File: epochs.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (3797 lines) | stat: -rw-r--r-- 152,162 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
# -*- coding: utf-8 -*-

"""Tools for working with epoched data."""

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
#          Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
#          Denis Engemann <denis.engemann@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD-3-Clause

from functools import partial
from collections import Counter
from copy import deepcopy
import json
import operator
import os.path as op

import numpy as np

from .io.utils import _construct_bids_filename
from .io.write import (start_and_end_file, start_block, end_block,
                       write_int, write_float, write_float_matrix,
                       write_double_matrix, write_complex_float_matrix,
                       write_complex_double_matrix, write_id, write_string,
                       _get_split_size, _NEXT_FILE_BUFFER, INT32_MAX)
from .io.meas_info import (read_meas_info, write_meas_info,
                           _ensure_infos_match, ContainsMixin)
from .io.open import fiff_open, _get_next_fname
from .io.tree import dir_tree_find
from .io.tag import read_tag, read_tag_info
from .io.constants import FIFF
from .io.fiff.raw import _get_fname_rep
from .io.pick import (channel_indices_by_type, channel_type,
                      pick_channels, pick_info, _pick_data_channels,
                      _DATA_CH_TYPES_SPLIT, _picks_to_idx)
from .io.proj import setup_proj, ProjMixin
from .io.base import BaseRaw, TimeMixin, _get_ch_factors
from .bem import _check_origin
from .evoked import EvokedArray
from .baseline import rescale, _log_rescale, _check_baseline
from .channels.channels import (UpdateChannelsMixin,
                                SetChannelsMixin, InterpolationMixin)
from .filter import detrend, FilterMixin, _check_fun
from .parallel import parallel_func

from .event import (_read_events_fif, make_fixed_length_events,
                    match_event_names)
from .fixes import rng_uniform
from .time_frequency.spectrum import EpochsSpectrum, SpectrumMixin
from .viz import (plot_epochs, plot_epochs_image,
                  plot_topo_image_epochs, plot_drop_log)
from .utils import (_check_fname, check_fname, logger, verbose, repr_html,
                    check_random_state, warn, _pl,
                    sizeof_fmt, SizeMixin, copy_function_doc_to_method_doc,
                    _check_pandas_installed,
                    _check_preload, GetEpochsMixin,
                    _prepare_read_metadata, _prepare_write_metadata,
                    _check_event_id, _gen_events, _check_option,
                    _check_combine, _build_data_frame,
                    _check_pandas_index_arguments, _convert_times,
                    _scale_dataframe_data, _check_time_format, object_size,
                    _on_missing, _validate_type, _ensure_events,
                    _path_like)
from .utils.docs import fill_doc
from .annotations import (_write_annotations, _read_annotations_fif,
                          EpochAnnotationsMixin)


def _pack_reject_params(epochs):
    reject_params = dict()
    for key in ('reject', 'flat', 'reject_tmin', 'reject_tmax'):
        val = getattr(epochs, key, None)
        if val is not None:
            reject_params[key] = val
    return reject_params


def _save_split(epochs, fname, part_idx, n_parts, fmt, split_naming,
                overwrite):
    """Split epochs.

    Anything new added to this function also needs to be added to
    BaseEpochs.save to account for new file sizes.
    """
    # insert index in filename
    base, ext = op.splitext(fname)
    if part_idx > 0:
        if split_naming == 'neuromag':
            fname = '%s-%d%s' % (base, part_idx, ext)
        else:
            assert split_naming == 'bids'
            fname = _construct_bids_filename(base, ext, part_idx,
                                             validate=False)
            _check_fname(fname, overwrite=overwrite)

    next_fname = None
    if part_idx < n_parts - 1:
        if split_naming == 'neuromag':
            next_fname = '%s-%d%s' % (base, part_idx + 1, ext)
        else:
            assert split_naming == 'bids'
            next_fname = _construct_bids_filename(base, ext, part_idx + 1,
                                                  validate=False)
        next_idx = part_idx + 1
    else:
        next_idx = None

    with start_and_end_file(fname) as fid:
        _save_part(fid, epochs, fmt, n_parts, next_fname, next_idx)


def _save_part(fid, epochs, fmt, n_parts, next_fname, next_idx):
    info = epochs.info
    meas_id = info['meas_id']

    start_block(fid, FIFF.FIFFB_MEAS)
    write_id(fid, FIFF.FIFF_BLOCK_ID)
    if info['meas_id'] is not None:
        write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id'])

    # Write measurement info
    write_meas_info(fid, info)

    # One or more evoked data sets
    start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
    start_block(fid, FIFF.FIFFB_MNE_EPOCHS)

    # write events out after getting data to ensure bad events are dropped
    data = epochs.get_data()

    _check_option('fmt', fmt, ['single', 'double'])

    if np.iscomplexobj(data):
        if fmt == 'single':
            write_function = write_complex_float_matrix
        elif fmt == 'double':
            write_function = write_complex_double_matrix
    else:
        if fmt == 'single':
            write_function = write_float_matrix
        elif fmt == 'double':
            write_function = write_double_matrix

    # Epoch annotations are written if there are any
    annotations = getattr(epochs, 'annotations', [])
    if annotations is not None and len(annotations):
        _write_annotations(fid, annotations)

    # write Epoch event windows
    start_block(fid, FIFF.FIFFB_MNE_EVENTS)
    write_int(fid, FIFF.FIFF_MNE_EVENT_LIST, epochs.events.T)
    write_string(fid, FIFF.FIFF_DESCRIPTION, _event_id_string(epochs.event_id))
    end_block(fid, FIFF.FIFFB_MNE_EVENTS)

    # Metadata
    if epochs.metadata is not None:
        start_block(fid, FIFF.FIFFB_MNE_METADATA)
        metadata = _prepare_write_metadata(epochs.metadata)
        write_string(fid, FIFF.FIFF_DESCRIPTION, metadata)
        end_block(fid, FIFF.FIFFB_MNE_METADATA)

    # First and last sample
    first = int(round(epochs.tmin * info['sfreq']))  # round just to be safe
    last = first + len(epochs.times) - 1
    write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first)
    write_int(fid, FIFF.FIFF_LAST_SAMPLE, last)

    # write raw original sampling rate
    write_float(fid, FIFF.FIFF_MNE_EPOCHS_RAW_SFREQ, epochs._raw_sfreq)

    # save baseline
    if epochs.baseline is not None:
        bmin, bmax = epochs.baseline
        write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, bmin)
        write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX, bmax)

    # The epochs itself
    decal = np.empty(info['nchan'])
    for k in range(info['nchan']):
        decal[k] = 1.0 / (info['chs'][k]['cal'] *
                          info['chs'][k].get('scale', 1.0))

    data *= decal[np.newaxis, :, np.newaxis]

    write_function(fid, FIFF.FIFF_EPOCH, data)

    # undo modifications to data
    data /= decal[np.newaxis, :, np.newaxis]

    write_string(fid, FIFF.FIFF_MNE_EPOCHS_DROP_LOG,
                 json.dumps(epochs.drop_log))

    reject_params = _pack_reject_params(epochs)
    if reject_params:
        write_string(fid, FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT,
                     json.dumps(reject_params))

    write_int(fid, FIFF.FIFF_MNE_EPOCHS_SELECTION,
              epochs.selection)

    # And now write the next file info in case epochs are split on disk
    if next_fname is not None and n_parts > 1:
        start_block(fid, FIFF.FIFFB_REF)
        write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE)
        write_string(fid, FIFF.FIFF_REF_FILE_NAME, op.basename(next_fname))
        if meas_id is not None:
            write_id(fid, FIFF.FIFF_REF_FILE_ID, meas_id)
        write_int(fid, FIFF.FIFF_REF_FILE_NUM, next_idx)
        end_block(fid, FIFF.FIFFB_REF)

    end_block(fid, FIFF.FIFFB_MNE_EPOCHS)
    end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
    end_block(fid, FIFF.FIFFB_MEAS)


def _event_id_string(event_id):
    return ';'.join([k + ':' + str(v) for k, v in event_id.items()])


def _merge_events(events, event_id, selection):
    """Merge repeated events."""
    event_id = event_id.copy()
    new_events = events.copy()
    event_idxs_to_delete = list()
    unique_events, counts = np.unique(events[:, 0], return_counts=True)
    for ev in unique_events[counts > 1]:

        # indices at which the non-unique events happened
        idxs = (events[:, 0] == ev).nonzero()[0]

        # Figure out new value for events[:, 1]. Set to 0, if mixed vals exist
        unique_priors = np.unique(events[idxs, 1])
        new_prior = unique_priors[0] if len(unique_priors) == 1 else 0

        # If duplicate time samples have same event val, "merge" == "drop"
        # and no new event_id key will be created
        ev_vals = np.unique(events[idxs, 2])
        if len(ev_vals) <= 1:
            new_event_val = ev_vals[0]

        # Else, make a new event_id for the merged event
        else:

            # Find all event_id keys involved in duplicated events. These
            # keys will be merged to become a new entry in "event_id"
            event_id_keys = list(event_id.keys())
            event_id_vals = list(event_id.values())
            new_key_comps = [event_id_keys[event_id_vals.index(value)]
                             for value in ev_vals]

            # Check if we already have an entry for merged keys of duplicate
            # events ... if yes, reuse it
            for key in event_id:
                if set(key.split('/')) == set(new_key_comps):
                    new_event_val = event_id[key]
                    break

            # Else, find an unused value for the new key and make an entry into
            # the event_id dict
            else:
                ev_vals = np.unique(
                    np.concatenate((list(event_id.values()),
                                    events[:, 1:].flatten()),
                                   axis=0))
                if ev_vals[0] > 1:
                    new_event_val = 1
                else:
                    diffs = np.diff(ev_vals)
                    idx = np.where(diffs > 1)[0]
                    idx = -1 if len(idx) == 0 else idx[0]
                    new_event_val = ev_vals[idx] + 1

                new_event_id_key = '/'.join(sorted(new_key_comps))
                event_id[new_event_id_key] = int(new_event_val)

        # Replace duplicate event times with merged event and remember which
        # duplicate indices to delete later
        new_events[idxs[0], 1] = new_prior
        new_events[idxs[0], 2] = new_event_val
        event_idxs_to_delete.extend(idxs[1:])

    # Delete duplicate event idxs
    new_events = np.delete(new_events, event_idxs_to_delete, 0)
    new_selection = np.delete(selection, event_idxs_to_delete, 0)

    return new_events, event_id, new_selection


def _handle_event_repeated(events, event_id, event_repeated, selection,
                           drop_log):
    """Handle repeated events.

    Note that drop_log will be modified inplace
    """
    assert len(events) == len(selection)
    selection = np.asarray(selection)

    unique_events, u_ev_idxs = np.unique(events[:, 0], return_index=True)

    # Return early if no duplicates
    if len(unique_events) == len(events):
        return events, event_id, selection, drop_log

    # Else, we have duplicates. Triage ...
    _check_option('event_repeated', event_repeated, ['error', 'drop', 'merge'])
    drop_log = list(drop_log)
    if event_repeated == 'error':
        raise RuntimeError('Event time samples were not unique. Consider '
                           'setting the `event_repeated` parameter."')

    elif event_repeated == 'drop':
        logger.info('Multiple event values for single event times found. '
                    'Keeping the first occurrence and dropping all others.')
        new_events = events[u_ev_idxs]
        new_selection = selection[u_ev_idxs]
        drop_ev_idxs = np.setdiff1d(selection, new_selection)
        for idx in drop_ev_idxs:
            drop_log[idx] = drop_log[idx] + ('DROP DUPLICATE',)
        selection = new_selection
    elif event_repeated == 'merge':
        logger.info('Multiple event values for single event times found. '
                    'Creating new event value to reflect simultaneous events.')
        new_events, event_id, new_selection = \
            _merge_events(events, event_id, selection)
        drop_ev_idxs = np.setdiff1d(selection, new_selection)
        for idx in drop_ev_idxs:
            drop_log[idx] = drop_log[idx] + ('MERGE DUPLICATE',)
        selection = new_selection
    drop_log = tuple(drop_log)

    # Remove obsolete kv-pairs from event_id after handling
    keys = new_events[:, 1:].flatten()
    event_id = {k: v for k, v in event_id.items() if v in keys}

    return new_events, event_id, selection, drop_log


@fill_doc
class BaseEpochs(ProjMixin, ContainsMixin, UpdateChannelsMixin,
                 SetChannelsMixin, InterpolationMixin, FilterMixin,
                 TimeMixin, SizeMixin, GetEpochsMixin, EpochAnnotationsMixin,
                 SpectrumMixin):
    """Abstract base class for `~mne.Epochs`-type classes.

