File: test_receptive_field.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (548 lines) | stat: -rw-r--r-- 22,844 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# Authors: Chris Holdgraf <choldgraf@gmail.com>
#
# License: BSD-3-Clause
import os.path as op

import pytest
import numpy as np

from numpy import einsum
from numpy.fft import rfft, irfft
from numpy.testing import assert_array_equal, assert_allclose, assert_equal

from mne.utils import requires_sklearn, check_version
from mne.decoding import ReceptiveField, TimeDelayingRidge
from mne.decoding.receptive_field import (_delay_time_series, _SCORERS,
                                          _times_to_delays, _delays_to_slice)
from mne.decoding.time_delaying_ridge import (_compute_reg_neighbors,
                                              _compute_corrs)


data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(data_dir, 'test_raw.fif')
event_name = op.join(data_dir, 'test-eve.fif')

tmin, tmax = -0.1, 0.5
event_id = dict(aud_l=1, vis_l=3)

# Loading raw data
n_jobs_test = (1, 'cuda')


def test_compute_reg_neighbors():
    """Test fast calculation of laplacian regularizer."""
    for reg_type in (
            ('ridge', 'ridge'),
            ('ridge', 'laplacian'),
            ('laplacian', 'ridge'),
            ('laplacian', 'laplacian')):
        for n_ch_x, n_delays in (
                (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1),
                (2, 2), (2, 3), (3, 2), (3, 3),
                (2, 4), (4, 2), (3, 4), (4, 3), (4, 4),
                (5, 4), (4, 5), (5, 5),
                (20, 9), (9, 20)):
            for normed in (True, False):
                reg_direct = _compute_reg_neighbors(
                    n_ch_x, n_delays, reg_type, 'direct', normed=normed)
                reg_csgraph = _compute_reg_neighbors(
                    n_ch_x, n_delays, reg_type, 'csgraph', normed=normed)
                assert_allclose(
                    reg_direct, reg_csgraph, atol=1e-7,
                    err_msg='%s: %s' % (reg_type, (n_ch_x, n_delays)))


@requires_sklearn
def test_rank_deficiency():
    """Test signals that are rank deficient."""
    # See GH#4253
    from sklearn.linear_model import Ridge
    N = 256
    fs = 1.
    tmin, tmax = -50, 100
    reg = 0.1
    rng = np.random.RandomState(0)
    eeg = rng.randn(N, 1)
    eeg *= 100
    eeg = rfft(eeg, axis=0)
    eeg[N // 4:] = 0  # rank-deficient lowpass
    eeg = irfft(eeg, axis=0)
    win = np.hanning(N // 8)
    win /= win.mean()
    y = np.apply_along_axis(np.convolve, 0, eeg, win, mode='same')
    y += rng.randn(*y.shape) * 100

    for est in (Ridge(reg), reg):
        rf = ReceptiveField(tmin, tmax, fs, estimator=est, patterns=True)
        rf.fit(eeg, y)
        pred = rf.predict(eeg)
        assert_equal(y.shape, pred.shape)
        corr = np.corrcoef(y.ravel(), pred.ravel())[0, 1]
        assert corr > 0.995


def test_time_delay():
    """Test that time-delaying w/ times and samples works properly."""
    # Explicit delays + sfreq
    X = np.random.RandomState(0).randn(1000, 2)
    assert (X == 0).sum() == 0  # need this for later
    test_tlims = [
        ((1, 2), 1),
        ((1, 1), 1),
        ((0, 2), 1),
        ((0, 1), 1),
        ((0, 0), 1),
        ((-1, 2), 1),
        ((-1, 1), 1),
        ((-1, 0), 1),
        ((-1, -1), 1),
        ((-2, 2), 1),
        ((-2, 1), 1),
        ((-2, 0), 1),
        ((-2, -1), 1),
        ((-2, -1), 1),
        ((0, .2), 10),
        ((-.1, .1), 10)]
    for (tmin, tmax), isfreq in test_tlims:
        # sfreq must be int/float
        with pytest.raises(TypeError, match='`sfreq` must be an instance of'):
            _delay_time_series(X, tmin, tmax, sfreq=[1])
        # Delays must be int/float
        with pytest.raises(TypeError, match='.*complex.*'):
            _delay_time_series(X, np.complex128(tmin), tmax, 1)
        # Make sure swapaxes works
        start, stop = int(round(tmin * isfreq)), int(round(tmax * isfreq)) + 1
        n_delays = stop - start
        X_delayed = _delay_time_series(X, tmin, tmax, isfreq)
        assert_equal(X_delayed.shape, (1000, 2, n_delays))
        # Make sure delay slice is correct
        delays = _times_to_delays(tmin, tmax, isfreq)
        assert_array_equal(delays, np.arange(start, stop))
        keep = _delays_to_slice(delays)
        expected = np.where((X_delayed != 0).all(-1).all(-1))[0]
        got = np.arange(len(X_delayed))[keep]
        assert_array_equal(got, expected)
        assert X_delayed[keep].shape[-1] > 0
        assert (X_delayed[keep] == 0).sum() == 0

