File: test_ssd.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (324 lines) | stat: -rw-r--r-- 12,814 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Author: Denis A. Engemann <denis.engemann@gmail.com>
#         Victoria Peterson <victoriapeterson09@gmail.com>
# License: BSD-3-Clause

import numpy as np
import pytest
from numpy.testing import (assert_array_almost_equal, assert_array_equal)
from mne import io
from mne.time_frequency import psd_array_welch
from mne.decoding.ssd import SSD
from mne.utils import requires_sklearn
from mne.filter import filter_data
from mne import create_info
from mne.decoding import CSP

freqs_sig = 9, 12
freqs_noise = 8, 13


def simulate_data(freqs_sig=[9, 12], n_trials=100, n_channels=20,
                  n_samples=500, samples_per_second=250,
                  n_components=5, SNR=0.05, random_state=42):
    """Simulate data according to an instantaneous mixin model.

    Data are simulated in the statistical source space, where n=n_components
    sources contain the peak of interest.
    """
    rng = np.random.RandomState(random_state)

    filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
                              l_trans_bandwidth=1, h_trans_bandwidth=1,
                              fir_design='firwin')

    # generate an orthogonal mixin matrix
    mixing_mat = np.linalg.svd(rng.randn(n_channels, n_channels))[0]
    # define sources
    S_s = rng.randn(n_trials * n_samples, n_components)
    # filter source in the specific freq. band of interest
    S_s = filter_data(S_s.T, samples_per_second, **filt_params_signal).T
    S_n = rng.randn(n_trials * n_samples, n_channels - n_components)
    S = np.hstack((S_s, S_n))
    # mix data
    X_s = np.dot(mixing_mat[:, :n_components], S_s.T).T
    X_n = np.dot(mixing_mat[:, n_components:], S_n.T).T
    # add noise
    X_s = X_s / np.linalg.norm(X_s, 'fro')
    X_n = X_n / np.linalg.norm(X_n, 'fro')
    X = SNR * X_s + (1 - SNR) * X_n
    X = X.T
    S = S.T
    return X, mixing_mat, S


@pytest.mark.slowtest
def test_ssd():
    """Test Common Spatial Patterns algorithm on raw data."""
    X, A, S = simulate_data()
    sf = 250
    n_channels = X.shape[0]
    info = create_info(ch_names=n_channels, sfreq=sf, ch_types='eeg')
    n_components_true = 5

    # Init
    filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
                              l_trans_bandwidth=1, h_trans_bandwidth=1)
    filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
                             l_trans_bandwidth=1, h_trans_bandwidth=1)
    ssd = SSD(info, filt_params_signal, filt_params_noise)
    # freq no int
    freq = 'foo'
    filt_params_signal = dict(l_freq=freq, h_freq=freqs_sig[1],
                              l_trans_bandwidth=1, h_trans_bandwidth=1)
    filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
                             l_trans_bandwidth=1, h_trans_bandwidth=1)
    with pytest.raises(TypeError, match='must be an instance '):
        ssd = SSD(info, filt_params_signal, filt_params_noise)

    # Wrongly specified noise band
    freq = 2
    filt_params_signal = dict(l_freq=freq, h_freq=freqs_sig[1],
                              l_trans_bandwidth=1, h_trans_bandwidth=1)
    filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
                             l_trans_bandwidth=1, h_trans_bandwidth=1)
    with pytest.raises(ValueError, match='Wrongly specified '):
        ssd = SSD(info, filt_params_signal, filt_params_noise)

    # filt param no dict
    filt_params_signal = freqs_sig
    filt_params_noise = freqs_noise
    with pytest.raises(ValueError, match='must be defined'):
        ssd = SSD(info, filt_params_signal, filt_params_noise)

    # Data type
    filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
                              l_trans_bandwidth=1, h_trans_bandwidth=1)
    filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
                             l_trans_bandwidth=1, h_trans_bandwidth=1)
    ssd = SSD(info, filt_params_signal, filt_params_noise)
    raw = io.RawArray(X, info)

    pytest.raises(TypeError, ssd.fit, raw)

    # check non-boolean return_filtered
    with pytest.raises(ValueError, match='return_filtered'):
        ssd = SSD(info, filt_params_signal, filt_params_noise,
                  return_filtered=0)

    # check non-boolean sort_by_spectral_ratio
    with pytest.raises(ValueError, match='sort_by_spectral_ratio'):
        ssd = SSD(info, filt_params_signal, filt_params_noise,
                  sort_by_spectral_ratio=0)

