual_info(self, covs, sample_weights, eigen_vectors):
class_probas = sample_weights / sample_weights.sum()
mutual_info = []
for jj in range(eigen_vectors.shape[1]):
aa, bb = 0, 0
for (cov, prob) in zip(covs, class_probas):
tmp = np.dot(np.dot(eigen_vectors[:, jj].T, cov),
eigen_vectors[:, jj])
aa += prob * np.log(np.sqrt(tmp))
bb += prob * (tmp ** 2 - 1)
mi = - (aa + (3.0 / 16) * (bb ** 2))
mutual_info.append(mi)
return mutual_info
def _normalize_eigenvectors(self, eigen_vectors, covs, sample_weights):
# Here we apply an euclidean mean. See pyRiemann for other metrics
mean_cov = np.average(covs, axis=0, weights=sample_weights)
for ii in range(eigen_vectors.shape[1]):
tmp = np.dot(np.dot(eigen_vectors[:, ii].T, mean_cov),
eigen_vectors[:, ii])
eigen_vectors[:, ii] /= np.sqrt(tmp)
return eigen_vectors
def _order_components(self, covs, sample_weights, eigen_vectors,
eigen_values, component_order):
n_classes = len(self._classes)
if component_order == 'mutual_info' and n_classes > 2:
mutual_info = self._compute_mutual_info(covs, sample_weights,
eigen_vectors)
ix = np.argsort(mutual_info)[::-1]
elif component_order == 'mutual_info' and n_classes == 2:
ix = np.argsort(np.abs(eigen_values - 0.5))[::-1]
elif component_order == 'alternate' and n_classes == 2:
i = np.argsort(eigen_values)
ix = np.empty_like(i)
ix[1::2] = i[:len(i) // 2]
ix[0::2] = i[len(i) // 2:][::-1]
return ix
def _ajd_pham(X, eps=1e-6, max_iter=15):
"""Approximate joint diagonalization based on Pham's algorithm.
This is a direct implementation of the PHAM's AJD algorithm [1].
Parameters
----------
X : ndarray, shape (n_epochs, n_channels, n_channels)
A set of covariance matrices to diagonalize.
eps : float, default 1e-6
The tolerance for stopping criterion.
max_iter : int, default 1000
The maximum number of iteration to reach convergence.
Returns
-------
V : ndarray, shape (n_channels, n_channels)
The diagonalizer.
D : ndarray, shape (n_epochs, n_channels, n_channels)
The set of quasi diagonal matrices.
References
----------
.. [1] Pham, Dinh Tuan. "Joint approximate diagonalization of positive
definite Hermitian matrices." SIAM Journal on Matrix Analysis and
Applications 22, no. 4 (2001): 1136-1152.
"""
# Adapted from http://github.com/alexandrebarachant/pyRiemann
n_epochs = X.shape[0]
# Reshape input matrix
A = np.concatenate(X, axis=0).T
# Init variables
n_times, n_m = A.shape
V = np.eye(n_times)
epsilon = n_times * (n_times - 1) * eps
for it in range(max_iter):
decr = 0
for ii in range(1, n_times):
for jj in range(ii):
Ii = np.arange(ii, n_m, n_times)
Ij = np.arange(jj, n_m, n_times)
c1 = A[ii, Ii]
c2 = A[jj, Ij]
g12 = np.mean(A[ii, Ij] / c1)
g21 = np.mean(A[ii, Ij] / c2)
omega21 = np.mean(c1 / c2)
omega12 = np.mean(c2 / c1)
omega = np.sqrt(omega12 * omega21)
tmp = np.sqrt(omega21 / omega12)
tmp1 = (tmp * g12 + g21) / (omega + 1)
tmp2 = (tmp * g12 - g21) / max(omega - 1, 1e-9)
h12 = tmp1 + tmp2
h21 = np.conj((tmp1 - tmp2) / tmp)
decr += n_epochs * (g12 * np.conj(h12) + g21 * h21) / 2.0
tmp = 1 + 1.j * 0.5 * np.imag(h12 * h21)
tmp = np.real(tmp + np.sqrt(tmp ** 2 - h12 * h21))
tau = np.array([[1, -h12 / tmp], [-h21 / tmp, 1]])
A[[ii, jj], :] = np.dot(tau, A[[ii, jj], :])
tmp = np.c_[A[:, Ii], A[:, Ij]]
tmp = np.reshape(tmp, (n_times * n_epochs, 2), order='F')
tmp = np.dot(tmp, tau.T)
tmp = np.reshape(tmp, (n_times, n_epochs * 2), order='F')
A[:, Ii] = tmp[:, :n_epochs]
A[:, Ij] = tmp[:, n_epochs:]
V[[ii, jj], :] = np.dot(tau, V[[ii, jj], :])
if decr < epsilon:
break
D = np.reshape(A, (n_times, -1, n_times)).transpose(1, 0, 2)
return V, D
@fill_doc
class SPoC(CSP):
"""Implementation of the SPoC spatial filtering.