        del_zero = int(round(-tmin * isfreq))
        for ii in range(-2, 3):
            idx = del_zero + ii
            err_msg = '[%s,%s] (%s): %s %s' % (tmin, tmax, isfreq, ii, idx)
            if 0 <= idx < X_delayed.shape[-1]:
                if ii == 0:
                    assert_array_equal(X_delayed[:, :, idx], X,
                                       err_msg=err_msg)
                elif ii < 0:  # negative delay
                    assert_array_equal(X_delayed[:ii, :, idx], X[-ii:, :],
                                       err_msg=err_msg)
                    assert_array_equal(X_delayed[ii:, :, idx], 0.)
                else:
                    assert_array_equal(X_delayed[ii:, :, idx], X[:-ii, :],
                                       err_msg=err_msg)
                    assert_array_equal(X_delayed[:ii, :, idx], 0.)


@pytest.mark.slowtest  # slow on Azure
@pytest.mark.parametrize('n_jobs', n_jobs_test)
@requires_sklearn
def test_receptive_field_basic(n_jobs):
    """Test model prep and fitting."""
    from sklearn.linear_model import Ridge
    # Make sure estimator pulling works
    mod = Ridge()
    rng = np.random.RandomState(1337)

    # Test the receptive field model
    # Define parameters for the model and simulate inputs + weights
    tmin, tmax = -10., 0
    n_feats = 3
    rng = np.random.RandomState(0)
    X = rng.randn(10000, n_feats)
    w = rng.randn(int((tmax - tmin) + 1) * n_feats)

    # Delay inputs and cut off first 4 values since they'll be cut in the fit
    X_del = np.concatenate(
        _delay_time_series(X, tmin, tmax, 1.).transpose(2, 0, 1), axis=1)
    y = np.dot(X_del, w)

    # Fit the model and test values
    feature_names = ['feature_%i' % ii for ii in [0, 1, 2]]
    rf = ReceptiveField(tmin, tmax, 1, feature_names, estimator=mod,
                        patterns=True)
    rf.fit(X, y)
    assert_array_equal(rf.delays_, np.arange(tmin, tmax + 1))