    .. note::
        This class should not be instantiated directly via
        ``mne.BaseEpochs(...)``. Instead, use one of the functions listed in
        the See Also section below.

    Parameters
    ----------
    %(info_not_none)s
    data : ndarray | None
        If ``None``, data will be read from the Raw object. If ndarray, must be
        of shape (n_epochs, n_channels, n_times).
    %(events_epochs)s
    %(event_id)s
    %(epochs_tmin_tmax)s
    %(baseline_epochs)s
        Defaults to ``(None, 0)``, i.e. beginning of the the data until
        time point zero.
    %(raw_epochs)s
    %(picks_all)s
    %(reject_epochs)s
    %(flat)s
    %(decim)s
    %(epochs_reject_tmin_tmax)s
    %(detrend_epochs)s
    %(proj_epochs)s
    %(on_missing_epochs)s
    preload_at_end : bool
        %(epochs_preload)s
    %(selection)s

        .. versionadded:: 0.16
    %(drop_log)s
    filename : str | None
        The filename (if the epochs are read from disk).
    %(metadata_epochs)s
    %(event_repeated_epochs)s
    %(raw_sfreq)s
    annotations : instance of mne.Annotations | None
        Annotations to set.
    %(verbose)s

    See Also
    --------
    Epochs
    EpochsArray
    make_fixed_length_epochs

    Notes
    -----
    The ``BaseEpochs`` class is public to allow for stable type-checking in
    user code (i.e., ``isinstance(my_epochs, BaseEpochs)``) but should not be
    used as a constructor for Epochs objects (use instead :class:`mne.Epochs`).
    """

    @verbose
    def __init__(self, info, data, events, event_id=None,
                 tmin=-0.2, tmax=0.5,
                 baseline=(None, 0), raw=None, picks=None, reject=None,
                 flat=None, decim=1, reject_tmin=None, reject_tmax=None,
                 detrend=None, proj=True, on_missing='raise',
                 preload_at_end=False, selection=None, drop_log=None,
                 filename=None, metadata=None, event_repeated='error',
                 *, raw_sfreq=None,
                 annotations=None, verbose=None):  # noqa: D102
        if events is not None:  # RtEpochs can have events=None
            events = _ensure_events(events)
            events_max = events.max()
            if events_max > INT32_MAX:
                raise ValueError(
                    f'events array values must not exceed {INT32_MAX}, '
                    f'got {events_max}')
        event_id = _check_event_id(event_id, events)
        self.event_id = event_id
        del event_id

        if events is not None:  # RtEpochs can have events=None
            for key, val in self.event_id.items():
                if val not in events[:, 2]:
                    msg = ('No matching events found for %s '
                           '(event id %i)' % (key, val))
                    _on_missing(on_missing, msg)

            # ensure metadata matches original events size
            self.selection = np.arange(len(events))
            self.events = events

            # same as self.metadata = metadata, but suppress log in favor
            # of logging below (after setting self.selection)
            GetEpochsMixin.metadata.fset(self, metadata, verbose=False)
            del events

            values = list(self.event_id.values())
            selected = np.where(np.in1d(self.events[:, 2], values))[0]
            if selection is None:
                selection = selected
            else:
                selection = np.array(selection, int)
            if selection.shape != (len(selected),):
                raise ValueError('selection must be shape %s got shape %s'
                                 % (selected.shape, selection.shape))
            self.selection = selection
            if drop_log is None:
                self.drop_log = tuple(
                    () if k in self.selection else ('IGNORED',)
                    for k in range(max(len(self.events),
                                   max(self.selection) + 1)))
            else:
                self.drop_log = drop_log

            self.events = self.events[selected]

            self.events, self.event_id, self.selection, self.drop_log = \
                _handle_event_repeated(
                    self.events, self.event_id, event_repeated,
                    self.selection, self.drop_log)

            # then subselect
            sub = np.where(np.in1d(selection, self.selection))[0]
            if isinstance(metadata, list):
                metadata = [metadata[s] for s in sub]
            elif metadata is not None:
                metadata = metadata.iloc[sub]

            # Remove temporarily set metadata from above, and set
            # again to get the correct log ("adding metadata", instead of
            # "replacing existing metadata")
            GetEpochsMixin.metadata.fset(self, None, verbose=False)
            self.metadata = metadata
            del metadata

            n_events = len(self.events)
            if n_events > 1:
                if np.diff(self.events.astype(np.int64)[:, 0]).min() <= 0:
                    warn('The events passed to the Epochs constructor are not '
                         'chronologically ordered.', RuntimeWarning)

            if n_events > 0:
                logger.info('%d matching events found' % n_events)
            else:
                raise ValueError('No desired events found.')
        else:
            self.drop_log = tuple()
            self.selection = np.array([], int)
            self.metadata = metadata
            # do not set self.events here, let subclass do it

        if (detrend not in [None, 0, 1]) or isinstance(detrend, bool):
            raise ValueError('detrend must be None, 0, or 1')
        self.detrend = detrend

        self._raw = raw
        info._check_consistency()
        self.picks = _picks_to_idx(info, picks, none='all', exclude=(),
                                   allow_empty=False)
        self.info = pick_info(info, self.picks)
        del info
        self._current = 0

        if data is None:
            self.preload = False
            self._data = None
            self._do_baseline = True
        else:
            assert decim == 1
            if data.ndim != 3 or data.shape[2] != \
                    round((tmax - tmin) * self.info['sfreq']) + 1:
                raise RuntimeError('bad data shape')
            if data.shape[0] != len(self.events):
                raise ValueError(
                    'The number of epochs and the number of events must match')
            self.preload = True
            self._data = data
            self._do_baseline = False
        self._offset = None

        if tmin > tmax:
            raise ValueError('tmin has to be less than or equal to tmax')

        # Handle times
        sfreq = float(self.info['sfreq'])
        start_idx = int(round(tmin * sfreq))
        self._raw_times = np.arange(start_idx,
                                    int(round(tmax * sfreq)) + 1) / sfreq
        self._set_times(self._raw_times)

        # check reject_tmin and reject_tmax
        if reject_tmin is not None:
            if (np.isclose(reject_tmin, tmin)):
                # adjust for potential small deviations due to sampling freq
                reject_tmin = self.tmin
            elif reject_tmin < tmin:
                raise ValueError(f'reject_tmin needs to be None or >= tmin '
                                 f'(got {reject_tmin})')

        if reject_tmax is not None:
            if (np.isclose(reject_tmax, tmax)):
                # adjust for potential small deviations due to sampling freq
                reject_tmax = self.tmax
            elif reject_tmax > tmax:
                raise ValueError(f'reject_tmax needs to be None or <= tmax '
                                 f'(got {reject_tmax})')

        if (reject_tmin is not None) and (reject_tmax is not None):
            if reject_tmin >= reject_tmax:
                raise ValueError(f'reject_tmin ({reject_tmin}) needs to be '
                                 f' < reject_tmax ({reject_tmax})')

        self.reject_tmin = reject_tmin
        self.reject_tmax = reject_tmax

        # decimation
        self._decim = 1
        self.decimate(decim)

        # baseline correction: replace `None` tuple elements  with actual times
        self.baseline = _check_baseline(baseline, times=self.times,
                                        sfreq=self.info['sfreq'])
        if self.baseline is not None and self.baseline != baseline:
            logger.info(f'Setting baseline interval to '
                        f'[{self.baseline[0]}, {self.baseline[1]}] sec')

        logger.info(_log_rescale(self.baseline))

        # setup epoch rejection
        self.reject = None
        self.flat = None
        self._reject_setup(reject, flat)

        # do the rest
        valid_proj = [True, 'delayed', False]
        if proj not in valid_proj:
            raise ValueError('"proj" must be one of %s, not %s'
                             % (valid_proj, proj))
        if proj == 'delayed':
            self._do_delayed_proj = True
            logger.info('Entering delayed SSP mode.')
        else:
            self._do_delayed_proj = False
        activate = False if self._do_delayed_proj else proj
        self._projector, self.info = setup_proj(self.info, False,
                                                activate=activate)
        if preload_at_end:
            assert self._data is None
            assert self.preload is False
            self.load_data()  # this will do the projection
        elif proj is True and self._projector is not None and data is not None:
            # let's make sure we project if data was provided and proj
            # requested
            # we could do this with np.einsum, but iteration should be
            # more memory safe in most instances
            for ii, epoch in enumerate(self._data):
                self._data[ii] = np.dot(self._projector, epoch)
        self._filename = str(filename) if filename is not None else filename
        if raw_sfreq is None:
            raw_sfreq = self.info['sfreq']
        self._raw_sfreq = raw_sfreq
        self._check_consistency()
        self.set_annotations(annotations)

    def _check_consistency(self):
        """Check invariants of epochs object."""
        if hasattr(self, 'events'):
            assert len(self.selection) == len(self.events)
            assert len(self.drop_log) >= len(self.events)
        assert len(self.selection) == sum(
            (len(dl) == 0 for dl in self.drop_log))
        assert hasattr(self, '_times_readonly')
        assert not self.times.flags['WRITEABLE']
        assert isinstance(self.drop_log, tuple)
        assert all(isinstance(log, tuple) for log in self.drop_log)
        assert all(isinstance(s, str) for log in self.drop_log for s in log)

    def reset_drop_log_selection(self):
        """Reset the drop_log and selection entries.

        This method will simplify ``self.drop_log`` and ``self.selection``
        so that they are meaningless (tuple of empty tuples and increasing
        integers, respectively). This can be useful when concatenating
        many Epochs instances, as ``drop_log`` can accumulate many entries
        which can become problematic when saving.
        """
        self.selection = np.arange(len(self.events))
        self.drop_log = (tuple(),) * len(self.events)
        self._check_consistency()

    def load_data(self):
        """Load the data if not already preloaded.

        Returns
        -------
        epochs : instance of Epochs
            The epochs object.

        Notes
        -----
        This function operates in-place.

        .. versionadded:: 0.10.0
        """
        if self.preload:
            return self
        self._data = self._get_data()
        self.preload = True
        self._do_baseline = False
        self._decim_slice = slice(None, None, None)
        self._decim = 1
        self._raw_times = self.times
        assert self._data.shape[-1] == len(self.times)
        self._raw = None  # shouldn't need it anymore
        return self

    @verbose
    def apply_baseline(self, baseline=(None, 0), *, verbose=None):
        """Baseline correct epochs.

        Parameters
        ----------
        %(baseline_epochs)s
            Defaults to ``(None, 0)``, i.e. beginning of the the data until
            time point zero.
        %(verbose)s

        Returns
        -------
        epochs : instance of Epochs
            The baseline-corrected Epochs object.

        Notes
        -----
        Baseline correction can be done multiple times, but can never be
        reverted once the data has been loaded.

