File: defaults.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (199 lines) | stat: -rw-r--r-- 7,926 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis A. Engemann <denis.engemann@gmail.com>
#          Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause

from copy import deepcopy

DEFAULTS = dict(
    color=dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='m', emg='k',
               ref_meg='steelblue', misc='k', stim='k', resp='k', chpi='k',
               exci='k', ias='k', syst='k', seeg='saddlebrown', dbs='seagreen',
               dipole='k', gof='k', bio='k', ecog='k', hbo='#AA3377', hbr='b',
               fnirs_cw_amplitude='k', fnirs_fd_ac_amplitude='k',
               fnirs_fd_phase='k', fnirs_od='k', csd='k', whitened='k',
               gsr='#666633', temperature='#663333'),
    si_units=dict(mag='T', grad='T/m', eeg='V', eog='V', ecg='V', emg='V',
                  misc='AU', seeg='V', dbs='V', dipole='Am', gof='GOF',
                  bio='V', ecog='V', hbo='M', hbr='M', ref_meg='T',
                  fnirs_cw_amplitude='V', fnirs_fd_ac_amplitude='V',
                  fnirs_fd_phase='rad', fnirs_od='V', csd='V/m²',
                  whitened='Z', gsr='S', temperature='C'),
    units=dict(mag='fT', grad='fT/cm', eeg='µV', eog='µV', ecg='µV', emg='µV',
               misc='AU', seeg='mV', dbs='µV', dipole='nAm', gof='GOF',
               bio='µV', ecog='µV', hbo='µM', hbr='µM', ref_meg='fT',
               fnirs_cw_amplitude='V', fnirs_fd_ac_amplitude='V',
               fnirs_fd_phase='rad', fnirs_od='V', csd='mV/m²',
               whitened='Z', gsr='S', temperature='C'),
    # scalings for the units
    scalings=dict(mag=1e15, grad=1e13, eeg=1e6, eog=1e6, emg=1e6, ecg=1e6,
                  misc=1.0, seeg=1e3, dbs=1e6, ecog=1e6, dipole=1e9, gof=1.0,
                  bio=1e6, hbo=1e6, hbr=1e6, ref_meg=1e15,
                  fnirs_cw_amplitude=1.0, fnirs_fd_ac_amplitude=1.0,
                  fnirs_fd_phase=1., fnirs_od=1.0, csd=1e3, whitened=1.,
                  gsr=1., temperature=1.),
    # rough guess for a good plot
    scalings_plot_raw=dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6,
                           ecg=5e-4, emg=1e-3, ref_meg=1e-12, misc='auto',
                           stim=1, resp=1, chpi=1e-4, exci=1, ias=1, syst=1,
                           seeg=1e-4, dbs=1e-4, bio=1e-6, ecog=1e-4, hbo=10e-6,
                           hbr=10e-6, whitened=10., fnirs_cw_amplitude=2e-2,
                           fnirs_fd_ac_amplitude=2e-2, fnirs_fd_phase=2e-1,
                           fnirs_od=2e-2, csd=200e-4,
                           dipole=1e-7, gof=1e2,
                           gsr=1., temperature=0.1),
    scalings_cov_rank=dict(mag=1e12, grad=1e11, eeg=1e5,  # ~100x scalings
                           seeg=1e1, dbs=1e4, ecog=1e4, hbo=1e4, hbr=1e4),
    ylim=dict(mag=(-600., 600.), grad=(-200., 200.), eeg=(-200., 200.),
              misc=(-5., 5.), seeg=(-20., 20.), dbs=(-200., 200.),
              dipole=(-100., 100.), gof=(0., 1.), bio=(-500., 500.),
              ecog=(-200., 200.), hbo=(0, 20), hbr=(0, 20), csd=(-50., 50.)),
    titles=dict(mag='Magnetometers', grad='Gradiometers', eeg='EEG', eog='EOG',
                ecg='ECG', emg='EMG', misc='misc', seeg='sEEG', dbs='DBS',
                bio='BIO', dipole='Dipole', ecog='ECoG', hbo='Oxyhemoglobin',
                ref_meg='Reference Magnetometers',
                fnirs_cw_amplitude='fNIRS (CW amplitude)',
                fnirs_fd_ac_amplitude='fNIRS (FD AC amplitude)',
                fnirs_fd_phase='fNIRS (FD phase)',
                fnirs_od='fNIRS (OD)', hbr='Deoxyhemoglobin',
                gof='Goodness of fit', csd='Current source density',
                stim='Stimulus', gsr='Galvanic skin response',
                temperature='Temperature',
                ),
    mask_params=dict(marker='o',
                     markerfacecolor='w',
                     markeredgecolor='k',
                     linewidth=0,
                     markeredgewidth=1,
                     markersize=4),
    coreg=dict(
        mri_fid_opacity=1.0,
        dig_fid_opacity=1.0,

