1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis A. Engemann <denis.engemann@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
from copy import deepcopy
DEFAULTS = dict(
color=dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='m', emg='k',
ref_meg='steelblue', misc='k', stim='k', resp='k', chpi='k',
exci='k', ias='k', syst='k', seeg='saddlebrown', dbs='seagreen',
dipole='k', gof='k', bio='k', ecog='k', hbo='#AA3377', hbr='b',
fnirs_cw_amplitude='k', fnirs_fd_ac_amplitude='k',
fnirs_fd_phase='k', fnirs_od='k', csd='k', whitened='k',
gsr='#666633', temperature='#663333'),
si_units=dict(mag='T', grad='T/m', eeg='V', eog='V', ecg='V', emg='V',
misc='AU', seeg='V', dbs='V', dipole='Am', gof='GOF',
bio='V', ecog='V', hbo='M', hbr='M', ref_meg='T',
fnirs_cw_amplitude='V', fnirs_fd_ac_amplitude='V',
fnirs_fd_phase='rad', fnirs_od='V', csd='V/m²',
whitened='Z', gsr='S', temperature='C'),
units=dict(mag='fT', grad='fT/cm', eeg='µV', eog='µV', ecg='µV', emg='µV',
misc='AU', seeg='mV', dbs='µV', dipole='nAm', gof='GOF',
bio='µV', ecog='µV', hbo='µM', hbr='µM', ref_meg='fT',
fnirs_cw_amplitude='V', fnirs_fd_ac_amplitude='V',
fnirs_fd_phase='rad', fnirs_od='V', csd='mV/m²',
whitened='Z', gsr='S', temperature='C'),
# scalings for the units
scalings=dict(mag=1e15, grad=1e13, eeg=1e6, eog=1e6, emg=1e6, ecg=1e6,
misc=1.0, seeg=1e3, dbs=1e6, ecog=1e6, dipole=1e9, gof=1.0,
bio=1e6, hbo=1e6, hbr=1e6, ref_meg=1e15,
fnirs_cw_amplitude=1.0, fnirs_fd_ac_amplitude=1.0,
fnirs_fd_phase=1., fnirs_od=1.0, csd=1e3, whitened=1.,
gsr=1., temperature=1.),
# rough guess for a good plot
scalings_plot_raw=dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6,
ecg=5e-4, emg=1e-3, ref_meg=1e-12, misc='auto',
stim=1, resp=1, chpi=1e-4, exci=1, ias=1, syst=1,
seeg=1e-4, dbs=1e-4, bio=1e-6, ecog=1e-4, hbo=10e-6,
hbr=10e-6, whitened=10., fnirs_cw_amplitude=2e-2,
fnirs_fd_ac_amplitude=2e-2, fnirs_fd_phase=2e-1,
fnirs_od=2e-2, csd=200e-4,
dipole=1e-7, gof=1e2,
gsr=1., temperature=0.1),
scalings_cov_rank=dict(mag=1e12, grad=1e11, eeg=1e5, # ~100x scalings
seeg=1e1, dbs=1e4, ecog=1e4, hbo=1e4, hbr=1e4),
ylim=dict(mag=(-600., 600.), grad=(-200., 200.), eeg=(-200., 200.),
misc=(-5., 5.), seeg=(-20., 20.), dbs=(-200., 200.),
dipole=(-100., 100.), gof=(0., 1.), bio=(-500., 500.),
ecog=(-200., 200.), hbo=(0, 20), hbr=(0, 20), csd=(-50., 50.)),
titles=dict(mag='Magnetometers', grad='Gradiometers', eeg='EEG', eog='EOG',
ecg='ECG', emg='EMG', misc='misc', seeg='sEEG', dbs='DBS',
bio='BIO', dipole='Dipole', ecog='ECoG', hbo='Oxyhemoglobin',
ref_meg='Reference Magnetometers',
fnirs_cw_amplitude='fNIRS (CW amplitude)',
fnirs_fd_ac_amplitude='fNIRS (FD AC amplitude)',
fnirs_fd_phase='fNIRS (FD phase)',
fnirs_od='fNIRS (OD)', hbr='Deoxyhemoglobin',
gof='Goodness of fit', csd='Current source density',
stim='Stimulus', gsr='Galvanic skin response',
temperature='Temperature',
),
mask_params=dict(marker='o',
markerfacecolor='w',
markeredgecolor='k',
linewidth=0,
markeredgewidth=1,
markersize=4),
coreg=dict(
