1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
# Author: Denis A. Engemann <denis.engemann@gmail.com>
# Victoria Peterson <victoriapeterson09@gmail.com>
# License: BSD-3-Clause
import numpy as np
import pytest
from numpy.testing import (assert_array_almost_equal, assert_array_equal)
from mne import io
from mne.time_frequency import psd_array_welch
from mne.decoding.ssd import SSD
from mne.utils import requires_sklearn
from mne.filter import filter_data
from mne import create_info
from mne.decoding import CSP
freqs_sig = 9, 12
freqs_noise = 8, 13
def simulate_data(freqs_sig=[9, 12], n_trials=100, n_channels=20,
n_samples=500, samples_per_second=250,
n_components=5, SNR=0.05, random_state=42):
"""Simulate data according to an instantaneous mixin model.
Data are simulated in the statistical source space, where n=n_components
sources contain the peak of interest.
"""
rng = np.random.RandomState(random_state)
filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
l_trans_bandwidth=1, h_trans_bandwidth=1,
fir_design='firwin')
# generate an orthogonal mixin matrix
mixing_mat = np.linalg.svd(rng.randn(n_channels, n_channels))[0]
# define sources
S_s = rng.randn(n_trials * n_samples, n_components)
# filter source in the specific freq. band of interest
S_s = filter_data(S_s.T, samples_per_second, **filt_params_signal).T
S_n = rng.randn(n_trials * n_samples, n_channels - n_components)
S = np.hstack((S_s, S_n))
# mix data
X_s = np.dot(mixing_mat[:, :n_components], S_s.T).T
X_n = np.dot(mixing_mat[:, n_components:], S_n.T).T
# add noise
X_s = X_s / np.linalg.norm(X_s, 'fro')
X_n = X_n / np.linalg.norm(X_n, 'fro')
X = SNR * X_s + (1 - SNR) * X_n
X = X.T
S = S.T
return X, mixing_mat, S
@pytest.mark.slowtest
def test_ssd():
"""Test Common Spatial Patterns algorithm on raw data."""
X, A, S = simulate_data()
sf = 250
n_channels = X.shape[0]
info = create_info(ch_names=n_channels, sfreq=sf, ch_types='eeg')
n_components_true = 5
# Init
filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
ssd = SSD(info, filt_params_signal, filt_params_noise)
# freq no int
freq = 'foo'
filt_params_signal = dict(l_freq=freq, h_freq=freqs_sig[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
with pytest.raises(TypeError, match='must be an instance '):
ssd = SSD(info, filt_params_signal, filt_params_noise)
# Wrongly specified noise band
freq = 2
filt_params_signal = dict(l_freq=freq, h_freq=freqs_sig[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
with pytest.raises(ValueError, match='Wrongly specified '):
ssd = SSD(info, filt_params_signal, filt_params_noise)
# filt param no dict
filt_params_signal = freqs_sig
filt_params_noise = freqs_noise
with pytest.raises(ValueError, match='must be defined'):
ssd = SSD(info, filt_params_signal, filt_params_noise)
# Data type
filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
ssd = SSD(info, filt_params_signal, filt_params_noise)
raw = io.RawArray(X, info)
pytest.raises(TypeError, ssd.fit, raw)
# check non-boolean return_filtered
with pytest.raises(ValueError, match='return_filtered'):
ssd = SSD(info, filt_params_signal, filt_params_noise,
return_filtered=0)
# check non-boolean sort_by_spectral_ratio
with pytest.raises(ValueError, match='sort_by_spectral_ratio'):
ssd = SSD(info, filt_params_signal, filt_params_noise,
sort_by_spectral_ratio=0)
# More than 1 channel type
ch_types = np.reshape([['mag'] * 10, ['eeg'] * 10], n_channels)
info_2 = create_info(ch_names=n_channels, sfreq=sf, ch_types=ch_types)
with pytest.raises(ValueError, match='At this point SSD'):