        mri_fid_scale=5e-3,
        dig_fid_scale=8e-3,
        extra_scale=4e-3,
        eeg_scale=4e-3, eegp_scale=20e-3, eegp_height=0.1,
        ecog_scale=5e-3,
        seeg_scale=5e-3,
        dbs_scale=5e-3,
        fnirs_scale=5e-3,
        source_scale=5e-3,
        detector_scale=5e-3,
        hpi_scale=4e-3,

        head_color=(0.988, 0.89, 0.74),
        hpi_color=(1., 0., 1.),
        extra_color=(1., 1., 1.),
        meg_color=(0., 0.25, 0.5), ref_meg_color=(0.5, 0.5, 0.5),
        helmet_color=(0.0, 0.0, 0.6),
        eeg_color=(1., 0.596, 0.588), eegp_color=(0.839, 0.15, 0.16),
        ecog_color=(1., 1., 1.),
        dbs_color=(0.82, 0.455, 0.659),
        seeg_color=(1., 1., .3),
        fnirs_color=(1., .647, 0.),
        source_color=(1., .05, 0.),
        detector_color=(.3, .15, .15),
        lpa_color=(1., 0., 0.),
        nasion_color=(0., 1., 0.),
        rpa_color=(0., 0., 1.),
    ),
    noise_std=dict(grad=5e-13, mag=20e-15, eeg=0.2e-6),
    eloreta_options=dict(eps=1e-6, max_iter=20, force_equal=False),
    depth_mne=dict(exp=0.8, limit=10., limit_depth_chs=True,
                   combine_xyz='spectral', allow_fixed_depth=False),
    depth_sparse=dict(exp=0.8, limit=None, limit_depth_chs='whiten',
                      combine_xyz='fro', allow_fixed_depth=True),
    interpolation_method=dict(eeg='spline', meg='MNE', fnirs='nearest'),
    volume_options=dict(
        alpha=None, resolution=1., surface_alpha=None, blending='mip',
        silhouette_alpha=None, silhouette_linewidth=2.),
    prefixes={'k': 1e-3, 'h': 1e-2, '': 1e0, 'd': 1e1, 'c': 1e2, 'm': 1e3,
              'µ': 1e6, 'u': 1e6, 'n': 1e9, 'p': 1e12, 'f': 1e15},
    transform_zooms=dict(
        translation=None, rigid=None, affine=None, sdr=None),
    transform_niter=dict(
        translation=(10000, 1000, 100),
        rigid=(10000, 1000, 100),
        affine=(10000, 1000, 100),
        sdr=(10, 10, 5)),
    volume_label_indices=(
        # Left and middle
        4,  # Left-Lateral-Ventricle
        5,  # Left-Inf-Lat-Vent

        8,  # Left-Cerebellum-Cortex

        10,  # Left-Thalamus-Proper
        11,  # Left-Caudate
        12,  # Left-Putamen
        13,  # Left-Pallidum
        14,  # 3rd-Ventricle
        15,  # 4th-Ventricle
        16,  # Brain-Stem
        17,  # Left-Hippocampus
        18,  # Left-Amygdala

        26,  # Left-Accumbens-area

        28,  # Left-VentralDC

        # Right
        43,  # Right-Lateral-Ventricle
        44,  # Right-Inf-Lat-Vent

        47,  # Right-Cerebellum-Cortex

        49,  # Right-Thalamus-Proper
        50,  # Right-Caudate
        51,  # Right-Putamen
        52,  # Right-Pallidum
        53,  # Right-Hippocampus
        54,  # Right-Amygdala

        58,  # Right-Accumbens-area

        60,  # Right-VentralDC
    ),
    report_stc_plot_kwargs=dict(
        views=('lateral', 'medial'),
        hemi='split',
        backend='pyvistaqt',
        time_viewer=False,
        show_traces=False,
        size=(450, 450),
        background='white',
        time_label=None,
        add_data_kwargs={
            'colorbar_kwargs': {
                'label_font_size': 12,
                'n_labels': 5
            }
        }
    )
)


def _handle_default(k, v=None):
    """Avoid dicts as default keyword arguments.

    Use this function instead to resolve default dict values. Example usage::

        scalings = _handle_default('scalings', scalings)

    """
    this_mapping = deepcopy(DEFAULTS[k])
    if v is not None:
        if isinstance(v, dict):
            this_mapping.update(v)
        else:
            for key in this_mapping:
                this_mapping[key] = v
    return this_mapping


HEAD_SIZE_DEFAULT = 0.095  # in [m]
_BORDER_DEFAULT = 'mean'
_INTERPOLATION_DEFAULT = 'cubic'
_EXTRAPOLATE_DEFAULT = 'auto'