    # More than 1 channel type
    ch_types = np.reshape([['mag'] * 10, ['eeg'] * 10], n_channels)
    info_2 = create_info(ch_names=n_channels, sfreq=sf, ch_types=ch_types)

    with pytest.raises(ValueError, match='At this point SSD'):
        ssd = SSD(info_2, filt_params_signal, filt_params_noise)

    # Number of channels
    info_3 = create_info(ch_names=n_channels + 1, sfreq=sf, ch_types='eeg')
    ssd = SSD(info_3, filt_params_signal, filt_params_noise)
    pytest.raises(ValueError, ssd.fit, X)

    # Fit
    n_components = 10
    ssd = SSD(info, filt_params_signal, filt_params_noise,
              n_components=n_components)

    # Call transform before fit
    pytest.raises(AttributeError, ssd.transform, X)

    # Check outputs
    ssd.fit(X)

    assert (ssd.filters_.shape == (n_channels, n_channels))
    assert (ssd.patterns_.shape == (n_channels, n_channels))

    # Transform
    X_ssd = ssd.fit_transform(X)
    assert (X_ssd.shape[0] == n_components)
    # back and forward
    ssd = SSD(info, filt_params_signal, filt_params_noise,
              n_components=None, sort_by_spectral_ratio=False)
    ssd.fit(X)
    X_denoised = ssd.apply(X)
    assert_array_almost_equal(X_denoised, X)
    # denoised by low-rank-factorization
    ssd = SSD(info, filt_params_signal, filt_params_noise,
              n_components=n_components, sort_by_spectral_ratio=True)
    ssd.fit(X)
    X_denoised = ssd.apply(X)
    assert (np.linalg.matrix_rank(X_denoised) == n_components)

    # Power ratio ordering
    ssd = SSD(info, filt_params_signal, filt_params_noise,
              n_components=None, sort_by_spectral_ratio=False)
    ssd.fit(X)
    spec_ratio, sorter_spec = ssd.get_spectral_ratio(ssd.transform(X))
    # since we now that the number of true components is 5, the relative
    # difference should be low for the first 5 components and then increases
    index_diff = np.argmax(-np.diff(spec_ratio))
    assert index_diff == n_components_true - 1
    # Check detected peaks
    # fit ssd
    n_components = n_components_true
    filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
                              l_trans_bandwidth=1, h_trans_bandwidth=1)
    filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
                             l_trans_bandwidth=1, h_trans_bandwidth=1)
    ssd = SSD(info, filt_params_signal, filt_params_noise,
              n_components=n_components, sort_by_spectral_ratio=False)
    ssd.fit(X)

    out = ssd.transform(X)
    psd_out, _ = psd_array_welch(out[0], sfreq=250, n_fft=250)
    psd_S, _ = psd_array_welch(S[0], sfreq=250, n_fft=250)
    corr = np.abs(np.corrcoef((psd_out, psd_S))[0, 1])
    assert np.abs(corr) > 0.95
    # Check pattern estimation
    # Since there is no exact ordering of the recovered patterns
    # a pair-wise greedy search will be done
    error = list()
    for ii in range(n_channels):
        corr = np.abs(np.corrcoef(ssd.patterns_[ii, :].T, A[:, 0])[0, 1])
        error.append(1 - corr)
        min_err = np.min(error)
    assert min_err < 0.3  # threshold taken from SSD original paper


def test_ssd_epoched_data():
    """Test Common Spatial Patterns algorithm on epoched data.

    Compare the outputs when raw data is used.
    """
    X, A, S = simulate_data(n_trials=100, n_channels=20, n_samples=500)
    sf = 250
    n_channels = X.shape[0]
    info = create_info(ch_names=n_channels, sfreq=sf, ch_types='eeg')
    n_components_true = 5

    # Build epochs as sliding windows over the continuous raw file

    # Epoch length is 1 second
    X_e = np.reshape(X, (100, 20, 500))

    # Fit
    filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
                              l_trans_bandwidth=4, h_trans_bandwidth=4)
    filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
                             l_trans_bandwidth=4, h_trans_bandwidth=4)

    # ssd on epochs
    ssd_e = SSD(info, filt_params_signal, filt_params_noise)
    ssd_e.fit(X_e)
    # ssd on raw
    ssd = SSD(info, filt_params_signal, filt_params_noise)
    ssd.fit(X)