        .. versionadded:: 0.10.0
        """
        baseline = _check_baseline(baseline, times=self.times,
                                   sfreq=self.info['sfreq'])

        if self.preload:
            if self.baseline is not None and baseline is None:
                raise RuntimeError('You cannot remove baseline correction '
                                   'from preloaded data once it has been '
                                   'applied.')
            self._do_baseline = True
            picks = self._detrend_picks
            rescale(self._data, self.times, baseline, copy=False, picks=picks)
            self._do_baseline = False
        else:  # logging happens in "rescale" in "if" branch
            logger.info(_log_rescale(baseline))
            # For EpochsArray and Epochs, this is already True:
            # assert self._do_baseline is True
            # ... but for EpochsFIF it's not, so let's set it explicitly
            self._do_baseline = True
        self.baseline = baseline
        return self

    def _reject_setup(self, reject, flat):
        """Set self._reject_time and self._channel_type_idx."""
        idx = channel_indices_by_type(self.info)
        reject = deepcopy(reject) if reject is not None else dict()
        flat = deepcopy(flat) if flat is not None else dict()
        for rej, kind in zip((reject, flat), ('reject', 'flat')):
            if not isinstance(rej, dict):
                raise TypeError('reject and flat must be dict or None, not %s'
                                % type(rej))
            bads = set(rej.keys()) - set(idx.keys())
            if len(bads) > 0:
                raise KeyError('Unknown channel types found in %s: %s'
                               % (kind, bads))

        for key in idx.keys():
            # don't throw an error if rejection/flat would do nothing
            if len(idx[key]) == 0 and (np.isfinite(reject.get(key, np.inf)) or
                                       flat.get(key, -1) >= 0):
                # This is where we could eventually add e.g.
                # self.allow_missing_reject_keys check to allow users to
                # provide keys that don't exist in data
                raise ValueError("No %s channel found. Cannot reject based on "
                                 "%s." % (key.upper(), key.upper()))

        # check for invalid values
        for rej, kind in zip((reject, flat), ('Rejection', 'Flat')):
            for key, val in rej.items():
                if val is None or val < 0:
                    raise ValueError('%s value must be a number >= 0, not "%s"'
                                     % (kind, val))

        # now check to see if our rejection and flat are getting more
        # restrictive
        old_reject = self.reject if self.reject is not None else dict()
        old_flat = self.flat if self.flat is not None else dict()
        bad_msg = ('{kind}["{key}"] == {new} {op} {old} (old value), new '
                   '{kind} values must be at least as stringent as '
                   'previous ones')

        # copy thresholds for channel types that were used previously, but not
        # passed this time
        for key in set(old_reject) - set(reject):
            reject[key] = old_reject[key]
        # make sure new thresholds are at least as stringent as the old ones
        for key in reject:
            if key in old_reject and reject[key] > old_reject[key]:
                raise ValueError(
                    bad_msg.format(kind='reject', key=key, new=reject[key],
                                   old=old_reject[key], op='>'))

        # same for flat thresholds
        for key in set(old_flat) - set(flat):
            flat[key] = old_flat[key]
        for key in flat:
            if key in old_flat and flat[key] < old_flat[key]:
                raise ValueError(
                    bad_msg.format(kind='flat', key=key, new=flat[key],
                                   old=old_flat[key], op='<'))

        # after validation, set parameters
        self._bad_dropped = False
        self._channel_type_idx = idx
        self.reject = reject if len(reject) > 0 else None
        self.flat = flat if len(flat) > 0 else None

        if (self.reject_tmin is None) and (self.reject_tmax is None):
            self._reject_time = None
        else:
            if self.reject_tmin is None:
                reject_imin = None
            else:
                idxs = np.nonzero(self.times >= self.reject_tmin)[0]
                reject_imin = idxs[0]
            if self.reject_tmax is None:
                reject_imax = None
            else:
                idxs = np.nonzero(self.times <= self.reject_tmax)[0]
                reject_imax = idxs[-1]
            self._reject_time = slice(reject_imin, reject_imax)

    @verbose  # verbose is used by mne-realtime
    def _is_good_epoch(self, data, verbose=None):
        """Determine if epoch is good."""
        if isinstance(data, str):
            return False, (data,)
        if data is None:
            return False, ('NO_DATA',)
        n_times = len(self.times)
        if data.shape[1] < n_times:
            # epoch is too short ie at the end of the data
            return False, ('TOO_SHORT',)
        if self.reject is None and self.flat is None:
            return True, None
        else:
            if self._reject_time is not None:
                data = data[:, self._reject_time]

            return _is_good(data, self.ch_names, self._channel_type_idx,
                            self.reject, self.flat, full_report=True,
                            ignore_chs=self.info['bads'])

    @verbose
    def _detrend_offset_decim(self, epoch, picks, verbose=None):
        """Aux Function: detrend, baseline correct, offset, decim.

        Note: operates inplace
        """
        if (epoch is None) or isinstance(epoch, str):
            return epoch

        # Detrend
        if self.detrend is not None:
            # We explicitly detrend just data channels (not EMG, ECG, EOG which
            # are processed by baseline correction)
            use_picks = _pick_data_channels(self.info, exclude=())
            epoch[use_picks] = detrend(epoch[use_picks], self.detrend, axis=1)

        # Baseline correct
        if self._do_baseline:
            rescale(
                epoch, self._raw_times, self.baseline, picks=picks, copy=False,
                verbose=False)

        # Decimate if necessary (i.e., epoch not preloaded)
        epoch = epoch[:, self._decim_slice]

        # handle offset
        if self._offset is not None:
            epoch += self._offset

        return epoch

    def iter_evoked(self, copy=False):
        """Iterate over epochs as a sequence of Evoked objects.

        The Evoked objects yielded will each contain a single epoch (i.e., no
        averaging is performed).

        This method resets the object iteration state to the first epoch.

        Parameters
        ----------
        copy : bool
            If False copies of data and measurement info will be omitted
            to save time.
        """
        self.__iter__()

        while True:
            try:
                out = self.__next__(True)
            except StopIteration:
                break
            data, event_id = out
            tmin = self.times[0]
            info = self.info
            if copy:
                info = deepcopy(self.info)
                data = data.copy()

            yield EvokedArray(data, info, tmin, comment=str(event_id))

    def subtract_evoked(self, evoked=None):
        """Subtract an evoked response from each epoch.

        Can be used to exclude the evoked response when analyzing induced
        activity, see e.g. [1]_.

        Parameters
        ----------
        evoked : instance of Evoked | None
            The evoked response to subtract. If None, the evoked response
            is computed from Epochs itself.

        Returns
        -------
        self : instance of Epochs
            The modified instance (instance is also modified inplace).

        References
        ----------
        .. [1] David et al. "Mechanisms of evoked and induced responses in
               MEG/EEG", NeuroImage, vol. 31, no. 4, pp. 1580-1591, July 2006.
        """
        logger.info('Subtracting Evoked from Epochs')
        if evoked is None:
            picks = _pick_data_channels(self.info, exclude=[])
            evoked = self.average(picks)

        # find the indices of the channels to use
        picks = pick_channels(evoked.ch_names, include=self.ch_names)

        # make sure the omitted channels are not data channels
        if len(picks) < len(self.ch_names):
            sel_ch = [evoked.ch_names[ii] for ii in picks]
            diff_ch = list(set(self.ch_names).difference(sel_ch))
            diff_idx = [self.ch_names.index(ch) for ch in diff_ch]
            diff_types = [channel_type(self.info, idx) for idx in diff_idx]
            bad_idx = [diff_types.index(t) for t in diff_types if t in
                       _DATA_CH_TYPES_SPLIT]
            if len(bad_idx) > 0:
                bad_str = ', '.join([diff_ch[ii] for ii in bad_idx])
                raise ValueError('The following data channels are missing '
                                 'in the evoked response: %s' % bad_str)
            logger.info('    The following channels are not included in the '
                        'subtraction: %s' % ', '.join(diff_ch))

        # make sure the times match
        if (len(self.times) != len(evoked.times) or
                np.max(np.abs(self.times - evoked.times)) >= 1e-7):
            raise ValueError('Epochs and Evoked object do not contain '
                             'the same time points.')

        # handle SSPs
        if not self.proj and evoked.proj:
            warn('Evoked has SSP applied while Epochs has not.')
        if self.proj and not evoked.proj:
            evoked = evoked.copy().apply_proj()

        # find the indices of the channels to use in Epochs
        ep_picks = [self.ch_names.index(evoked.ch_names[ii]) for ii in picks]

        # do the subtraction
        if self.preload:
            self._data[:, ep_picks, :] -= evoked.data[picks][None, :, :]
        else:
            if self._offset is None:
                self._offset = np.zeros((len(self.ch_names), len(self.times)),
                                        dtype=np.float64)
            self._offset[ep_picks] -= evoked.data[picks]
        logger.info('[done]')

        return self

    @fill_doc
    def average(self, picks=None, method="mean", by_event_type=False):
        """Compute an average over epochs.

        Parameters
        ----------
        %(picks_all_data)s
        method : str | callable
            How to combine the data. If "mean"/"median", the mean/median
            are returned.
            Otherwise, must be a callable which, when passed an array of shape
            (n_epochs, n_channels, n_time) returns an array of shape
            (n_channels, n_time).
            Note that due to file type limitations, the kind for all
            these will be "average".
        %(by_event_type)s

        Returns
        -------
        %(evoked_by_event_type_returns)s

        Notes
        -----
        Computes an average of all epochs in the instance, even if
        they correspond to different conditions. To average by condition,
        do ``epochs[condition].average()`` for each condition separately.

        When picks is None and epochs contain only ICA channels, no channels
        are selected, resulting in an error. This is because ICA channels
        are not considered data channels (they are of misc type) and only data
        channels are selected when picks is None.

        The ``method`` parameter allows e.g. robust averaging.
        For example, one could do:

            >>> from scipy.stats import trim_mean  # doctest:+SKIP
            >>> trim = lambda x: trim_mean(x, 0.1, axis=0)  # doctest:+SKIP
            >>> epochs.average(method=trim)  # doctest:+SKIP

        This would compute the trimmed mean.
        """
        if by_event_type:
            evokeds = list()
            for event_type in self.event_id.keys():
                ev = self[event_type]._compute_aggregate(picks=picks,
                                                         mode=method)
                ev.comment = event_type
                evokeds.append(ev)
        else:
            evokeds = self._compute_aggregate(picks=picks, mode=method)
        return evokeds

    @fill_doc
    def standard_error(self, picks=None, by_event_type=False):
        """Compute standard error over epochs.

        Parameters
        ----------
        %(picks_all_data)s
        %(by_event_type)s

        Returns
        -------
        %(std_err_by_event_type_returns)s
        """
        return self.average(picks=picks, method="std",
                            by_event_type=by_event_type)

    def _compute_aggregate(self, picks, mode='mean'):
        """Compute the mean, median, or std over epochs and return Evoked."""
        # if instance contains ICA channels they won't be included unless picks
        # is specified
        if picks is None:
            check_ICA = [x.startswith('ICA') for x in self.ch_names]
            if np.all(check_ICA):
                raise TypeError('picks must be specified (i.e. not None) for '
                                'ICA channel data')
            elif np.any(check_ICA):
                warn('ICA channels will not be included unless explicitly '
                     'selected in picks')

        n_channels = len(self.ch_names)
        n_times = len(self.times)

        if self.preload:
            n_events = len(self.events)
            fun = _check_combine(mode, valid=('mean', 'median', 'std'))
            data = fun(self._data)
            assert len(self.events) == len(self._data)
            if data.shape != self._data.shape[1:]:
                raise RuntimeError(
                    'You passed a function that resulted n data of shape {}, '
                    'but it should be {}.'.format(
                        data.shape, self._data.shape[1:]))
        else:
            if mode not in {"mean", "std"}:
                raise ValueError("If data are not preloaded, can only compute "
                                 "mean or standard deviation.")
            data = np.zeros((n_channels, n_times))
            n_events = 0
            for e in self:
                if np.iscomplexobj(e):
                    data = data.astype(np.complex128)
                data += e
                n_events += 1

            if n_events > 0:
                data /= n_events
            else:
                data.fill(np.nan)