ssd = SSD(info_2, filt_params_signal, filt_params_noise)
# Number of channels
info_3 = create_info(ch_names=n_channels + 1, sfreq=sf, ch_types='eeg')
ssd = SSD(info_3, filt_params_signal, filt_params_noise)
pytest.raises(ValueError, ssd.fit, X)
# Fit
n_components = 10
ssd = SSD(info, filt_params_signal, filt_params_noise,
n_components=n_components)
# Call transform before fit
pytest.raises(AttributeError, ssd.transform, X)
# Check outputs
ssd.fit(X)
assert (ssd.filters_.shape == (n_channels, n_channels))
assert (ssd.patterns_.shape == (n_channels, n_channels))
# Transform
X_ssd = ssd.fit_transform(X)
assert (X_ssd.shape[0] == n_components)
# back and forward
ssd = SSD(info, filt_params_signal, filt_params_noise,
n_components=None, sort_by_spectral_ratio=False)
ssd.fit(X)
X_denoised = ssd.apply(X)
assert_array_almost_equal(X_denoised, X)
# denoised by low-rank-factorization
ssd = SSD(info, filt_params_signal, filt_params_noise,
n_components=n_components, sort_by_spectral_ratio=True)
ssd.fit(X)
X_denoised = ssd.apply(X)
assert (np.linalg.matrix_rank(X_denoised) == n_components)
# Power ratio ordering
ssd = SSD(info, filt_params_signal, filt_params_noise,
n_components=None, sort_by_spectral_ratio=False)
ssd.fit(X)
spec_ratio, sorter_spec = ssd.get_spectral_ratio(ssd.transform(X))
# since we now that the number of true components is 5, the relative
# difference should be low for the first 5 components and then increases
index_diff = np.argmax(-np.diff(spec_ratio))
assert index_diff == n_components_true - 1
# Check detected peaks
# fit ssd
n_components = n_components_true
filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
ssd = SSD(info, filt_params_signal, filt_params_noise,
n_components=n_components, sort_by_spectral_ratio=False)
ssd.fit(X)
out = ssd.transform(X)
psd_out, _ = psd_array_welch(out[0], sfreq=250, n_fft=250)
psd_S, _ = psd_array_welch(S[0], sfreq=250, n_fft=250)
corr = np.abs(np.corrcoef((psd_out, psd_S))[0, 1])
assert np.abs(corr) > 0.95
# Check pattern estimation
# Since there is no exact ordering of the recovered patterns
# a pair-wise greedy search will be done
error = list()
for ii in range(n_channels):
corr = np.abs(np.corrcoef(ssd.patterns_[ii, :].T, A[:, 0])[0, 1])
error.append(1 - corr)
min_err = np.min(error)
assert min_err < 0.3 # threshold taken from SSD original paper
def test_ssd_epoched_data():
"""Test Common Spatial Patterns algorithm on epoched data.
Compare the outputs when raw data is used.
"""
X, A, S = simulate_data(n_trials=100, n_channels=20, n_samples=500)
sf = 250
n_channels = X.shape[0]
info = create_info(ch_names=n_channels, sfreq=sf, ch_types='eeg')
n_components_true = 5
# Build epochs as sliding windows over the continuous raw file
# Epoch length is 1 second
X_e = np.reshape(X, (100, 20, 500))
# Fit
filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
l_trans_bandwidth=4, h_trans_bandwidth=4)
filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
l_trans_bandwidth=4, h_trans_bandwidth=4)
# ssd on epochs
ssd_e = SSD(info, filt_params_signal, filt_params_noise)
ssd_e.fit(X_e)
# ssd on raw
ssd = SSD(info, filt_params_signal, filt_params_noise)
ssd.fit(X)
# Check if the 5 first 5 components are the same for both
_, sorter_spec_e = ssd_e.get_spectral_ratio(ssd_e.transform(X_e))
_, sorter_spec = ssd.get_spectral_ratio(ssd.transform(X))
assert_array_equal(sorter_spec_e[:n_components_true],
sorter_spec[:n_components_true])
@requires_sklearn
def test_ssd_pipeline():
"""Test if SSD works in a pipeline."""
