1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
# Authors: Chris Holdgraf <choldgraf@gmail.com>
#
# License: BSD-3-Clause
import os.path as op
import pytest
import numpy as np
from numpy import einsum
from numpy.fft import rfft, irfft
from numpy.testing import assert_array_equal, assert_allclose, assert_equal
from mne.utils import requires_sklearn, check_version
from mne.decoding import ReceptiveField, TimeDelayingRidge
from mne.decoding.receptive_field import (_delay_time_series, _SCORERS,
_times_to_delays, _delays_to_slice)
from mne.decoding.time_delaying_ridge import (_compute_reg_neighbors,
_compute_corrs)
data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(data_dir, 'test_raw.fif')
event_name = op.join(data_dir, 'test-eve.fif')
tmin, tmax = -0.1, 0.5
event_id = dict(aud_l=1, vis_l=3)
# Loading raw data
n_jobs_test = (1, 'cuda')
def test_compute_reg_neighbors():
"""Test fast calculation of laplacian regularizer."""
for reg_type in (
('ridge', 'ridge'),
('ridge', 'laplacian'),
('laplacian', 'ridge'),
('laplacian', 'laplacian')):
for n_ch_x, n_delays in (
(1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1),
(2, 2), (2, 3), (3, 2), (3, 3),
(2, 4), (4, 2), (3, 4), (4, 3), (4, 4),
(5, 4), (4, 5), (5, 5),
(20, 9), (9, 20)):
for normed in (True, False):
reg_direct = _compute_reg_neighbors(
n_ch_x, n_delays, reg_type, 'direct', normed=normed)
reg_csgraph = _compute_reg_neighbors(
n_ch_x, n_delays, reg_type, 'csgraph', normed=normed)
assert_allclose(
reg_direct, reg_csgraph, atol=1e-7,
err_msg='%s: %s' % (reg_type, (n_ch_x, n_delays)))
@requires_sklearn
def test_rank_deficiency():
"""Test signals that are rank deficient."""
# See GH#4253
from sklearn.linear_model import Ridge
N = 256
fs = 1.
tmin, tmax = -50, 100
reg = 0.1
rng = np.random.RandomState(0)
eeg = rng.randn(N, 1)
eeg *= 100
eeg = rfft(eeg, axis=0)
eeg[N // 4:] = 0 # rank-deficient lowpass
eeg = irfft(eeg, axis=0)
win = np.hanning(N // 8)
win /= win.mean()
y = np.apply_along_axis(np.convolve, 0, eeg, win, mode='same')
y += rng.randn(*y.shape) * 100
for est in (Ridge(reg), reg):
rf = ReceptiveField(tmin, tmax, fs, estimator=est, patterns=True)
rf.fit(eeg, y)
pred = rf.predict(eeg)
assert_equal(y.shape, pred.shape)
corr = np.corrcoef(y.ravel(), pred.ravel())[0, 1]
assert corr > 0.995
def test_time_delay():
"""Test that time-delaying w/ times and samples works properly."""