mri_fid_opacity=1.0,
dig_fid_opacity=1.0,
mri_fid_scale=5e-3,
dig_fid_scale=8e-3,
extra_scale=4e-3,
eeg_scale=4e-3, eegp_scale=20e-3, eegp_height=0.1,
ecog_scale=5e-3,
seeg_scale=5e-3,
dbs_scale=5e-3,
fnirs_scale=5e-3,
source_scale=5e-3,
detector_scale=5e-3,
hpi_scale=4e-3,
head_color=(0.988, 0.89, 0.74),
hpi_color=(1., 0., 1.),
extra_color=(1., 1., 1.),
meg_color=(0., 0.25, 0.5), ref_meg_color=(0.5, 0.5, 0.5),
helmet_color=(0.0, 0.0, 0.6),
eeg_color=(1., 0.596, 0.588), eegp_color=(0.839, 0.15, 0.16),
ecog_color=(1., 1., 1.),
dbs_color=(0.82, 0.455, 0.659),
seeg_color=(1., 1., .3),
fnirs_color=(1., .647, 0.),
source_color=(1., .05, 0.),
detector_color=(.3, .15, .15),
lpa_color=(1., 0., 0.),
nasion_color=(0., 1., 0.),
rpa_color=(0., 0., 1.),
),
noise_std=dict(grad=5e-13, mag=20e-15, eeg=0.2e-6),
eloreta_options=dict(eps=1e-6, max_iter=20, force_equal=False),
depth_mne=dict(exp=0.8, limit=10., limit_depth_chs=True,
combine_xyz='spectral', allow_fixed_depth=False),
depth_sparse=dict(exp=0.8, limit=None, limit_depth_chs='whiten',
combine_xyz='fro', allow_fixed_depth=True),
interpolation_method=dict(eeg='spline', meg='MNE', fnirs='nearest'),
volume_options=dict(
alpha=None, resolution=1., surface_alpha=None, blending='mip',
silhouette_alpha=None, silhouette_linewidth=2.),
prefixes={'k': 1e-3, 'h': 1e-2, '': 1e0, 'd': 1e1, 'c': 1e2, 'm': 1e3,
'µ': 1e6, 'u': 1e6, 'n': 1e9, 'p': 1e12, 'f': 1e15},
transform_zooms=dict(
translation=None, rigid=None, affine=None, sdr=None),
transform_niter=dict(
translation=(10000, 1000, 100),
rigid=(10000, 1000, 100),
affine=(10000, 1000, 100),
sdr=(10, 10, 5)),
volume_label_indices=(
# Left and middle
4, # Left-Lateral-Ventricle
5, # Left-Inf-Lat-Vent
8, # Left-Cerebellum-Cortex
10, # Left-Thalamus-Proper
11, # Left-Caudate
12, # Left-Putamen
13, # Left-Pallidum
14, # 3rd-Ventricle
15, # 4th-Ventricle
16, # Brain-Stem
17, # Left-Hippocampus
18, # Left-Amygdala
26, # Left-Accumbens-area
28, # Left-VentralDC
# Right
43, # Right-Lateral-Ventricle
44, # Right-Inf-Lat-Vent
47, # Right-Cerebellum-Cortex
49, # Right-Thalamus-Proper
50, # Right-Caudate
51, # Right-Putamen
52, # Right-Pallidum
53, # Right-Hippocampus
54, # Right-Amygdala
58, # Right-Accumbens-area
60, # Right-VentralDC
),
report_stc_plot_kwargs=dict(
views=('lateral', 'medial'),
hemi='split',
backend='pyvistaqt',
time_viewer=False,
show_traces=False,
size=(450, 450),
background='white',
time_label=None,
add_data_kwargs={
'colorbar_kwargs': {
'label_font_size': 12,
'n_labels': 5
}
}
)
)
def _handle_default(k, v=None):
"""Avoid dicts as default keyword arguments.
Use this function instead to resolve default dict values. Example usage::
scalings = _handle_default('scalings', scalings)
"""
this_mapping = deepcopy(DEFAULTS[k])
if v is not None:
if isinstance(v, dict):
this_mapping.update(v)
else:
for key in this_mapping:
this_mapping[key] = v
return this_mapping
HEAD_SIZE_DEFAULT = 0.095 # in [m]
_BORDER_DEFAULT = 'mean'
_INTERPOLATION_DEFAULT = 'cubic'
_EXTRAPOLATE_DEFAULT = 'auto'
|