    y_pred = rf.predict(X)
    assert_allclose(y[rf.valid_samples_], y_pred[rf.valid_samples_], atol=1e-2)
    scores = rf.score(X, y)
    assert scores > .99
    assert_allclose(rf.coef_.T.ravel(), w, atol=1e-3)
    # Make sure different input shapes work
    rf.fit(X[:, np.newaxis:], y[:, np.newaxis])
    rf.fit(X, y[:, np.newaxis])
    with pytest.raises(ValueError, match='If X has 3 .* y must have 2 or 3'):
        rf.fit(X[..., np.newaxis], y)
    with pytest.raises(ValueError, match='X must be shape'):
        rf.fit(X[:, 0], y)
    with pytest.raises(ValueError, match='X and y do not have the same n_epo'):
        rf.fit(X[:, np.newaxis], np.tile(y[:, np.newaxis, np.newaxis],
                                         [1, 2, 1]))
    with pytest.raises(ValueError, match='X and y do not have the same n_tim'):
        rf.fit(X, y[:-2])
    with pytest.raises(ValueError, match='n_features in X does not match'):
        rf.fit(X[:, :1], y)
    # auto-naming features
    feature_names = ['feature_%s' % ii for ii in [0, 1, 2]]
    rf = ReceptiveField(tmin, tmax, 1, estimator=mod,
                        feature_names=feature_names)
    assert_equal(rf.feature_names, feature_names)
    rf = ReceptiveField(tmin, tmax, 1, estimator=mod)
    rf.fit(X, y)
    assert_equal(rf.feature_names, None)
    # Float becomes ridge
    rf = ReceptiveField(tmin, tmax, 1, ['one', 'two', 'three'], estimator=0)
    str(rf)  # repr works before fit
    rf.fit(X, y)
    assert isinstance(rf.estimator_, TimeDelayingRidge)
    str(rf)  # repr works after fit
    rf = ReceptiveField(tmin, tmax, 1, ['one'], estimator=0)
    rf.fit(X[:, [0]], y)
    str(rf)  # repr with one feature
    # Should only accept estimators or floats
    with pytest.raises(ValueError, match='`estimator` must be a float or'):
        ReceptiveField(tmin, tmax, 1, estimator='foo').fit(X, y)
    with pytest.raises(ValueError, match='`estimator` must be a float or'):
        ReceptiveField(tmin, tmax, 1, estimator=np.array([1, 2, 3])).fit(X, y)
    with pytest.raises(ValueError, match='tmin .* must be at most tmax'):
        ReceptiveField(5, 4, 1).fit(X, y)
    # scorers
    for key, val in _SCORERS.items():
        rf = ReceptiveField(tmin, tmax, 1, ['one'],
                            estimator=0, scoring=key, patterns=True)
        rf.fit(X[:, [0]], y)
        y_pred = rf.predict(X[:, [0]]).T.ravel()[:, np.newaxis]
        assert_allclose(val(y[:, np.newaxis], y_pred,
                            multioutput='raw_values'),
                        rf.score(X[:, [0]], y), rtol=1e-2)
    with pytest.raises(ValueError, match='inputs must be shape'):
        _SCORERS['corrcoef'](y.ravel(), y_pred, multioutput='raw_values')
    # Need correct scorers
    with pytest.raises(ValueError, match='scoring must be one of'):
        ReceptiveField(tmin, tmax, 1., scoring='foo').fit(X, y)


@pytest.mark.parametrize('n_jobs', n_jobs_test)
def test_time_delaying_fast_calc(n_jobs):
    """Test time delaying and fast calculations."""
    X = np.array([[1, 2, 3], [5, 7, 11]]).T
    # all negative
    smin, smax = 1, 2
    X_del = _delay_time_series(X, smin, smax, 1.)
    # (n_times, n_features, n_delays) -> (n_times, n_features * n_delays)
    X_del.shape = (X.shape[0], -1)
    expected = np.array([[0, 1, 2], [0, 0, 1], [0, 5, 7], [0, 0, 5]]).T
    assert_allclose(X_del, expected)
    Xt_X = np.dot(X_del.T, X_del)
    expected = [[5, 2, 19, 10], [2, 1, 7, 5], [19, 7, 74, 35], [10, 5, 35, 25]]
    assert_allclose(Xt_X, expected)
    x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
    assert_allclose(x_xt, expected)
    # all positive
    smin, smax = -2, -1
    X_del = _delay_time_series(X, smin, smax, 1.)
    X_del.shape = (X.shape[0], -1)
    expected = np.array([[3, 0, 0], [2, 3, 0], [11, 0, 0], [7, 11, 0]]).T
    assert_allclose(X_del, expected)
    Xt_X = np.dot(X_del.T, X_del)
    expected = [[9, 6, 33, 21], [6, 13, 22, 47],
                [33, 22, 121, 77], [21, 47, 77, 170]]
    assert_allclose(Xt_X, expected)
    x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
    assert_allclose(x_xt, expected)
    # both sides
    smin, smax = -1, 1
    X_del = _delay_time_series(X, smin, smax, 1.)
    X_del.shape = (X.shape[0], -1)
    expected = np.array([[2, 3, 0], [1, 2, 3], [0, 1, 2],
                         [7, 11, 0], [5, 7, 11], [0, 5, 7]]).T
    assert_allclose(X_del, expected)
    Xt_X = np.dot(X_del.T, X_del)
    expected = [[13, 8, 3, 47, 31, 15],
                [8, 14, 8, 29, 52, 31],
                [3, 8, 5, 11, 29, 19],
                [47, 29, 11, 170, 112, 55],
                [31, 52, 29, 112, 195, 112],
                [15, 31, 19, 55, 112, 74]]
    assert_allclose(Xt_X, expected)
    x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
    assert_allclose(x_xt, expected)