# Explicit delays + sfreq
X = np.random.RandomState(0).randn(1000, 2)
assert (X == 0).sum() == 0 # need this for later
test_tlims = [
((1, 2), 1),
((1, 1), 1),
((0, 2), 1),
((0, 1), 1),
((0, 0), 1),
((-1, 2), 1),
((-1, 1), 1),
((-1, 0), 1),
((-1, -1), 1),
((-2, 2), 1),
((-2, 1), 1),
((-2, 0), 1),
((-2, -1), 1),
((-2, -1), 1),
((0, .2), 10),
((-.1, .1), 10)]
for (tmin, tmax), isfreq in test_tlims:
# sfreq must be int/float
with pytest.raises(TypeError, match='`sfreq` must be an instance of'):
_delay_time_series(X, tmin, tmax, sfreq=[1])
# Delays must be int/float
with pytest.raises(TypeError, match='.*complex.*'):
_delay_time_series(X, np.complex128(tmin), tmax, 1)
# Make sure swapaxes works
start, stop = int(round(tmin * isfreq)), int(round(tmax * isfreq)) + 1
n_delays = stop - start
X_delayed = _delay_time_series(X, tmin, tmax, isfreq)
assert_equal(X_delayed.shape, (1000, 2, n_delays))
# Make sure delay slice is correct
delays = _times_to_delays(tmin, tmax, isfreq)
assert_array_equal(delays, np.arange(start, stop))
keep = _delays_to_slice(delays)
expected = np.where((X_delayed != 0).all(-1).all(-1))[0]
got = np.arange(len(X_delayed))[keep]
assert_array_equal(got, expected)
assert X_delayed[keep].shape[-1] > 0
assert (X_delayed[keep] == 0).sum() == 0
del_zero = int(round(-tmin * isfreq))
for ii in range(-2, 3):
idx = del_zero + ii
err_msg = '[%s,%s] (%s): %s %s' % (tmin, tmax, isfreq, ii, idx)
if 0 <= idx < X_delayed.shape[-1]:
if ii == 0:
assert_array_equal(X_delayed[:, :, idx], X,
err_msg=err_msg)
elif ii < 0: # negative delay
assert_array_equal(X_delayed[:ii, :, idx], X[-ii:, :],
err_msg=err_msg)
assert_array_equal(X_delayed[ii:, :, idx], 0.)
else:
assert_array_equal(X_delayed[ii:, :, idx], X[:-ii, :],
err_msg=err_msg)
assert_array_equal(X_delayed[:ii, :, idx], 0.)
@pytest.mark.slowtest # slow on Azure
@pytest.mark.parametrize('n_jobs', n_jobs_test)
@requires_sklearn
def test_receptive_field_basic(n_jobs):
"""Test model prep and fitting."""
from sklearn.linear_model import Ridge
# Make sure estimator pulling works
mod = Ridge()
rng = np.random.RandomState(1337)
# Test the receptive field model
# Define parameters for the model and simulate inputs + weights
tmin, tmax = -10., 0
n_feats = 3
rng = np.random.RandomState(0)
X = rng.randn(10000, n_feats)
w = rng.randn(int((tmax - tmin) + 1) * n_feats)
# Delay inputs and cut off first 4 values since they'll be cut in the fit
X_del = np.concatenate(
_delay_time_series(X, tmin, tmax, 1.).transpose(2, 0, 1), axis=1)
y = np.dot(X_del, w)
# Fit the model and test values
feature_names = ['feature_%i' % ii for ii in [0, 1, 2]]
rf = ReceptiveField(tmin, tmax, 1, feature_names, estimator=mod,
patterns=True)
rf.fit(X, y)
assert_array_equal(rf.delays_, np.arange(tmin, tmax + 1))
y_pred = rf.predict(X)
assert_allclose(y[rf.valid_samples_], y_pred[rf.valid_samples_], atol=1e-2)
scores = rf.score(X, y)
assert scores > .99
assert_allclose(rf.coef_.T.ravel(), w, atol=1e-3)
# Make sure different input shapes work
rf.fit(X[:, np.newaxis:], y[:, np.newaxis])
rf.fit(X, y[:, np.newaxis])
with pytest.raises(ValueError, match='If X has 3 .* y must have 2 or 3'):
rf.fit(X[..., np.newaxis], y)
with pytest.raises(ValueError, match='X must be shape'):