            # convert to stderr if requested, could do in one pass but do in
            # two (slower) in case there are large numbers
            if mode == "std":
                data_mean = data.copy()
                data.fill(0.)
                for e in self:
                    data += (e - data_mean) ** 2
                data = np.sqrt(data / n_events)

        if mode == "std":
            kind = 'standard_error'
            data /= np.sqrt(n_events)
        else:
            kind = "average"

        return self._evoked_from_epoch_data(data, self.info, picks, n_events,
                                            kind, self._name)

    @property
    def _name(self):
        """Give a nice string representation based on event ids."""
        if len(self.event_id) == 1:
            comment = next(iter(self.event_id.keys()))
        else:
            count = Counter(self.events[:, 2])
            comments = list()
            for key, value in self.event_id.items():
                comments.append('%.2f × %s' % (
                    float(count[value]) / len(self.events), key))
            comment = ' + '.join(comments)
        return comment

    def _evoked_from_epoch_data(self, data, info, picks, n_events, kind,
                                comment):
        """Create an evoked object from epoch data."""
        info = deepcopy(info)
        # don't apply baseline correction; we'll set evoked.baseline manually
        evoked = EvokedArray(data, info, tmin=self.times[0], comment=comment,
                             nave=n_events, kind=kind, baseline=None)
        evoked.baseline = self.baseline

        # the above constructor doesn't recreate the times object precisely
        # due to numerical precision issues
        evoked._set_times(self.times.copy())

        # pick channels
        picks = _picks_to_idx(self.info, picks, 'data_or_ica', ())
        ch_names = [evoked.ch_names[p] for p in picks]
        evoked.pick_channels(ch_names)

        if len(evoked.info['ch_names']) == 0:
            raise ValueError('No data channel found when averaging.')

        if evoked.nave < 1:
            warn('evoked object is empty (based on less than 1 epoch)')

        return evoked

    @property
    def ch_names(self):
        """Channel names."""
        return self.info['ch_names']

    @copy_function_doc_to_method_doc(plot_epochs)
    def plot(self, picks=None, scalings=None, n_epochs=20, n_channels=20,
             title=None, events=None, event_color=None,
             order=None, show=True, block=False, decim='auto', noise_cov=None,
             butterfly=False, show_scrollbars=True, show_scalebars=True,
             epoch_colors=None, event_id=None, group_by='type',
             precompute=None, use_opengl=None, *, theme=None,
             overview_mode=None):
        return plot_epochs(self, picks=picks, scalings=scalings,
                           n_epochs=n_epochs, n_channels=n_channels,
                           title=title, events=events, event_color=event_color,
                           order=order, show=show, block=block, decim=decim,
                           noise_cov=noise_cov, butterfly=butterfly,
                           show_scrollbars=show_scrollbars,
                           show_scalebars=show_scalebars,
                           epoch_colors=epoch_colors, event_id=event_id,
                           group_by=group_by, precompute=precompute,
                           use_opengl=use_opengl, theme=theme,
                           overview_mode=overview_mode)

    @copy_function_doc_to_method_doc(plot_topo_image_epochs)
    def plot_topo_image(self, layout=None, sigma=0., vmin=None, vmax=None,
                        colorbar=None, order=None, cmap='RdBu_r',
                        layout_scale=.95, title=None, scalings=None,
                        border='none', fig_facecolor='k', fig_background=None,
                        font_color='w', show=True):
        return plot_topo_image_epochs(
            self, layout=layout, sigma=sigma, vmin=vmin, vmax=vmax,
            colorbar=colorbar, order=order, cmap=cmap,
            layout_scale=layout_scale, title=title, scalings=scalings,
            border=border, fig_facecolor=fig_facecolor,
            fig_background=fig_background, font_color=font_color, show=show)

    @verbose
    def drop_bad(self, reject='existing', flat='existing', verbose=None):
        """Drop bad epochs without retaining the epochs data.

        Should be used before slicing operations.

        .. warning:: This operation is slow since all epochs have to be read
                     from disk. To avoid reading epochs from disk multiple
                     times, use :meth:`mne.Epochs.load_data()`.

        .. note:: To constrain the time period used for estimation of signal
                  quality, set ``epochs.reject_tmin`` and
                  ``epochs.reject_tmax``, respectively.

        Parameters
        ----------
        %(reject_drop_bad)s
        %(flat_drop_bad)s
        %(verbose)s

        Returns
        -------
        epochs : instance of Epochs
            The epochs with bad epochs dropped. Operates in-place.

        Notes
        -----
        Dropping bad epochs can be done multiple times with different
        ``reject`` and ``flat`` parameters. However, once an epoch is
        dropped, it is dropped forever, so if more lenient thresholds may
        subsequently be applied, `epochs.copy <mne.Epochs.copy>` should be
        used.
        """
        if reject == 'existing':
            if flat == 'existing' and self._bad_dropped:
                return
            reject = self.reject
        if flat == 'existing':
            flat = self.flat
        if any(isinstance(rej, str) and rej != 'existing' for
               rej in (reject, flat)):
            raise ValueError('reject and flat, if strings, must be "existing"')
        self._reject_setup(reject, flat)
        self._get_data(out=False, verbose=verbose)
        return self

    def drop_log_stats(self, ignore=('IGNORED',)):
        """Compute the channel stats based on a drop_log from Epochs.

        Parameters
        ----------
        ignore : list
            The drop reasons to ignore.

        Returns
        -------
        perc : float
            Total percentage of epochs dropped.

        See Also
        --------
        plot_drop_log
        """
        return _drop_log_stats(self.drop_log, ignore)

    @copy_function_doc_to_method_doc(plot_drop_log)
    def plot_drop_log(self, threshold=0, n_max_plot=20, subject=None,
                      color=(0.9, 0.9, 0.9), width=0.8, ignore=('IGNORED',),
                      show=True):
        if not self._bad_dropped:
            raise ValueError("You cannot use plot_drop_log since bad "
                             "epochs have not yet been dropped. "
                             "Use epochs.drop_bad().")
        return plot_drop_log(self.drop_log, threshold, n_max_plot, subject,
                             color=color, width=width, ignore=ignore,
                             show=show)

    @copy_function_doc_to_method_doc(plot_epochs_image)
    def plot_image(self, picks=None, sigma=0., vmin=None, vmax=None,
                   colorbar=True, order=None, show=True, units=None,
                   scalings=None, cmap=None, fig=None, axes=None,
                   overlay_times=None, combine=None, group_by=None,
                   evoked=True, ts_args=None, title=None, clear=False):
        return plot_epochs_image(self, picks=picks, sigma=sigma, vmin=vmin,
                                 vmax=vmax, colorbar=colorbar, order=order,
                                 show=show, units=units, scalings=scalings,
                                 cmap=cmap, fig=fig, axes=axes,
                                 overlay_times=overlay_times, combine=combine,
                                 group_by=group_by, evoked=evoked,
                                 ts_args=ts_args, title=title, clear=clear)

    @verbose
    def drop(self, indices, reason='USER', verbose=None):
        """Drop epochs based on indices or boolean mask.

        .. note:: The indices refer to the current set of undropped epochs
                  rather than the complete set of dropped and undropped epochs.
                  They are therefore not necessarily consistent with any
                  external indices (e.g., behavioral logs). To drop epochs
                  based on external criteria, do not use the ``preload=True``
                  flag when constructing an Epochs object, and call this
                  method before calling the :meth:`mne.Epochs.drop_bad` or
                  :meth:`mne.Epochs.load_data` methods.

        Parameters
        ----------
        indices : array of int or bool
            Set epochs to remove by specifying indices to remove or a boolean
            mask to apply (where True values get removed). Events are
            correspondingly modified.
        reason : str
            Reason for dropping the epochs ('ECG', 'timeout', 'blink' etc).
            Default: 'USER'.
        %(verbose)s

        Returns
        -------
        epochs : instance of Epochs
            The epochs with indices dropped. Operates in-place.
        """
        indices = np.atleast_1d(indices)

        if indices.ndim > 1:
            raise ValueError("indices must be a scalar or a 1-d array")

        if indices.dtype == bool:
            indices = np.where(indices)[0]
        try_idx = np.where(indices < 0, indices + len(self.events), indices)

        out_of_bounds = (try_idx < 0) | (try_idx >= len(self.events))
        if out_of_bounds.any():
            first = indices[out_of_bounds][0]
            raise IndexError("Epoch index %d is out of bounds" % first)
        keep = np.setdiff1d(np.arange(len(self.events)), try_idx)
        self._getitem(keep, reason, copy=False, drop_event_id=False)
        count = len(try_idx)
        logger.info('Dropped %d epoch%s: %s' %
                    (count, _pl(count), ', '.join(map(str, np.sort(try_idx)))))

        return self

    def _get_epoch_from_raw(self, idx, verbose=None):
        """Get a given epoch from disk."""
        raise NotImplementedError

    def _project_epoch(self, epoch):
        """Process a raw epoch based on the delayed param."""
        # whenever requested, the first epoch is being projected.
        if (epoch is None) or isinstance(epoch, str):
            # can happen if t < 0 or reject based on annotations
            return epoch
        proj = self._do_delayed_proj or self.proj
        if self._projector is not None and proj is True:
            epoch = np.dot(self._projector, epoch)
        return epoch

    @verbose
    def _get_data(self, out=True, picks=None, item=None, *, units=None,
                  tmin=None, tmax=None, verbose=None):
        """Load all data, dropping bad epochs along the way.

        Parameters
        ----------
        out : bool
            Return the data. Setting this to False is used to reject bad
            epochs without caching all the data, which saves memory.
        %(picks_all)s
        item : slice | array-like | str | list | None
            See docstring of get_data method.
        %(units)s
        tmin : int | float | None
            Start time of data to get in seconds.
        tmax : int | float | None
            End time of data to get in seconds.
        %(verbose)s
        """
        # if called with 'out=False', the call came from 'drop_bad()'
        # if no reasons to drop, just declare epochs as good and return
        if not out:
            # make sure first and last epoch not out of bounds of raw
            in_bounds = self.preload or (
                self._get_epoch_from_raw(idx=0) is not None and
                self._get_epoch_from_raw(idx=-1) is not None)
            # might be BaseEpochs or Epochs, only the latter has the attribute
            reject_by_annotation = getattr(self, 'reject_by_annotation', False)
            if (self.reject is None and self.flat is None and in_bounds and
                    self._reject_time is None and not reject_by_annotation):
                logger.debug('_get_data is a noop, returning')
                self._bad_dropped = True
                return None
        start, stop = self._handle_tmin_tmax(tmin, tmax)

        if item is None:
            item = slice(None)
        elif not self._bad_dropped:
            raise ValueError(
                'item must be None in epochs.get_data() unless bads have been '
                'dropped. Consider using epochs.drop_bad().')
        select = self._item_to_select(item)  # indices or slice
        use_idx = np.arange(len(self.events))[select]
        n_events = len(use_idx)
        # in case there are no good events
        if self.preload:
            # we will store our result in our existing array
            data = self._data
        else:
            # we start out with an empty array, allocate only if necessary
            data = np.empty((0, len(self.info['ch_names']), len(self.times)))
            msg = (f'for {n_events} events and {len(self._raw_times)} '
                   'original time points')
            if self._decim > 1:
                msg += ' (prior to decimation)'
            if getattr(self._raw, "preload", False):
                logger.info(f'Using data from preloaded Raw {msg} ...')
            else:
                logger.info(f'Loading data {msg} ...')

        orig_picks = picks
        if orig_picks is None:
            picks = _picks_to_idx(self.info, picks, "all", exclude=())
        else:
            picks = _picks_to_idx(self.info, picks)

        # handle units param only if we are going to return data (out==True)
        if (units is not None) and out:
            ch_factors = _get_ch_factors(self, units, picks)

        if self._bad_dropped:
            if not out:
                return
            if self.preload:
                data = data[select]
                if orig_picks is not None:
                    data = data[:, picks]
                if units is not None:
                    data *= ch_factors[:, np.newaxis]
                if start != 0 or stop != self.times.size:
                    data = data[..., start:stop]
                return data