    # slightly harder to get the non-Toeplitz correction correct
    X = np.array([[1, 2, 3, 5]]).T
    smin, smax = 0, 3
    X_del = _delay_time_series(X, smin, smax, 1.)
    X_del.shape = (X.shape[0], -1)
    expected = np.array([[1, 2, 3, 5], [0, 1, 2, 3],
                         [0, 0, 1, 2], [0, 0, 0, 1]]).T
    assert_allclose(X_del, expected)
    Xt_X = np.dot(X_del.T, X_del)
    expected = [[39, 23, 13, 5], [23, 14, 8, 3], [13, 8, 5, 2], [5, 3, 2, 1]]
    assert_allclose(Xt_X, expected)
    x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
    assert_allclose(x_xt, expected)

    # even worse
    X = np.array([[1, 2, 3], [5, 7, 11]]).T
    smin, smax = 0, 2
    X_del = _delay_time_series(X, smin, smax, 1.)
    X_del.shape = (X.shape[0], -1)
    expected = np.array([[1, 2, 3], [0, 1, 2], [0, 0, 1],
                         [5, 7, 11], [0, 5, 7], [0, 0, 5]]).T
    assert_allclose(X_del, expected)
    Xt_X = np.dot(X_del.T, X_del)
    expected = np.array([[14, 8, 3, 52, 31, 15],
                         [8, 5, 2, 29, 19, 10],
                         [3, 2, 1, 11, 7, 5],
                         [52, 29, 11, 195, 112, 55],
                         [31, 19, 7, 112, 74, 35],
                         [15, 10, 5, 55, 35, 25]])
    assert_allclose(Xt_X, expected)
    x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
    assert_allclose(x_xt, expected)

    # And a bunch of random ones for good measure
    rng = np.random.RandomState(0)
    X = rng.randn(25, 3)
    y = np.empty((25, 2))
    vals = (0, -1, 1, -2, 2, -11, 11)
    for smax in vals:
        for smin in vals:
            if smin > smax:
                continue
            for ii in range(X.shape[1]):
                kernel = rng.randn(smax - smin + 1)
                kernel -= np.mean(kernel)
                y[:, ii % y.shape[-1]] = np.convolve(X[:, ii], kernel, 'same')
            x_xt, x_yt, n_ch_x, _, _ = _compute_corrs(X, y, smin, smax + 1)
            X_del = _delay_time_series(X, smin, smax, 1., fill_mean=False)
            x_yt_true = einsum('tfd,to->ofd', X_del, y)
            x_yt_true = np.reshape(x_yt_true, (x_yt_true.shape[0], -1)).T
            assert_allclose(x_yt, x_yt_true, atol=1e-7, err_msg=(smin, smax))
            X_del.shape = (X.shape[0], -1)
            x_xt_true = np.dot(X_del.T, X_del).T
            assert_allclose(x_xt, x_xt_true, atol=1e-7, err_msg=(smin, smax))