rf.fit(X[:, 0], y)
with pytest.raises(ValueError, match='X and y do not have the same n_epo'):
rf.fit(X[:, np.newaxis], np.tile(y[:, np.newaxis, np.newaxis],
[1, 2, 1]))
with pytest.raises(ValueError, match='X and y do not have the same n_tim'):
rf.fit(X, y[:-2])
with pytest.raises(ValueError, match='n_features in X does not match'):
rf.fit(X[:, :1], y)
# auto-naming features
feature_names = ['feature_%s' % ii for ii in [0, 1, 2]]
rf = ReceptiveField(tmin, tmax, 1, estimator=mod,
feature_names=feature_names)
assert_equal(rf.feature_names, feature_names)
rf = ReceptiveField(tmin, tmax, 1, estimator=mod)
rf.fit(X, y)
assert_equal(rf.feature_names, None)
# Float becomes ridge
rf = ReceptiveField(tmin, tmax, 1, ['one', 'two', 'three'], estimator=0)
str(rf) # repr works before fit
rf.fit(X, y)
assert isinstance(rf.estimator_, TimeDelayingRidge)
str(rf) # repr works after fit
rf = ReceptiveField(tmin, tmax, 1, ['one'], estimator=0)
rf.fit(X[:, [0]], y)
str(rf) # repr with one feature
# Should only accept estimators or floats
with pytest.raises(ValueError, match='`estimator` must be a float or'):
ReceptiveField(tmin, tmax, 1, estimator='foo').fit(X, y)
with pytest.raises(ValueError, match='`estimator` must be a float or'):
ReceptiveField(tmin, tmax, 1, estimator=np.array([1, 2, 3])).fit(X, y)
with pytest.raises(ValueError, match='tmin .* must be at most tmax'):
ReceptiveField(5, 4, 1).fit(X, y)
# scorers
for key, val in _SCORERS.items():
rf = ReceptiveField(tmin, tmax, 1, ['one'],
estimator=0, scoring=key, patterns=True)
rf.fit(X[:, [0]], y)
y_pred = rf.predict(X[:, [0]]).T.ravel()[:, np.newaxis]
assert_allclose(val(y[:, np.newaxis], y_pred,
multioutput='raw_values'),
rf.score(X[:, [0]], y), rtol=1e-2)
with pytest.raises(ValueError, match='inputs must be shape'):
_SCORERS['corrcoef'](y.ravel(), y_pred, multioutput='raw_values')
# Need correct scorers
with pytest.raises(ValueError, match='scoring must be one of'):
ReceptiveField(tmin, tmax, 1., scoring='foo').fit(X, y)
@pytest.mark.parametrize('n_jobs', n_jobs_test)
def test_time_delaying_fast_calc(n_jobs):
"""Test time delaying and fast calculations."""
X = np.array([[1, 2, 3], [5, 7, 11]]).T
# all negative
smin, smax = 1, 2
X_del = _delay_time_series(X, smin, smax, 1.)
# (n_times, n_features, n_delays) -> (n_times, n_features * n_delays)
X_del.shape = (X.shape[0], -1)
expected = np.array([[0, 1, 2], [0, 0, 1], [0, 5, 7], [0, 0, 5]]).T
assert_allclose(X_del, expected)
Xt_X = np.dot(X_del.T, X_del)
expected = [[5, 2, 19, 10], [2, 1, 7, 5], [19, 7, 74, 35], [10, 5, 35, 25]]
assert_allclose(Xt_X, expected)
x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
assert_allclose(x_xt, expected)
# all positive
smin, smax = -2, -1
X_del = _delay_time_series(X, smin, smax, 1.)
X_del.shape = (X.shape[0], -1)
expected = np.array([[3, 0, 0], [2, 3, 0], [11, 0, 0], [7, 11, 0]]).T
assert_allclose(X_del, expected)
Xt_X = np.dot(X_del.T, X_del)
expected = [[9, 6, 33, 21], [6, 13, 22, 47],
[33, 22, 121, 77], [21, 47, 77, 170]]
assert_allclose(Xt_X, expected)
x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
assert_allclose(x_xt, expected)
# both sides
smin, smax = -1, 1
X_del = _delay_time_series(X, smin, smax, 1.)