            # we need to load from disk, drop, and return data
            detrend_picks = self._detrend_picks
            for ii, idx in enumerate(use_idx):
                # faster to pre-allocate memory here
                epoch_noproj = self._get_epoch_from_raw(idx)
                epoch_noproj = self._detrend_offset_decim(
                    epoch_noproj, detrend_picks)
                if self._do_delayed_proj:
                    epoch_out = epoch_noproj
                else:
                    epoch_out = self._project_epoch(epoch_noproj)
                if ii == 0:
                    data = np.empty((n_events, len(self.ch_names),
                                     len(self.times)), dtype=epoch_out.dtype)
                data[ii] = epoch_out
        else:
            # bads need to be dropped, this might occur after a preload
            # e.g., when calling drop_bad w/new params
            good_idx = []
            n_out = 0
            drop_log = list(self.drop_log)
            assert n_events == len(self.selection)
            if not self.preload:
                detrend_picks = self._detrend_picks
            for idx, sel in enumerate(self.selection):
                if self.preload:  # from memory
                    if self._do_delayed_proj:
                        epoch_noproj = self._data[idx]
                        epoch = self._project_epoch(epoch_noproj)
                    else:
                        epoch_noproj = None
                        epoch = self._data[idx]
                else:  # from disk
                    epoch_noproj = self._get_epoch_from_raw(idx)
                    epoch_noproj = self._detrend_offset_decim(
                        epoch_noproj, detrend_picks)
                    epoch = self._project_epoch(epoch_noproj)

                epoch_out = epoch_noproj if self._do_delayed_proj else epoch
                is_good, bad_tuple = self._is_good_epoch(
                    epoch, verbose=verbose)
                if not is_good:
                    assert isinstance(bad_tuple, tuple)
                    assert all(isinstance(x, str) for x in bad_tuple)
                    drop_log[sel] = drop_log[sel] + bad_tuple
                    continue
                good_idx.append(idx)

                # store the epoch if there is a reason to (output or update)
                if out or self.preload:
                    # faster to pre-allocate, then trim as necessary
                    if n_out == 0 and not self.preload:
                        data = np.empty((n_events, epoch_out.shape[0],
                                         epoch_out.shape[1]),
                                        dtype=epoch_out.dtype, order='C')
                    data[n_out] = epoch_out
                    n_out += 1
            self.drop_log = tuple(drop_log)
            del drop_log

            self._bad_dropped = True
            logger.info("%d bad epochs dropped" % (n_events - len(good_idx)))

            # adjust the data size if there is a reason to (output or update)
            if out or self.preload:
                if data.flags['OWNDATA'] and data.flags['C_CONTIGUOUS']:
                    data.resize((n_out,) + data.shape[1:], refcheck=False)
                else:
                    data = data[:n_out]
                    if self.preload:
                        self._data = data

            # Now update our properties (excepd data, which is already fixed)
            self._getitem(good_idx, None, copy=False, drop_event_id=False,
                          select_data=False)

        if out:
            if orig_picks is not None:
                data = data[:, picks]
            if units is not None:
                data *= ch_factors[:, np.newaxis]
            if start != 0 or stop != self.times.size:
                data = data[..., start:stop]
            return data
        else:
            return None

    @property
    def _detrend_picks(self):
        if self._do_baseline:
            return _pick_data_channels(
                self.info, with_ref_meg=True, with_aux=True, exclude=())
        else:
            return []

    @fill_doc
    def get_data(self, picks=None, item=None, units=None, tmin=None,
                 tmax=None):
        """Get all epochs as a 3D array.

        Parameters
        ----------
        %(picks_all)s
        item : slice | array-like | str | list | None
            The items to get. See :meth:`mne.Epochs.__getitem__` for
            a description of valid options. This can be substantially faster
            for obtaining an ndarray than :meth:`~mne.Epochs.__getitem__`
            for repeated access on large Epochs objects.
            None (default) is an alias for ``slice(None)``.

            .. versionadded:: 0.20
        %(units)s

            .. versionadded:: 0.24
        tmin : int | float | None
            Start time of data to get in seconds.

            .. versionadded:: 0.24.0
        tmax : int | float | None
            End time of data to get in seconds.

            .. versionadded:: 0.24.0

        Returns
        -------
        data : array of shape (n_epochs, n_channels, n_times)
            A view on epochs data.
        """
        return self._get_data(picks=picks, item=item, units=units, tmin=tmin,
                              tmax=tmax)

    @verbose
    def apply_function(self, fun, picks=None, dtype=None, n_jobs=None,
                       channel_wise=True, verbose=None, **kwargs):
        """Apply a function to a subset of channels.

        %(applyfun_summary_epochs)s

        Parameters
        ----------
        %(fun_applyfun)s
        %(picks_all_data_noref)s
        %(dtype_applyfun)s
        %(n_jobs)s Ignored if ``channel_wise=False`` as the workload
            is split across channels.
        %(channel_wise_applyfun_epo)s
        %(verbose)s
        %(kwargs_fun)s

        Returns
        -------
        self : instance of Epochs
            The epochs object with transformed data.
        """
        _check_preload(self, 'epochs.apply_function')
        picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False)

        if not callable(fun):
            raise ValueError('fun needs to be a function')

        data_in = self._data
        if dtype is not None and dtype != self._data.dtype:
            self._data = self._data.astype(dtype)

        if channel_wise:
            parallel, p_fun, n_jobs = parallel_func(_check_fun, n_jobs)
            if n_jobs == 1:
                _fun = partial(_check_fun, fun, **kwargs)
                # modify data inplace to save memory
                for idx in picks:
                    self._data[:, idx, :] = np.apply_along_axis(
                        _fun, -1, data_in[:, idx, :])
            else:
                # use parallel function
                data_picks_new = parallel(p_fun(
                    fun, data_in[:, p, :], **kwargs) for p in picks)
                for pp, p in enumerate(picks):
                    self._data[:, p, :] = data_picks_new[pp]
        else:
            self._data = _check_fun(fun, data_in, **kwargs)

        return self

    @property
    def filename(self):
        """The filename."""
        return self._filename

    def __repr__(self):
        """Build string representation."""
        s = ' %s events ' % len(self.events)
        s += '(all good)' if self._bad_dropped else '(good & bad)'
        s += ', %g - %g sec' % (self.tmin, self.tmax)
        s += ', baseline '
        if self.baseline is None:
            s += 'off'
        else:
            s += f'{self.baseline[0]:g} – {self.baseline[1]:g} sec'
            if self.baseline != _check_baseline(
                    self.baseline, times=self.times, sfreq=self.info['sfreq'],
                    on_baseline_outside_data='adjust'):
                s += ' (baseline period was cropped after baseline correction)'

        s += ', ~%s' % (sizeof_fmt(self._size),)
        s += ', data%s loaded' % ('' if self.preload else ' not')
        s += ', with metadata' if self.metadata is not None else ''
        max_events = 10
        counts = ['%r: %i' % (k, sum(self.events[:, 2] == v))
                  for k, v in list(self.event_id.items())[:max_events]]
        if len(self.event_id) > 0:
            s += ',' + '\n '.join([''] + counts)
        if len(self.event_id) > max_events:
            not_shown_events = len(self.event_id) - max_events
            s += f"\n and {not_shown_events} more events ..."
        class_name = self.__class__.__name__
        class_name = 'Epochs' if class_name == 'BaseEpochs' else class_name
        return '<%s | %s>' % (class_name, s)

    @repr_html
    def _repr_html_(self):
        from .html_templates import repr_templates_env
        if self.baseline is None:
            baseline = 'off'
        else:
            baseline = tuple([f'{b:.3f}' for b in self.baseline])
            baseline = f'{baseline[0]} – {baseline[1]} sec'

        if isinstance(self.event_id, dict):
            event_strings = []
            for k, v in sorted(self.event_id.items()):
                n_events = sum(self.events[:, 2] == v)
                event_strings.append(f'{k}: {n_events}')
        elif isinstance(self.event_id, list):
            event_strings = []
            for k in self.event_id:
                n_events = sum(self.events[:, 2] == k)
                event_strings.append(f'{k}: {n_events}')
        elif isinstance(self.event_id, int):
            n_events = len(self.events[:, 2])
            event_strings = [f'{self.event_id}: {n_events}']
        else:
            event_strings = None

        t = repr_templates_env.get_template('epochs.html.jinja')
        t = t.render(epochs=self, baseline=baseline, events=event_strings)
        return t

    @verbose
    def crop(self, tmin=None, tmax=None, include_tmax=True, verbose=None):
        """Crop a time interval from the epochs.

        Parameters
        ----------
        tmin : float | None
            Start time of selection in seconds.
        tmax : float | None
            End time of selection in seconds.
        %(include_tmax)s
        %(verbose)s

        Returns
        -------
        epochs : instance of Epochs
            The cropped epochs object, modified in-place.

        Notes
        -----
        %(notes_tmax_included_by_default)s
        """
        # XXX this could be made to work on non-preloaded data...
        _check_preload(self, 'Modifying data of epochs')

        super().crop(tmin=tmin, tmax=tmax, include_tmax=include_tmax)

        # Adjust rejection period
        if self.reject_tmin is not None and self.reject_tmin < self.tmin:
            logger.info(
                f'reject_tmin is not in epochs time interval. '
                f'Setting reject_tmin to epochs.tmin ({self.tmin} sec)')
            self.reject_tmin = self.tmin
        if self.reject_tmax is not None and self.reject_tmax > self.tmax:
            logger.info(
                f'reject_tmax is not in epochs time interval. '
                f'Setting reject_tmax to epochs.tmax ({self.tmax} sec)')
            self.reject_tmax = self.tmax
        return self

    def copy(self):
        """Return copy of Epochs instance.

        Returns
        -------
        epochs : instance of Epochs
            A copy of the object.
        """
        return deepcopy(self)

    def __deepcopy__(self, memodict):
        """Make a deepcopy."""
        cls = self.__class__
        result = cls.__new__(cls)
        for k, v in self.__dict__.items():
            # drop_log is immutable and _raw is private (and problematic to
            # deepcopy)
            if k in ('drop_log', '_raw', '_times_readonly'):
                memodict[id(v)] = v
            else:
                v = deepcopy(v, memodict)
            result.__dict__[k] = v
        return result

    @verbose
    def save(self, fname, split_size='2GB', fmt='single', overwrite=False,
             split_naming='neuromag', verbose=None):
        """Save epochs in a fif file.

        Parameters
        ----------
        fname : str
            The name of the file, which should end with ``-epo.fif`` or
            ``-epo.fif.gz``.
        split_size : str | int
            Large raw files are automatically split into multiple pieces. This
            parameter specifies the maximum size of each piece. If the
            parameter is an integer, it specifies the size in Bytes. It is
            also possible to pass a human-readable string, e.g., 100MB.
            Note: Due to FIFF file limitations, the maximum split size is 2GB.

            .. versionadded:: 0.10.0
        fmt : str
            Format to save data. Valid options are 'double' or
            'single' for 64- or 32-bit float, or for 128- or
            64-bit complex numbers respectively. Note: Data are processed with
            double precision. Choosing single-precision, the saved data
            will slightly differ due to the reduction in precision.

            .. versionadded:: 0.17
        %(overwrite)s
            To overwrite original file (the same one that was loaded),
            data must be preloaded upon reading. This defaults to True in 0.18
            but will change to False in 0.19.