@pytest.mark.parametrize('n_jobs', n_jobs_test)
@requires_sklearn
def test_receptive_field_1d(n_jobs):
    """Test that the fast solving works like Ridge."""
    from sklearn.linear_model import Ridge
    rng = np.random.RandomState(0)
    x = rng.randn(500, 1)
    for delay in range(-2, 3):
        y = np.zeros(500)
        slims = [(-2, 4)]
        if delay == 0:
            y[:] = x[:, 0]
        elif delay < 0:
            y[:delay] = x[-delay:, 0]
            slims += [(-4, -1)]
        else:
            y[delay:] = x[:-delay, 0]
            slims += [(1, 2)]
        for ndim in (1, 2):
            y.shape = (y.shape[0],) + (1,) * (ndim - 1)
            for slim in slims:
                smin, smax = slim
                lap = TimeDelayingRidge(smin, smax, 1., 0.1, 'laplacian',
                                        fit_intercept=False, n_jobs=n_jobs)
                for estimator in (Ridge(alpha=0.), Ridge(alpha=0.1), 0., 0.1,
                                  lap):
                    for offset in (-100, 0, 100):
                        model = ReceptiveField(smin, smax, 1.,
                                               estimator=estimator,
                                               n_jobs=n_jobs)
                        use_x = x + offset
                        model.fit(use_x, y)
                        if estimator is lap:
                            continue  # these checks are too stringent
                        assert_allclose(model.estimator_.intercept_, -offset,
                                        atol=1e-1)
                        assert_array_equal(model.delays_,
                                           np.arange(smin, smax + 1))
                        expected = (model.delays_ == delay).astype(float)
                        expected = expected[np.newaxis]  # features
                        if y.ndim == 2:
                            expected = expected[np.newaxis]  # outputs
                        assert_equal(model.coef_.ndim, ndim + 1)
                        assert_allclose(model.coef_, expected, atol=1e-3)
                        start = model.valid_samples_.start or 0
                        stop = len(use_x) - (model.valid_samples_.stop or 0)
                        assert stop - start >= 495
                        assert_allclose(
                            model.predict(use_x)[model.valid_samples_],
                            y[model.valid_samples_], atol=1e-2)
                        score = np.mean(model.score(use_x, y))
                        assert score > 0.9999


@pytest.mark.parametrize('n_jobs', n_jobs_test)
@requires_sklearn
def test_receptive_field_nd(n_jobs):
    """Test multidimensional support."""
    from sklearn.linear_model import Ridge
    # multidimensional
    rng = np.random.RandomState(3)
    x = rng.randn(1000, 3)
    y = np.zeros((1000, 2))
    smin, smax = 0, 5
    # This is a weird assignment, but it's just a way to distribute some
    # unique values at various delays, and "expected" explains how they
    # should appear in the resulting RF
    for ii in range(1, 5):
        y[ii:, ii % 2] += (-1) ** ii * ii * x[:-ii, ii % 3]
    y -= np.mean(y, axis=0)
    x -= np.mean(x, axis=0)
    x_off = x + 1e3
    expected = [
        [[0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 4, 0],
         [0, 0, 2, 0, 0, 0]],
        [[0, 0, 0, -3, 0, 0],
         [0, -1, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0]],
    ]
    tdr_l = TimeDelayingRidge(smin, smax, 1., 0.1, 'laplacian', n_jobs=n_jobs)
    tdr_nc = TimeDelayingRidge(smin, smax, 1., 0.1, n_jobs=n_jobs,
                               edge_correction=False)
    for estimator, atol in zip((Ridge(alpha=0.), 0., 0.01, tdr_l, tdr_nc),
                               (1e-3, 1e-3, 1e-3, 5e-3, 5e-2)):
        model = ReceptiveField(smin, smax, 1.,
                               estimator=estimator)
        model.fit(x, y)
        assert_array_equal(model.delays_,
                           np.arange(smin, smax + 1))
        assert_allclose(model.coef_, expected, atol=atol)
    tdr = TimeDelayingRidge(smin, smax, 1., 0.01, reg_type='foo',
                            n_jobs=n_jobs)
    model = ReceptiveField(smin, smax, 1., estimator=tdr)
    with pytest.raises(ValueError, match='reg_type entries must be one of'):
        model.fit(x, y)
    tdr = TimeDelayingRidge(smin, smax, 1., 0.01, reg_type=['laplacian'],
                            n_jobs=n_jobs)
    model = ReceptiveField(smin, smax, 1., estimator=tdr)
    with pytest.raises(ValueError, match='reg_type must have two elements'):
        model.fit(x, y)
    model = ReceptiveField(smin, smax, 1, estimator=tdr, fit_intercept=False)
    with pytest.raises(ValueError, match='fit_intercept'):
        model.fit(x, y)

    # Now check the intercept_
    tdr = TimeDelayingRidge(smin, smax, 1., 0., n_jobs=n_jobs)
    tdr_no = TimeDelayingRidge(smin, smax, 1., 0., fit_intercept=False,
                               n_jobs=n_jobs)
    for estimator in (Ridge(alpha=0.), tdr,
                      Ridge(alpha=0., fit_intercept=False), tdr_no):
        # first with no intercept in the data
        model = ReceptiveField(smin, smax, 1., estimator=estimator)
        model.fit(x, y)
        assert_allclose(model.estimator_.intercept_, 0., atol=1e-7,
                        err_msg=repr(estimator))
        assert_allclose(model.coef_, expected, atol=1e-3,
                        err_msg=repr(estimator))
        y_pred = model.predict(x)
        assert_allclose(y_pred[model.valid_samples_],
                        y[model.valid_samples_],
                        atol=1e-2, err_msg=repr(estimator))
        score = np.mean(model.score(x, y))
        assert score > 0.9999