X_del.shape = (X.shape[0], -1)
expected = np.array([[2, 3, 0], [1, 2, 3], [0, 1, 2],
[7, 11, 0], [5, 7, 11], [0, 5, 7]]).T
assert_allclose(X_del, expected)
Xt_X = np.dot(X_del.T, X_del)
expected = [[13, 8, 3, 47, 31, 15],
[8, 14, 8, 29, 52, 31],
[3, 8, 5, 11, 29, 19],
[47, 29, 11, 170, 112, 55],
[31, 52, 29, 112, 195, 112],
[15, 31, 19, 55, 112, 74]]
assert_allclose(Xt_X, expected)
x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
assert_allclose(x_xt, expected)
# slightly harder to get the non-Toeplitz correction correct
X = np.array([[1, 2, 3, 5]]).T
smin, smax = 0, 3
X_del = _delay_time_series(X, smin, smax, 1.)
X_del.shape = (X.shape[0], -1)
expected = np.array([[1, 2, 3, 5], [0, 1, 2, 3],
[0, 0, 1, 2], [0, 0, 0, 1]]).T
assert_allclose(X_del, expected)
Xt_X = np.dot(X_del.T, X_del)
expected = [[39, 23, 13, 5], [23, 14, 8, 3], [13, 8, 5, 2], [5, 3, 2, 1]]
assert_allclose(Xt_X, expected)
x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
assert_allclose(x_xt, expected)
# even worse
X = np.array([[1, 2, 3], [5, 7, 11]]).T
smin, smax = 0, 2
X_del = _delay_time_series(X, smin, smax, 1.)
X_del.shape = (X.shape[0], -1)
expected = np.array([[1, 2, 3], [0, 1, 2], [0, 0, 1],
[5, 7, 11], [0, 5, 7], [0, 0, 5]]).T
assert_allclose(X_del, expected)
Xt_X = np.dot(X_del.T, X_del)
expected = np.array([[14, 8, 3, 52, 31, 15],
[8, 5, 2, 29, 19, 10],
[3, 2, 1, 11, 7, 5],
[52, 29, 11, 195, 112, 55],
[31, 19, 7, 112, 74, 35],
[15, 10, 5, 55, 35, 25]])
assert_allclose(Xt_X, expected)
x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
assert_allclose(x_xt, expected)
# And a bunch of random ones for good measure
rng = np.random.RandomState(0)
X = rng.randn(25, 3)
y = np.empty((25, 2))
vals = (0, -1, 1, -2, 2, -11, 11)
for smax in vals:
for smin in vals:
if smin > smax:
continue
for ii in range(X.shape[1]):
kernel = rng.randn(smax - smin + 1)
kernel -= np.mean(kernel)
y[:, ii % y.shape[-1]] = np.convolve(X[:, ii], kernel, 'same')
x_xt, x_yt, n_ch_x, _, _ = _compute_corrs(X, y, smin, smax + 1)
X_del = _delay_time_series(X, smin, smax, 1., fill_mean=False)
x_yt_true = einsum('tfd,to->ofd', X_del, y)
x_yt_true = np.reshape(x_yt_true, (x_yt_true.shape[0], -1)).T
assert_allclose(x_yt, x_yt_true, atol=1e-7, err_msg=(smin, smax))
X_del.shape = (X.shape[0], -1)
x_xt_true = np.dot(X_del.T, X_del).T
assert_allclose(x_xt, x_xt_true, atol=1e-7, err_msg=(smin, smax))
@pytest.mark.parametrize('n_jobs', n_jobs_test)
@requires_sklearn
def test_receptive_field_1d(n_jobs):
"""Test that the fast solving works like Ridge."""