            .. versionadded:: 0.18
        %(split_naming)s

            .. versionadded:: 0.24
        %(verbose)s

        Notes
        -----
        Bad epochs will be dropped before saving the epochs to disk.
        """
        check_fname(fname, 'epochs', ('-epo.fif', '-epo.fif.gz',
                                      '_epo.fif', '_epo.fif.gz'))

        # check for file existence and expand `~` if present
        fname = _check_fname(fname=fname, overwrite=overwrite)

        split_size_bytes = _get_split_size(split_size)

        _check_option('fmt', fmt, ['single', 'double'])

        # to know the length accurately. The get_data() call would drop
        # bad epochs anyway
        self.drop_bad()
        # total_size tracks sizes that get split
        # over_size tracks overhead (tags, things that get written to each)
        if len(self) == 0:
            warn('Saving epochs with no data')
            total_size = 0
        else:
            d = self[0].get_data()
            # this should be guaranteed by subclasses
            assert d.dtype in ('>f8', '<f8', '>c16', '<c16')
            total_size = d.nbytes * len(self)
        self._check_consistency()
        over_size = 0
        if fmt == "single":
            total_size //= 2  # 64bit data converted to 32bit before writing.
        over_size += 32  # FIF tags
        # Account for all the other things we write, too
        # 1. meas_id block plus main epochs block
        over_size += 132
        # 2. measurement info (likely slight overestimate, but okay)
        over_size += object_size(self.info) + 16 * len(self.info)
        # 3. events and event_id in its own block
        total_size += self.events.size * 4
        over_size += len(_event_id_string(self.event_id)) + 72
        # 4. Metadata in a block of its own
        if self.metadata is not None:
            total_size += len(_prepare_write_metadata(self.metadata))
        over_size += 56
        # 5. first sample, last sample, baseline
        over_size += 40 * (self.baseline is not None) + 40
        # 6. drop log: gets written to each, with IGNORE for ones that are
        #    not part of it. So make a fake one with all having entries.
        drop_size = len(json.dumps(self.drop_log)) + 16
        drop_size += 8 * (len(self.selection) - 1)  # worst case: all but one
        over_size += drop_size
        # 7. reject params
        reject_params = _pack_reject_params(self)
        if reject_params:
            over_size += len(json.dumps(reject_params)) + 16
        # 8. selection
        total_size += self.selection.size * 4
        over_size += 16
        # 9. end of file tags
        over_size += _NEXT_FILE_BUFFER
        logger.debug(f'    Overhead size:   {str(over_size).rjust(15)}')
        logger.debug(f'    Splittable size: {str(total_size).rjust(15)}')
        logger.debug(f'    Split size:      {str(split_size_bytes).rjust(15)}')
        # need at least one per
        n_epochs = len(self)
        n_per = total_size // n_epochs if n_epochs else 0
        min_size = n_per + over_size
        if split_size_bytes < min_size:
            raise ValueError(
                f'The split size {split_size} is too small to safely write '
                'the epochs contents, minimum split size is '
                f'{sizeof_fmt(min_size)} ({min_size} bytes)')

        # This is like max(int(ceil(total_size / split_size)), 1) but cleaner
        n_parts = max(
            (total_size - 1) // (split_size_bytes - over_size) + 1, 1)
        assert n_parts >= 1, n_parts
        if n_parts > 1:
            logger.info(f'Splitting into {n_parts} parts')
            if n_parts > 100:  # This must be an error
                raise ValueError(
                    f'Split size {split_size} would result in writing '
                    f'{n_parts} files')

        if len(self.drop_log) > 100000:
            warn(f'epochs.drop_log contains {len(self.drop_log)} entries '
                 f'which will incur up to a {sizeof_fmt(drop_size)} writing '
                 f'overhead (per split file), consider using '
                 f'epochs.reset_drop_log_selection() prior to writing')

        epoch_idxs = np.array_split(np.arange(n_epochs), n_parts)

        for part_idx, epoch_idx in enumerate(epoch_idxs):
            this_epochs = self[epoch_idx] if n_parts > 1 else self
            # avoid missing event_ids in splits
            this_epochs.event_id = self.event_id
            _save_split(this_epochs, fname, part_idx, n_parts, fmt,
                        split_naming, overwrite)

    @verbose
    def export(self, fname, fmt='auto', *, overwrite=False, verbose=None):
        """Export Epochs to external formats.

        %(export_fmt_support_epochs)s

        %(export_warning)s

        Parameters
        ----------
        %(fname_export_params)s
        %(export_fmt_params_epochs)s
        %(overwrite)s

            .. versionadded:: 0.24.1
        %(verbose)s

        Notes
        -----
        .. versionadded:: 0.24

        %(export_warning_note_epochs)s
        %(export_eeglab_note)s
        """
        from .export import export_epochs
        export_epochs(fname, self, fmt, overwrite=overwrite, verbose=verbose)

    def equalize_event_counts(self, event_ids=None, method='mintime'):
        """Equalize the number of trials in each condition.

        It tries to make the remaining epochs occurring as close as possible in
        time. This method works based on the idea that if there happened to be
        some time-varying (like on the scale of minutes) noise characteristics
        during a recording, they could be compensated for (to some extent) in
        the equalization process. This method thus seeks to reduce any of
        those effects by minimizing the differences in the times of the events
        within a `~mne.Epochs` instance. For example, if one event type
        occurred at time points ``[1, 2, 3, 4, 120, 121]`` and the another one
        at ``[3.5, 4.5, 120.5, 121.5]``, this method would remove the events at
        times ``[1, 2]`` for the first event type – and not the events at times
        ``[120, 121]``.

        Parameters
        ----------
        event_ids : None | list | dict
            The event types to equalize.

            If ``None`` (default), equalize the counts of **all** event types
            present in the `~mne.Epochs` instance.

            If a list, each element can either be a string (event name) or a
            list of strings. In the case where one of the entries is a list of
            strings, event types in that list will be grouped together before
            equalizing trial counts across conditions.

            If a dictionary, the keys are considered as the event names whose
            counts to equalize, i.e., passing ``dict(A=1, B=2)`` will have the
            same effect as passing ``['A', 'B']``. This is useful if you intend
            to pass an ``event_id`` dictionary that was used when creating
            `~mne.Epochs`.

            In the case where partial matching is used (using ``/`` in
            the event names), the event types will be matched according to the
            provided tags, that is, processing works as if the ``event_ids``
            matched by the provided tags had been supplied instead.
            The ``event_ids`` must identify non-overlapping subsets of the
            epochs.
        method : str
            If ``'truncate'``, events will be truncated from the end of each
            type of events. If ``'mintime'``, timing differences between each
            event type will be minimized.

        Returns
        -------
        epochs : instance of Epochs
            The modified instance. It is modified in-place.
        indices : array of int
            Indices from the original events list that were dropped.

        Notes
        -----
        For example (if ``epochs.event_id`` was ``{'Left': 1, 'Right': 2,
        'Nonspatial':3}``:

            epochs.equalize_event_counts([['Left', 'Right'], 'Nonspatial'])

        would equalize the number of trials in the ``'Nonspatial'`` condition
        with the total number of trials in the ``'Left'`` and ``'Right'``
        conditions combined.

        If multiple indices are provided (e.g. ``'Left'`` and ``'Right'`` in
        the example above), it is not guaranteed that after equalization the
        conditions will contribute equally. E.g., it is possible to end up
        with 70 ``'Nonspatial'`` epochs, 69 ``'Left'`` and 1 ``'Right'``.

        .. versionchanged:: 0.23
            Default to equalizing all events in the passed instance if no
            event names were specified explicitly.
        """
        from collections.abc import Iterable
        _validate_type(event_ids, types=(Iterable, None),
                       item_name='event_ids', type_name='list-like or None')
        if isinstance(event_ids, str):
            raise TypeError(f'event_ids must be list-like or None, but '
                            f'received a string: {event_ids}')

        if event_ids is None:
            event_ids = list(self.event_id)
        elif not event_ids:
            raise ValueError('event_ids must have at least one element')

        if not self._bad_dropped:
            self.drop_bad()
        # figure out how to equalize
        eq_inds = list()

        # deal with hierarchical tags
        ids = self.event_id
        orig_ids = list(event_ids)
        tagging = False
        if "/" in "".join(ids):
            # make string inputs a list of length 1
            event_ids = [[x] if isinstance(x, str) else x
                         for x in event_ids]
            for ids_ in event_ids:  # check if tagging is attempted
                if any([id_ not in ids for id_ in ids_]):
                    tagging = True
            # 1. treat everything that's not in event_id as a tag
            # 2a. for tags, find all the event_ids matched by the tags
            # 2b. for non-tag ids, just pass them directly
            # 3. do this for every input
            event_ids = [[k for k in ids
                          if all((tag in k.split("/")
                                  for tag in id_))]  # ids matching all tags
                         if all(id__ not in ids for id__ in id_)
                         else id_  # straight pass for non-tag inputs
                         for id_ in event_ids]
            for ii, id_ in enumerate(event_ids):
                if len(id_) == 0:
                    raise KeyError(f"{orig_ids[ii]} not found in the epoch "
                                   "object's event_id.")
                elif len({sub_id in ids for sub_id in id_}) != 1:
                    err = ("Don't mix hierarchical and regular event_ids"
                           " like in \'%s\'." % ", ".join(id_))
                    raise ValueError(err)

            # raise for non-orthogonal tags
            if tagging is True:
                events_ = [set(self[x].events[:, 0]) for x in event_ids]
                doubles = events_[0].intersection(events_[1])
                if len(doubles):
                    raise ValueError("The two sets of epochs are "
                                     "overlapping. Provide an "
                                     "orthogonal selection.")

        for eq in event_ids:
            eq_inds.append(self._keys_to_idx(eq))

        event_times = [self.events[e, 0] for e in eq_inds]
        indices = _get_drop_indices(event_times, method)
        # need to re-index indices
        indices = np.concatenate([e[idx] for e, idx in zip(eq_inds, indices)])
        self.drop(indices, reason='EQUALIZED_COUNT')
        # actually remove the indices
        return self, indices

    @verbose
    def compute_psd(self, method='multitaper', fmin=0, fmax=np.inf, tmin=None,
                    tmax=None, picks=None, proj=False, *, n_jobs=1,
                    verbose=None, **method_kw):
        """Perform spectral analysis on sensor data.

        Parameters
        ----------
        %(method_psd)s
            Default is ``'multitaper'``.
        %(fmin_fmax_psd)s
        %(tmin_tmax_psd)s
        %(picks_good_data_noref)s
        %(proj_psd)s
        %(n_jobs)s
        %(verbose)s
        %(method_kw_psd)s

        Returns
        -------
        spectrum : instance of EpochsSpectrum
            The spectral representation of each epoch.

        Notes
        -----
        .. versionadded:: 1.2

        References
        ----------
        .. footbibliography::
        """
        return EpochsSpectrum(
            self, method=method, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax,
            picks=picks, proj=proj, n_jobs=n_jobs, verbose=verbose,
            **method_kw)

    @verbose
    def plot_psd(self, fmin=0, fmax=np.inf, tmin=None, tmax=None, picks=None,
                 proj=False, *, method='auto', average=False, dB=True,
                 estimate='auto', xscale='linear', area_mode='std',
                 area_alpha=0.33, color='black', line_alpha=None,
                 spatial_colors=True, sphere=None, exclude='bads', ax=None,
                 show=True, n_jobs=1, verbose=None, **method_kw):
        """%(plot_psd_doc)s.

        Parameters
        ----------
        %(fmin_fmax_psd)s
        %(tmin_tmax_psd)s
        %(picks_good_data_noref)s
        %(proj_psd)s
        %(method_plot_psd_auto)s
        %(average_plot_psd)s
        %(dB_plot_psd)s
        %(estimate_plot_psd)s
        %(xscale_plot_psd)s
        %(area_mode_plot_psd)s
        %(area_alpha_plot_psd)s
        %(color_plot_psd)s
        %(line_alpha_plot_psd)s
        %(spatial_colors_psd)s
        %(sphere_topomap_auto)s

            .. versionadded:: 0.22.0
        exclude : list of str | 'bads'
            Channels names to exclude from being shown. If 'bads', the bad
            channels are excluded. Pass an empty list to plot all channels
            (including channels marked "bad", if any).

            .. versionadded:: 0.24.0
        %(ax_plot_psd)s
        %(show)s
        %(n_jobs)s
        %(verbose)s
        %(method_kw_psd)s

        Returns
        -------
        fig : instance of Figure
            Figure with frequency spectra of the data channels.