from sklearn.pipeline import Pipeline
sf = 250
X, A, S = simulate_data(n_trials=100, n_channels=20, n_samples=500)
X_e = np.reshape(X, (100, 20, 500))
# define bynary random output
y = np.random.randint(2, size=100)
info = create_info(ch_names=20, sfreq=sf, ch_types='eeg')
filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
l_trans_bandwidth=4, h_trans_bandwidth=4)
filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
l_trans_bandwidth=4, h_trans_bandwidth=4)
ssd = SSD(info, filt_params_signal, filt_params_noise)
csp = CSP()
pipe = Pipeline([('SSD', ssd), ('CSP', csp)])
pipe.set_params(SSD__n_components=5)
pipe.set_params(CSP__n_components=2)
out = pipe.fit_transform(X_e, y)
assert (out.shape == (100, 2))
assert (pipe.get_params()['SSD__n_components'] == 5)
def test_sorting():
"""Test sorting learning during training."""
X, _, _ = simulate_data(n_trials=100, n_channels=20, n_samples=500)
# Epoch length is 1 second
X = np.reshape(X, (100, 20, 500))
# split data
Xtr, Xte = X[:80], X[80:]
sf = 250
n_channels = Xtr.shape[1]
info = create_info(ch_names=n_channels, sfreq=sf, ch_types='eeg')
filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
l_trans_bandwidth=4, h_trans_bandwidth=4)
filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
l_trans_bandwidth=4, h_trans_bandwidth=4)
# check sort_by_spectral_ratio set to False
ssd = SSD(info, filt_params_signal, filt_params_noise,
n_components=None, sort_by_spectral_ratio=False)
ssd.fit(Xtr)
_, sorter_tr = ssd.get_spectral_ratio(ssd.transform(Xtr))
_, sorter_te = ssd.get_spectral_ratio(ssd.transform(Xte))
assert any(sorter_tr != sorter_te)
# check sort_by_spectral_ratio set to True
ssd = SSD(info, filt_params_signal, filt_params_noise,
n_components=None, sort_by_spectral_ratio=True)
ssd.fit(Xtr)
# check sorters
sorter_in = ssd.sorter_spec
ssd = SSD(info, filt_params_signal, filt_params_noise,
n_components=None, sort_by_spectral_ratio=False)
ssd.fit(Xtr)
_, sorter_out = ssd.get_spectral_ratio(ssd.transform(Xtr))
assert all(sorter_in == sorter_out)
def test_return_filtered():
"""Test return filtered option."""
# Check return_filtered
# Simulated more noise data and with broader frequency than the desired
X, _, _ = simulate_data(SNR=0.9, freqs_sig=[4, 13])
sf = 250
n_channels = X.shape[0]
info = create_info(ch_names=n_channels, sfreq=sf, ch_types='eeg')
filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
l_trans_bandwidth=1, h_trans_bandwidth=1)
# return filtered to true
ssd = SSD(info, filt_params_signal, filt_params_noise,
sort_by_spectral_ratio=False, return_filtered=True)
ssd.fit(X)
out = ssd.transform(X)
psd_out, freqs = psd_array_welch(out[0], sfreq=250, n_fft=250)
freqs_up = int(freqs[psd_out > 0.5][0]), int(freqs[psd_out > 0.5][-1])
assert (freqs_up == freqs_sig)
# return filtered to false
ssd = SSD(info, filt_params_signal, filt_params_noise,
sort_by_spectral_ratio=False, return_filtered=False)
ssd.fit(X)
out = ssd.transform(X)
psd_out, freqs = psd_array_welch(out[0], sfreq=250, n_fft=250)
freqs_up = int(freqs[psd_out > 0.5][0]), int(freqs[psd_out > 0.5][-1])
assert (freqs_up != freqs_sig)
|