from sklearn.linear_model import Ridge
rng = np.random.RandomState(0)
x = rng.randn(500, 1)
for delay in range(-2, 3):
y = np.zeros(500)
slims = [(-2, 4)]
if delay == 0:
y[:] = x[:, 0]
elif delay < 0:
y[:delay] = x[-delay:, 0]
slims += [(-4, -1)]
else:
y[delay:] = x[:-delay, 0]
slims += [(1, 2)]
for ndim in (1, 2):
y.shape = (y.shape[0],) + (1,) * (ndim - 1)
for slim in slims:
smin, smax = slim
lap = TimeDelayingRidge(smin, smax, 1., 0.1, 'laplacian',
fit_intercept=False, n_jobs=n_jobs)
for estimator in (Ridge(alpha=0.), Ridge(alpha=0.1), 0., 0.1,
lap):
for offset in (-100, 0, 100):
model = ReceptiveField(smin, smax, 1.,
estimator=estimator,
n_jobs=n_jobs)
use_x = x + offset
model.fit(use_x, y)
if estimator is lap:
continue # these checks are too stringent
assert_allclose(model.estimator_.intercept_, -offset,
atol=1e-1)
assert_array_equal(model.delays_,
np.arange(smin, smax + 1))
expected = (model.delays_ == delay).astype(float)
expected = expected[np.newaxis] # features
if y.ndim == 2:
expected = expected[np.newaxis] # outputs
assert_equal(model.coef_.ndim, ndim + 1)
assert_allclose(model.coef_, expected, atol=1e-3)
start = model.valid_samples_.start or 0
stop = len(use_x) - (model.valid_samples_.stop or 0)
assert stop - start >= 495
assert_allclose(
model.predict(use_x)[model.valid_samples_],
y[model.valid_samples_], atol=1e-2)
score = np.mean(model.score(use_x, y))
assert score > 0.9999
@pytest.mark.parametrize('n_jobs', n_jobs_test)
@requires_sklearn
def test_receptive_field_nd(n_jobs):
"""Test multidimensional support."""
from sklearn.linear_model import Ridge
# multidimensional
rng = np.random.RandomState(3)
x = rng.randn(1000, 3)
y = np.zeros((1000, 2))
smin, smax = 0, 5
# This is a weird assignment, but it's just a way to distribute some
# unique values at various delays, and "expected" explains how they
# should appear in the resulting RF
for ii in range(1, 5):
y[ii:, ii % 2] += (-1) ** ii * ii * x[:-ii, ii % 3]
y -= np.mean(y, axis=0)
x -= np.mean(x, axis=0)
x_off = x + 1e3
expected = [
[[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 4, 0],
[0, 0, 2, 0, 0, 0]],
[[0, 0, 0, -3, 0, 0],
[0, -1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]],
]
tdr_l = TimeDelayingRidge(smin, smax, 1., 0.1, 'laplacian', n_jobs=n_jobs)
tdr_nc = TimeDelayingRidge(smin, smax, 1., 0.1, n_jobs=n_jobs,
edge_correction=False)
for estimator, atol in zip((Ridge(alpha=0.), 0., 0.01, tdr_l, tdr_nc),
(1e-3, 1e-3, 1e-3, 5e-3, 5e-2)):
model = ReceptiveField(smin, smax, 1.,
estimator=estimator)
model.fit(x, y)
assert_array_equal(model.delays_,
np.arange(smin, smax + 1))
assert_allclose(model.coef_, expected, atol=atol)
tdr = TimeDelayingRidge(smin, smax, 1., 0.01, reg_type='foo',
n_jobs=n_jobs)
model = ReceptiveField(smin, smax, 1., estimator=tdr)
with pytest.raises(ValueError, match='reg_type entries must be one of'):
model.fit(x, y)
tdr = TimeDelayingRidge(smin, smax, 1., 0.01, reg_type=['laplacian'],
n_jobs=n_jobs)
model = ReceptiveField(smin, smax, 1., estimator=tdr)
with pytest.raises(ValueError, match='reg_type must have two elements'):
model.fit(x, y)
model = ReceptiveField(smin, smax, 1, estimator=tdr, fit_intercept=False)
with pytest.raises(ValueError, match='fit_intercept'):
model.fit(x, y)
# Now check the intercept_
tdr = TimeDelayingRidge(smin, smax, 1., 0., n_jobs=n_jobs)
tdr_no = TimeDelayingRidge(smin, smax, 1., 0., fit_intercept=False,
n_jobs=n_jobs)
for estimator in (Ridge(alpha=0.), tdr,
Ridge(alpha=0., fit_intercept=False), tdr_no):
# first with no intercept in the data
model = ReceptiveField(smin, smax, 1., estimator=estimator)
model.fit(x, y)
assert_allclose(model.estimator_.intercept_, 0., atol=1e-7,
err_msg=repr(estimator))
assert_allclose(model.coef_, expected, atol=1e-3,
err_msg=repr(estimator))
y_pred = model.predict(x)
assert_allclose(y_pred[model.valid_samples_],
y[model.valid_samples_],
atol=1e-2, err_msg=repr(estimator))
score = np.mean(model.score(x, y))
assert score > 0.9999
# now with an intercept in the data
model.fit(x_off, y)
if estimator.fit_intercept:
val = [-6000, 4000]
itol = 0.5
ctol = 5e-4
else:
val = itol = 0.