        Notes
        -----
        %(notes_plot_psd_meth)s
        """
        return super().plot_psd(
            fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, picks=picks, proj=proj,
            reject_by_annotation=False, method=method, average=average, dB=dB,
            estimate=estimate, xscale=xscale, area_mode=area_mode,
            area_alpha=area_alpha, color=color, line_alpha=line_alpha,
            spatial_colors=spatial_colors, sphere=sphere, exclude=exclude,
            ax=ax, show=show, n_jobs=n_jobs, verbose=verbose, **method_kw)

    @verbose
    def to_data_frame(self, picks=None, index=None,
                      scalings=None, copy=True, long_format=False,
                      time_format=None, *, verbose=None):
        """Export data in tabular structure as a pandas DataFrame.

        Channels are converted to columns in the DataFrame. By default,
        additional columns "time", "epoch" (epoch number), and "condition"
        (epoch event description) are added, unless ``index`` is not ``None``
        (in which case the columns specified in ``index`` will be used to form
        the DataFrame's index instead).

        Parameters
        ----------
        %(picks_all)s
        %(index_df_epo)s
            Valid string values are 'time', 'epoch', and 'condition'.
            Defaults to ``None``.
        %(scalings_df)s
        %(copy_df)s
        %(long_format_df_epo)s
        %(time_format_df)s

            .. versionadded:: 0.20
        %(verbose)s

        Returns
        -------
        %(df_return)s
        """
        # check pandas once here, instead of in each private utils function
        pd = _check_pandas_installed()  # noqa
        # arg checking
        valid_index_args = ['time', 'epoch', 'condition']
        valid_time_formats = ['ms', 'timedelta']
        index = _check_pandas_index_arguments(index, valid_index_args)
        time_format = _check_time_format(time_format, valid_time_formats)
        # get data
        picks = _picks_to_idx(self.info, picks, 'all', exclude=())
        data = self.get_data()[:, picks, :]
        times = self.times
        n_epochs, n_picks, n_times = data.shape
        data = np.hstack(data).T  # (time*epochs) x signals
        if copy:
            data = data.copy()
        data = _scale_dataframe_data(self, data, picks, scalings)
        # prepare extra columns / multiindex
        mindex = list()
        times = np.tile(times, n_epochs)
        times = _convert_times(self, times, time_format)
        mindex.append(('time', times))
        rev_event_id = {v: k for k, v in self.event_id.items()}
        conditions = [rev_event_id[k] for k in self.events[:, 2]]
        mindex.append(('condition', np.repeat(conditions, n_times)))
        mindex.append(('epoch', np.repeat(self.selection, n_times)))
        assert all(len(mdx) == len(mindex[0]) for mdx in mindex)
        # build DataFrame
        df = _build_data_frame(self, data, picks, long_format, mindex, index,
                               default_index=['condition', 'epoch', 'time'])
        return df

    def as_type(self, ch_type='grad', mode='fast'):
        """Compute virtual epochs using interpolated fields.

        .. Warning:: Using virtual epochs to compute inverse can yield
            unexpected results. The virtual channels have ``'_v'`` appended
            at the end of the names to emphasize that the data contained in
            them are interpolated.

        Parameters
        ----------
        ch_type : str
            The destination channel type. It can be 'mag' or 'grad'.
        mode : str
            Either ``'accurate'`` or ``'fast'``, determines the quality of the
            Legendre polynomial expansion used. ``'fast'`` should be sufficient
            for most applications.

        Returns
        -------
        epochs : instance of mne.EpochsArray
            The transformed epochs object containing only virtual channels.

        Notes
        -----
        This method returns a copy and does not modify the data it
        operates on. It also returns an EpochsArray instance.

        .. versionadded:: 0.20.0
        """
        from .forward import _as_meg_type_inst
        return _as_meg_type_inst(self, ch_type=ch_type, mode=mode)


def _drop_log_stats(drop_log, ignore=('IGNORED',)):
    """Compute drop log stats.

    Parameters
    ----------
    drop_log : list of list
        Epoch drop log from Epochs.drop_log.
    ignore : list
        The drop reasons to ignore.

    Returns
    -------
    perc : float
        Total percentage of epochs dropped.
    """
    if not isinstance(drop_log, tuple) or \
            not all(isinstance(d, tuple) for d in drop_log) or \
            not all(isinstance(s, str) for d in drop_log for s in d):
        raise TypeError('drop_log must be a tuple of tuple of str')
    perc = 100 * np.mean([len(d) > 0 for d in drop_log
                          if not any(r in ignore for r in d)])
    return perc


def make_metadata(events, event_id, tmin, tmax, sfreq,
                  row_events=None, keep_first=None, keep_last=None):
    """Generate metadata from events for use with `mne.Epochs`.

    This function mimics the epoching process (it constructs time windows
    around time-locked "events of interest") and collates information about
    any other events that occurred within those time windows. The information
    is returned as a :class:`pandas.DataFrame` suitable for use as
    `~mne.Epochs` metadata: one row per time-locked event, and columns
    indicating presence/absence and latency of each ancillary event type.

    The function will also return a new ``events`` array and ``event_id``
    dictionary that correspond to the generated metadata.

    Parameters
    ----------
    events : array, shape (m, 3)
        The :term:`events array <events>`. By default, the returned metadata
        :class:`~pandas.DataFrame` will have as many rows as the events array.
        To create rows for only a subset of events, pass the ``row_events``
        parameter.
    event_id : dict
        A mapping from event names (keys) to event IDs (values). The event
        names will be incorporated as columns of the returned metadata
        :class:`~pandas.DataFrame`.
    tmin, tmax : float
        Start and end of the time interval for metadata generation in seconds,
        relative to the time-locked event of the respective time window.

        .. note::
           If you are planning to attach the generated metadata to
           `~mne.Epochs` and intend to include only events that fall inside
           your epochs time interval, pass the same ``tmin`` and ``tmax``
           values here as you use for your epochs.

    sfreq : float
        The sampling frequency of the data from which the events array was
        extracted.
    row_events : list of str | str | None
        Event types around which to create the time windows / for which to
        create **rows** in the returned metadata :class:`pandas.DataFrame`. If
        provided, the string(s) must be keys of ``event_id``. If ``None``
        (default), rows are created for **all** event types present in
        ``event_id``.
    keep_first : str | list of str | None
        Specify subsets of :term:`hierarchical event descriptors` (HEDs,
        inspired by :footcite:`BigdelyShamloEtAl2013`) matching events of which
        the **first occurrence** within each time window shall be stored in
        addition to the original events.

        .. note::
           There is currently no way to retain **all** occurrences of a
           repeated event. The ``keep_first`` parameter can be used to specify
           subsets of HEDs, effectively creating a new event type that is the
           union of all events types described by the matching HED pattern.
           Only the very first event of this set will be kept.

        For example, you might have two response events types,
        ``response/left`` and ``response/right``; and in trials with both
        responses occurring, you want to keep only the first response. In this
        case, you can pass ``keep_first='response'``. This will add two new
        columns to the metadata: ``response``, indicating at what **time** the
        event  occurred, relative to the time-locked event; and
        ``first_response``, stating which **type** (``'left'`` or ``'right'``)
        of event occurred.
        To match specific subsets of HEDs describing different sets of events,
        pass a list of these subsets, e.g.
        ``keep_first=['response', 'stimulus']``. If ``None`` (default), no
        event aggregation will take place and no new columns will be created.

        .. note::
           By default, this function will always retain  the first instance
           of any event in each time window. For example, if a time window
           contains two ``'response'`` events, the generated ``response``
           column will automatically refer to the first of the two events. In
           this specific case, it is therefore **not** necessary to make use of
           the ``keep_first`` parameter – unless you need to differentiate
           between two types of responses, like in the example above.

    keep_last : list of str | None
        Same as ``keep_first``, but for keeping only the **last**  occurrence
        of matching events. The column indicating the **type** of an event
        ``myevent`` will be named ``last_myevent``.

    Returns
    -------
    metadata : pandas.DataFrame
        Metadata for each row event, with the following columns:

        - ``event_name``, with strings indicating the name of the time-locked
          event ("row event") for that specific time window

        - one column per event type in ``event_id``, with the same name; floats
          indicating the latency of the event in seconds, relative to the
          time-locked event

        - if applicable, additional columns named after the ``keep_first`` and
          ``keep_last`` event types; floats indicating the latency  of the
          event in seconds, relative to the time-locked event

        - if applicable, additional columns ``first_{event_type}`` and
          ``last_{event_type}`` for ``keep_first`` and ``keep_last`` event
          types, respetively; the values will be strings indicating which event
          types were matched by the provided HED patterns

    events : array, shape (n, 3)
        The events corresponding to the generated metadata, i.e. one
        time-locked event per row.
    event_id : dict
        The event dictionary corresponding to the new events array. This will
        be identical to the input dictionary unless ``row_events`` is supplied,
        in which case it will only contain the events provided there.

    Notes
    -----
    The time window used for metadata generation need not correspond to the
    time window used to create the `~mne.Epochs`, to which the metadata will
    be attached; it may well be much shorter or longer, or not overlap at all,
    if desired. The can be useful, for example, to include events that occurred
    before or after an epoch, e.g. during the inter-trial interval.

    .. versionadded:: 0.23

    References
    ----------
    .. footbibliography::
    """
    pd = _check_pandas_installed()

    _validate_type(event_id, types=(dict,), item_name='event_id')
    _validate_type(row_events, types=(None, str, list, tuple),
                   item_name='row_events')
    _validate_type(keep_first, types=(None, str, list, tuple),
                   item_name='keep_first')
    _validate_type(keep_last, types=(None, str, list, tuple),
                   item_name='keep_last')

    if not event_id:
        raise ValueError('event_id dictionary must contain at least one entry')

    def _ensure_list(x):
        if x is None:
            return []
        elif isinstance(x, str):
            return [x]
        else:
            return list(x)

    row_events = _ensure_list(row_events)
    keep_first = _ensure_list(keep_first)
    keep_last = _ensure_list(keep_last)

    keep_first_and_last = set(keep_first) & set(keep_last)
    if keep_first_and_last:
        raise ValueError(f'The event names in keep_first and keep_last must '
                         f'be mutually exclusive. Specified in both: '
                         f'{", ".join(sorted(keep_first_and_last))}')
    del keep_first_and_last

    for param_name, values in dict(keep_first=keep_first,
                                   keep_last=keep_last).items():
        for first_last_event_name in values:
            try:
                match_event_names(event_id, [first_last_event_name])
            except KeyError:
                raise ValueError(
                    f'Event "{first_last_event_name}", specified in '
                    f'{param_name}, cannot be found in event_id dictionary')

    event_name_diff = sorted(set(row_events) - set(event_id.keys()))
    if event_name_diff:
        raise ValueError(
            f'Present in row_events, but missing from event_id: '
            f'{", ".join(event_name_diff)}')
    del event_name_diff

    # First and last sample of each epoch, relative to the time-locked event
    # This follows the approach taken in mne.Epochs
    start_sample = int(round(tmin * sfreq))
    stop_sample = int(round(tmax * sfreq)) + 1

    # Make indexing easier
    # We create the DataFrame before subsetting the events so we end up with
    # indices corresponding to the original event indices. Not used for now,
    # but might come in handy sometime later
    events_df = pd.DataFrame(events, columns=('sample', 'prev_id', 'id'))
    id_to_name_map = {v: k for k, v in event_id.items()}

    # Only keep events that are of interest
    events = events[np.in1d(events[:, 2], list(event_id.values()))]
    events_df = events_df.loc[events_df['id'].isin(event_id.values()), :]

    # Prepare & condition the metadata DataFrame

    # Avoid column name duplications if the exact same event name appears in
    # event_id.keys() and keep_first / keep_last simultaneously
    keep_first_cols = [col for col in keep_first if col not in event_id]
    keep_last_cols = [col for col in keep_last if col not in event_id]
    first_cols = [f'first_{col}' for col in keep_first_cols]
    last_cols = [f'last_{col}' for col in keep_last_cols]

    columns = ['event_name',
               *event_id.keys(),
               *keep_first_cols,
               *keep_last_cols,
               *first_cols,
               *last_cols]

    data = np.empty((len(events_df), len(columns)))
    metadata = pd.DataFrame(data=data, columns=columns, index=events_df.index)