    # Check if the 5 first 5 components are the same for both
    _, sorter_spec_e = ssd_e.get_spectral_ratio(ssd_e.transform(X_e))
    _, sorter_spec = ssd.get_spectral_ratio(ssd.transform(X))
    assert_array_equal(sorter_spec_e[:n_components_true],
                       sorter_spec[:n_components_true])


@requires_sklearn
def test_ssd_pipeline():
    """Test if SSD works in a pipeline."""
    from sklearn.pipeline import Pipeline
    sf = 250
    X, A, S = simulate_data(n_trials=100, n_channels=20, n_samples=500)
    X_e = np.reshape(X, (100, 20, 500))
    # define bynary random output
    y = np.random.randint(2, size=100)

    info = create_info(ch_names=20, sfreq=sf, ch_types='eeg')

    filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
                              l_trans_bandwidth=4, h_trans_bandwidth=4)
    filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
                             l_trans_bandwidth=4, h_trans_bandwidth=4)
    ssd = SSD(info, filt_params_signal, filt_params_noise)
    csp = CSP()
    pipe = Pipeline([('SSD', ssd), ('CSP', csp)])
    pipe.set_params(SSD__n_components=5)
    pipe.set_params(CSP__n_components=2)
    out = pipe.fit_transform(X_e, y)
    assert (out.shape == (100, 2))
    assert (pipe.get_params()['SSD__n_components'] == 5)


def test_sorting():
    """Test sorting learning during training."""
    X, _, _ = simulate_data(n_trials=100, n_channels=20, n_samples=500)
    # Epoch length is 1 second
    X = np.reshape(X, (100, 20, 500))
    # split data
    Xtr, Xte = X[:80], X[80:]
    sf = 250
    n_channels = Xtr.shape[1]
    info = create_info(ch_names=n_channels, sfreq=sf, ch_types='eeg')

    filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
                              l_trans_bandwidth=4, h_trans_bandwidth=4)
    filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
                             l_trans_bandwidth=4, h_trans_bandwidth=4)

    # check sort_by_spectral_ratio set to False
    ssd = SSD(info, filt_params_signal, filt_params_noise,
              n_components=None, sort_by_spectral_ratio=False)
    ssd.fit(Xtr)
    _, sorter_tr = ssd.get_spectral_ratio(ssd.transform(Xtr))
    _, sorter_te = ssd.get_spectral_ratio(ssd.transform(Xte))
    assert any(sorter_tr != sorter_te)

    # check sort_by_spectral_ratio set to True
    ssd = SSD(info, filt_params_signal, filt_params_noise,
              n_components=None, sort_by_spectral_ratio=True)
    ssd.fit(Xtr)

    # check sorters
    sorter_in = ssd.sorter_spec
    ssd = SSD(info, filt_params_signal, filt_params_noise,
              n_components=None, sort_by_spectral_ratio=False)
    ssd.fit(Xtr)
    _, sorter_out = ssd.get_spectral_ratio(ssd.transform(Xtr))

    assert all(sorter_in == sorter_out)


def test_return_filtered():
    """Test return filtered option."""
    # Check return_filtered
    # Simulated more noise data and with broader frequency than the desired
    X, _, _ = simulate_data(SNR=0.9, freqs_sig=[4, 13])
    sf = 250
    n_channels = X.shape[0]
    info = create_info(ch_names=n_channels, sfreq=sf, ch_types='eeg')

    filt_params_signal = dict(l_freq=freqs_sig[0], h_freq=freqs_sig[1],
                              l_trans_bandwidth=1, h_trans_bandwidth=1)
    filt_params_noise = dict(l_freq=freqs_noise[0], h_freq=freqs_noise[1],
                             l_trans_bandwidth=1, h_trans_bandwidth=1)

    # return filtered to true
    ssd = SSD(info, filt_params_signal, filt_params_noise,
              sort_by_spectral_ratio=False, return_filtered=True)
    ssd.fit(X)

    out = ssd.transform(X)
    psd_out, freqs = psd_array_welch(out[0], sfreq=250, n_fft=250)
    freqs_up = int(freqs[psd_out > 0.5][0]), int(freqs[psd_out > 0.5][-1])
    assert (freqs_up == freqs_sig)

    # return filtered to false
    ssd = SSD(info, filt_params_signal, filt_params_noise,
              sort_by_spectral_ratio=False, return_filtered=False)
    ssd.fit(X)

    out = ssd.transform(X)
    psd_out, freqs = psd_array_welch(out[0], sfreq=250, n_fft=250)
    freqs_up = int(freqs[psd_out > 0.5][0]), int(freqs[psd_out > 0.5][-1])
    assert (freqs_up != freqs_sig)