ctol = 2.
assert_allclose(model.estimator_.intercept_, val, atol=itol,
err_msg=repr(estimator))
assert_allclose(model.coef_, expected, atol=ctol, rtol=ctol,
err_msg=repr(estimator))
if estimator.fit_intercept:
ptol = 1e-2
stol = 0.999999
else:
ptol = 10
stol = 0.6
y_pred = model.predict(x_off)[model.valid_samples_]
assert_allclose(y_pred, y[model.valid_samples_],
atol=ptol, err_msg=repr(estimator))
score = np.mean(model.score(x_off, y))
assert score > stol, estimator
model = ReceptiveField(smin, smax, 1., fit_intercept=False)
model.fit(x_off, y)
assert_allclose(model.estimator_.intercept_, 0., atol=1e-7)
score = np.mean(model.score(x_off, y))
assert score > 0.6
def _make_data(n_feats, n_targets, n_samples, tmin, tmax):
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_feats)
w = rng.randn(int((tmax - tmin) + 1) * n_feats, n_targets)
# Delay inputs
X_del = np.concatenate(
_delay_time_series(X, tmin, tmax, 1.).transpose(2, 0, 1), axis=1)
y = np.dot(X_del, w)
return X, y
@requires_sklearn
def test_inverse_coef():
"""Test inverse coefficients computation."""
from sklearn.linear_model import Ridge
tmin, tmax = 0., 10.
n_feats, n_targets, n_samples = 3, 2, 1000
n_delays = int((tmax - tmin) + 1)
# Check coefficient dims, for all estimator types
X, y = _make_data(n_feats, n_targets, n_samples, tmin, tmax)
tdr = TimeDelayingRidge(tmin, tmax, 1., 0.1, 'laplacian')
for estimator in (0., 0.01, Ridge(alpha=0.), tdr):
rf = ReceptiveField(tmin, tmax, 1., estimator=estimator,
patterns=True)
rf.fit(X, y)
# For some reason there is no warning
if estimator and not check_version('numpy', '1.13'):
continue
inv_rf = ReceptiveField(tmin, tmax, 1., estimator=estimator,
patterns=True)
inv_rf.fit(y, X)
assert_array_equal(rf.coef_.shape, rf.patterns_.shape,
(n_targets, n_feats, n_delays))
assert_array_equal(inv_rf.coef_.shape, inv_rf.patterns_.shape,
(n_feats, n_targets, n_delays))
# we should have np.dot(patterns.T,coef) ~ np.eye(n)
c0 = rf.coef_.reshape(n_targets, n_feats * n_delays)
c1 = rf.patterns_.reshape(n_targets, n_feats * n_delays)
assert_allclose(np.dot(c0, c1.T), np.eye(c0.shape[0]), atol=0.2)
@requires_sklearn
def test_linalg_warning():
"""Test that warnings are issued when no regularization is applied."""
from sklearn.linear_model import Ridge
n_feats, n_targets, n_samples = 5, 60, 50
X, y = _make_data(n_feats, n_targets, n_samples, tmin, tmax)
for estimator in (0., Ridge(alpha=0.)):
rf = ReceptiveField(tmin, tmax, 1., estimator=estimator)
with pytest.warns((RuntimeWarning, UserWarning),
match='[Singular|scipy.linalg.solve]'):
rf.fit(y, X)
|