Source Power Comodulation (SPoC) :footcite:`DahneEtAl2014` allows to
extract spatial filters and
patterns by using a target (continuous) variable in the decomposition
process in order to give preference to components whose power correlates
with the target variable.
SPoC can be seen as an extension of the CSP driven by a continuous
variable rather than a discrete variable. Typical applications include
extraction of motor patterns using EMG power or audio patterns using sound
envelope.
Parameters
----------
n_components : int
The number of components to decompose M/EEG signals.
reg : float | str | None (default None)
If not None (same as ``'empirical'``, default), allow
regularization for covariance estimation.
If float, shrinkage is used (0 <= shrinkage <= 1).
For str options, ``reg`` will be passed to ``method`` to
:func:`mne.compute_covariance`.
log : None | bool (default None)
If transform_into == 'average_power' and log is None or True, then
applies a log transform to standardize the features, else the features
are z-scored. If transform_into == 'csp_space', then log must be None.
transform_into : {'average_power', 'csp_space'}
If 'average_power' then self.transform will return the average power of
each spatial filter. If 'csp_space' self.transform will return the data
in CSP space. Defaults to 'average_power'.
cov_method_params : dict | None
Parameters to pass to :func:`mne.compute_covariance`.
.. versionadded:: 0.16
%(rank_none)s
.. versionadded:: 0.17
Attributes
----------
filters_ : ndarray, shape (n_channels, n_channels)
If fit, the SPoC spatial filters, else None.
patterns_ : ndarray, shape (n_channels, n_channels)
If fit, the SPoC spatial patterns, else None.
mean_ : ndarray, shape (n_components,)
If fit, the mean squared power for each component.
std_ : ndarray, shape (n_components,)
If fit, the std squared power for each component.
See Also
--------
mne.preprocessing.Xdawn, CSP
References
----------
.. footbibliography::
"""
def __init__(self, n_components=4, reg=None, log=None,
transform_into='average_power', cov_method_params=None,
rank=None):
"""Init of SPoC."""
super(SPoC, self).__init__(n_components=n_components, reg=reg, log=log,
cov_est="epoch", norm_trace=False,
transform_into=transform_into, rank=rank,
cov_method_params=cov_method_params)
# Covariance estimation have to be done on the single epoch level,
# unlike CSP where covariance estimation can also be achieved through
# concatenation of all epochs from the same class.
delattr(self, 'cov_est')
delattr(self, 'norm_trace')
def fit(self, X, y):
"""Estimate the SPoC decomposition on epochs.
Parameters
----------
X : ndarray, shape (n_epochs, n_channels, n_times)
The data on which to estimate the SPoC.
y : array, shape (n_epochs,)
The class for each epoch.
Returns
-------
self : instance of SPoC
Returns the modified instance.
"""
from scipy import linalg
self._check_Xy(X, y)
if len(np.unique(y)) < 2:
raise ValueError("y must have at least two distinct values.")
# The following code is directly copied from pyRiemann
# Normalize target variable
target = y.astype(np.float64)
target -= target.mean()
target /= target.std()
n_epochs, n_channels = X.shape[:2]
# Estimate single trial covariance
covs = np.empty((n_epochs, n_channels, n_channels))
for ii, epoch in enumerate(X):
covs[ii] = _regularized_covariance(
epoch, reg=self.reg, method_params=self.cov_method_params,
rank=self.rank)
C = covs.mean(0)
Cz = np.mean(covs * target[:, np.newaxis, np.newaxis], axis=0)
# solve eigenvalue decomposition
evals, evecs = linalg.eigh(Cz, C)
evals = evals.real
evecs = evecs.real
# sort vectors
ix = np.argsort(np.abs(evals))[::-1]
# sort eigenvectors
evecs = evecs[:, ix].T
# spatial patterns
self.patterns_ = linalg.pinv(evecs).T # n_channels x n_channels
self.filters_ = evecs # n_channels x n_channels
pick_filters = self.filters_[:self.n_components]
X = np.asarray([np.dot(pick_filters, epoch) for epoch in X])
# compute features (mean band power)
X = (X ** 2).mean(axis=-1)
# To standardize features
self.mean_ = X.mean(axis=0)
self.std_ = X.std(axis=0)
return self
def transform(self, X):
"""Estimate epochs sources given the SPoC filters.
Parameters
----------
X : array, shape (n_epochs, n_channels, n_times)
The data.
Returns
-------
X : ndarray
If self.transform_into == 'average_power' then returns the power of
CSP features averaged over time and shape (n_epochs, n_sources)
If self.transform_into == 'csp_space' then returns the data in CSP
space and shape is (n_epochs, n_sources, n_times).
"""
return super(SPoC, self).transform(X)
|