        # now with an intercept in the data
        model.fit(x_off, y)
        if estimator.fit_intercept:
            val = [-6000, 4000]
            itol = 0.5
            ctol = 5e-4
        else:
            val = itol = 0.
            ctol = 2.
        assert_allclose(model.estimator_.intercept_, val, atol=itol,
                        err_msg=repr(estimator))
        assert_allclose(model.coef_, expected, atol=ctol, rtol=ctol,
                        err_msg=repr(estimator))
        if estimator.fit_intercept:
            ptol = 1e-2
            stol = 0.999999
        else:
            ptol = 10
            stol = 0.6
        y_pred = model.predict(x_off)[model.valid_samples_]
        assert_allclose(y_pred, y[model.valid_samples_],
                        atol=ptol, err_msg=repr(estimator))
        score = np.mean(model.score(x_off, y))
        assert score > stol, estimator
        model = ReceptiveField(smin, smax, 1., fit_intercept=False)
        model.fit(x_off, y)
        assert_allclose(model.estimator_.intercept_, 0., atol=1e-7)
        score = np.mean(model.score(x_off, y))
        assert score > 0.6


def _make_data(n_feats, n_targets, n_samples, tmin, tmax):
    rng = np.random.RandomState(0)
    X = rng.randn(n_samples, n_feats)
    w = rng.randn(int((tmax - tmin) + 1) * n_feats, n_targets)
    # Delay inputs
    X_del = np.concatenate(
        _delay_time_series(X, tmin, tmax, 1.).transpose(2, 0, 1), axis=1)
    y = np.dot(X_del, w)
    return X, y


@requires_sklearn
def test_inverse_coef():
    """Test inverse coefficients computation."""
    from sklearn.linear_model import Ridge

    tmin, tmax = 0., 10.
    n_feats, n_targets, n_samples = 3, 2, 1000
    n_delays = int((tmax - tmin) + 1)

    # Check coefficient dims, for all estimator types
    X, y = _make_data(n_feats, n_targets, n_samples, tmin, tmax)
    tdr = TimeDelayingRidge(tmin, tmax, 1., 0.1, 'laplacian')
    for estimator in (0., 0.01, Ridge(alpha=0.), tdr):
        rf = ReceptiveField(tmin, tmax, 1., estimator=estimator,
                            patterns=True)
        rf.fit(X, y)
        # For some reason there is no warning
        if estimator and not check_version('numpy', '1.13'):
            continue
        inv_rf = ReceptiveField(tmin, tmax, 1., estimator=estimator,
                                patterns=True)
        inv_rf.fit(y, X)

        assert_array_equal(rf.coef_.shape, rf.patterns_.shape,
                           (n_targets, n_feats, n_delays))
        assert_array_equal(inv_rf.coef_.shape, inv_rf.patterns_.shape,
                           (n_feats, n_targets, n_delays))

        # we should have np.dot(patterns.T,coef) ~ np.eye(n)
        c0 = rf.coef_.reshape(n_targets, n_feats * n_delays)
        c1 = rf.patterns_.reshape(n_targets, n_feats * n_delays)
        assert_allclose(np.dot(c0, c1.T), np.eye(c0.shape[0]), atol=0.2)


@requires_sklearn
def test_linalg_warning():
    """Test that warnings are issued when no regularization is applied."""
    from sklearn.linear_model import Ridge
    n_feats, n_targets, n_samples = 5, 60, 50
    X, y = _make_data(n_feats, n_targets, n_samples, tmin, tmax)
    for estimator in (0., Ridge(alpha=0.)):
        rf = ReceptiveField(tmin, tmax, 1., estimator=estimator)
        with pytest.warns((RuntimeWarning, UserWarning),
                          match='[Singular|scipy.linalg.solve]'):
            rf.fit(y, X)