    # Event names
    metadata.iloc[:, 0] = ''

    # Event times
    start_idx = 1
    stop_idx = (start_idx + len(event_id.keys()) +
                len(keep_first_cols + keep_last_cols))
    metadata.iloc[:, start_idx:stop_idx] = np.nan

    # keep_first and keep_last names
    start_idx = stop_idx
    metadata.iloc[:, start_idx:] = None

    # We're all set, let's iterate over all eventns and fill in in the
    # respective cells in the metadata. We will subset this to include only
    # `row_events` later
    for row_event in events_df.itertuples(name='RowEvent'):
        row_idx = row_event.Index
        metadata.loc[row_idx, 'event_name'] = \
            id_to_name_map[row_event.id]

        # Determine which events fall into the current epoch
        window_start_sample = row_event.sample + start_sample
        window_stop_sample = row_event.sample + stop_sample
        events_in_window = events_df.loc[
            (events_df['sample'] >= window_start_sample) &
            (events_df['sample'] <= window_stop_sample), :]

        assert not events_in_window.empty

        # Store the metadata
        for event in events_in_window.itertuples(name='Event'):
            event_sample = event.sample - row_event.sample
            event_time = event_sample / sfreq
            event_time = 0 if np.isclose(event_time, 0) else event_time
            event_name = id_to_name_map[event.id]

            if not np.isnan(metadata.loc[row_idx, event_name]):
                # Event already exists in current time window!
                assert metadata.loc[row_idx, event_name] <= event_time

                if event_name not in keep_last:
                    continue

            metadata.loc[row_idx, event_name] = event_time

            # Handle keep_first and keep_last event aggregation
            for event_group_name in keep_first + keep_last:
                if event_name not in match_event_names(
                    event_id, [event_group_name]
                ):
                    continue

                if event_group_name in keep_first:
                    first_last_col = f'first_{event_group_name}'
                else:
                    first_last_col = f'last_{event_group_name}'

                old_time = metadata.loc[row_idx, event_group_name]
                if not np.isnan(old_time):
                    if ((event_group_name in keep_first and
                         old_time <= event_time) or
                        (event_group_name in keep_last and
                         old_time >= event_time)):
                        continue

                if event_group_name not in event_id:
                    # This is an HED. Strip redundant information from the
                    # event name
                    name = (event_name
                            .replace(event_group_name, '')
                            .replace('//', '/')
                            .strip('/'))
                    metadata.loc[row_idx, first_last_col] = name
                    del name

                metadata.loc[row_idx, event_group_name] = event_time

    # Only keep rows of interest
    if row_events:
        event_id_timelocked = {name: val for name, val in event_id.items()
                               if name in row_events}
        events = events[np.in1d(events[:, 2],
                                list(event_id_timelocked.values()))]
        metadata = metadata.loc[
            metadata['event_name'].isin(event_id_timelocked)]
        assert len(events) == len(metadata)
        event_id = event_id_timelocked

    return metadata, events, event_id


@fill_doc
class Epochs(BaseEpochs):
    """Epochs extracted from a Raw instance.

    Parameters
    ----------
    %(raw_epochs)s
    %(events_epochs)s
    %(event_id)s
    %(epochs_tmin_tmax)s
    %(baseline_epochs)s
        Defaults to ``(None, 0)``, i.e. beginning of the the data until
        time point zero.
    %(picks_all)s
    preload : bool
        %(epochs_preload)s
    %(reject_epochs)s
    %(flat)s
    %(proj_epochs)s
    %(decim)s
    %(epochs_reject_tmin_tmax)s
    %(detrend_epochs)s
    %(on_missing_epochs)s
    %(reject_by_annotation_epochs)s
    %(metadata_epochs)s
    %(event_repeated_epochs)s
    %(verbose)s

    Attributes
    ----------
    %(info_not_none)s
    event_id : dict
        Names of conditions corresponding to event_ids.
    ch_names : list of string
        List of channel names.
    selection : array
        List of indices of selected events (not dropped or ignored etc.). For
        example, if the original event array had 4 events and the second event
        has been dropped, this attribute would be np.array([0, 2, 3]).
    preload : bool
        Indicates whether epochs are in memory.
    drop_log : tuple of tuple
        A tuple of the same length as the event array used to initialize the
        Epochs object. If the i-th original event is still part of the
        selection, drop_log[i] will be an empty tuple; otherwise it will be
        a tuple of the reasons the event is not longer in the selection, e.g.:

        - 'IGNORED'
            If it isn't part of the current subset defined by the user
        - 'NO_DATA' or 'TOO_SHORT'
            If epoch didn't contain enough data names of channels that exceeded
            the amplitude threshold
        - 'EQUALIZED_COUNTS'
            See :meth:`~mne.Epochs.equalize_event_counts`
        - 'USER'
            For user-defined reasons (see :meth:`~mne.Epochs.drop`).
    filename : str
        The filename of the object.
    times :  ndarray
        Time vector in seconds. Goes from ``tmin`` to ``tmax``. Time interval
        between consecutive time samples is equal to the inverse of the
        sampling frequency.

    See Also
    --------
    mne.epochs.combine_event_ids
    mne.Epochs.equalize_event_counts

    Notes
    -----
    When accessing data, Epochs are detrended, baseline-corrected, and
    decimated, then projectors are (optionally) applied.

    For indexing and slicing using ``epochs[...]``, see
    :meth:`mne.Epochs.__getitem__`.

    All methods for iteration over objects (using :meth:`mne.Epochs.__iter__`,
    :meth:`mne.Epochs.iter_evoked` or :meth:`mne.Epochs.next`) use the same
    internal state.

    If ``event_repeated`` is set to ``'merge'``, the coinciding events
    (duplicates) will be merged into a single event_id and assigned a new
    id_number as::

        event_id['{event_id_1}/{event_id_2}/...'] = new_id_number

    For example with the event_id ``{'aud': 1, 'vis': 2}`` and the events
    ``[[0, 0, 1], [0, 0, 2]]``, the "merge" behavior will update both event_id
    and events to be: ``{'aud/vis': 3}`` and ``[[0, 0, 3]]`` respectively.

    There is limited support for :class:`~mne.Annotations` in the
    :class:`~mne.Epochs` class. Currently annotations that are present in the
    :class:`~mne.io.Raw` object will be preserved in the resulting
    :class:`~mne.Epochs` object, but:

    1. It is not yet possible to add annotations
       to the Epochs object programmatically (via code) or interactively
       (through the plot window)
    2. Concatenating :class:`~mne.Epochs` objects
       that contain annotations is not supported, and any annotations will
       be dropped when concatenating.
    3. Annotations will be lost on save.
    """

    @verbose
    def __init__(self, raw, events, event_id=None, tmin=-0.2, tmax=0.5,
                 baseline=(None, 0), picks=None, preload=False, reject=None,
                 flat=None, proj=True, decim=1, reject_tmin=None,
                 reject_tmax=None, detrend=None, on_missing='raise',
                 reject_by_annotation=True, metadata=None,
                 event_repeated='error', verbose=None):  # noqa: D102
        if not isinstance(raw, BaseRaw):
            raise ValueError('The first argument to `Epochs` must be an '
                             'instance of mne.io.BaseRaw')
        info = deepcopy(raw.info)

        # proj is on when applied in Raw
        proj = proj or raw.proj

        self.reject_by_annotation = reject_by_annotation

        # keep track of original sfreq (needed for annotations)
        raw_sfreq = raw.info['sfreq']

        # call BaseEpochs constructor
        super(Epochs, self).__init__(
            info, None, events, event_id, tmin, tmax,
            metadata=metadata, baseline=baseline, raw=raw, picks=picks,
            reject=reject, flat=flat, decim=decim, reject_tmin=reject_tmin,
            reject_tmax=reject_tmax, detrend=detrend,
            proj=proj, on_missing=on_missing, preload_at_end=preload,
            event_repeated=event_repeated, verbose=verbose,
            raw_sfreq=raw_sfreq, annotations=raw.annotations)

    @verbose
    def _get_epoch_from_raw(self, idx, verbose=None):
        """Load one epoch from disk.

        Returns
        -------
        data : array | str | None
            If string, it's details on rejection reason.
            If array, it's the data in the desired range (good segment)
            If None, it means no data is available.
        """
        if self._raw is None:
            # This should never happen, as raw=None only if preload=True
            raise ValueError('An error has occurred, no valid raw file found. '
                             'Please report this to the mne-python '
                             'developers.')
        sfreq = self._raw.info['sfreq']
        event_samp = self.events[idx, 0]
        # Read a data segment from "start" to "stop" in samples
        first_samp = self._raw.first_samp
        start = int(round(event_samp + self._raw_times[0] * sfreq))
        start -= first_samp
        stop = start + len(self._raw_times)

        # reject_tmin, and reject_tmax need to be converted to samples to
        # check the reject_by_annotation boundaries: reject_start, reject_stop
        reject_tmin = self.reject_tmin
        if reject_tmin is None:
            reject_tmin = self._raw_times[0]
        reject_start = int(round(event_samp + reject_tmin * sfreq))
        reject_start -= first_samp

        reject_tmax = self.reject_tmax
        if reject_tmax is None:
            reject_tmax = self._raw_times[-1]
        diff = int(round((self._raw_times[-1] - reject_tmax) * sfreq))
        reject_stop = stop - diff

        logger.debug('    Getting epoch for %d-%d' % (start, stop))
        data = self._raw._check_bad_segment(start, stop, self.picks,
                                            reject_start, reject_stop,
                                            self.reject_by_annotation)
        return data


@fill_doc
class EpochsArray(BaseEpochs):
    """Epochs object from numpy array.

    Parameters
    ----------
    data : array, shape (n_epochs, n_channels, n_times)
        The channels' time series for each epoch. See notes for proper units of
        measure.
    %(info_not_none)s Consider using :func:`mne.create_info` to populate this
        structure.
    events : None | array of int, shape (n_events, 3)
        The events typically returned by the read_events function.
        If some events don't match the events of interest as specified
        by event_id, they will be marked as 'IGNORED' in the drop log.
        If None (default), all event values are set to 1 and event time-samples
        are set to range(n_epochs).
    tmin : float
        Start time before event. If nothing provided, defaults to 0.
    event_id : int | list of int | dict | None
        The id of the event to consider. If dict,
        the keys can later be used to access associated events. Example:
        dict(auditory=1, visual=3). If int, a dict will be created with
        the id as string. If a list, all events with the IDs specified
        in the list are used. If None, all events will be used with
        and a dict is created with string integer names corresponding
        to the event id integers.
    %(reject_epochs)s
    %(flat)s
    reject_tmin : scalar | None
        Start of the time window used to reject epochs (with the default None,
        the window will start with tmin).
    reject_tmax : scalar | None
        End of the time window used to reject epochs (with the default None,
        the window will end with tmax).
    %(baseline_epochs)s
        Defaults to ``None``, i.e. no baseline correction.
    proj : bool | 'delayed'
        Apply SSP projection vectors. See :class:`mne.Epochs` for details.
    on_missing : str
        See :class:`mne.Epochs` docstring for details.
    metadata : instance of pandas.DataFrame | None
        See :class:`mne.Epochs` docstring for details.

        .. versionadded:: 0.16
    %(selection)s
    %(drop_log)s

        .. versionadded:: 1.3
    %(raw_sfreq)s

        .. versionadded:: 1.3
    %(verbose)s

    See Also
    --------
    create_info
    EvokedArray
    io.RawArray

    Notes
    -----
    Proper units of measure:

    * V: eeg, eog, seeg, dbs, emg, ecg, bio, ecog
    * T: mag
    * T/m: grad
    * M: hbo, hbr
    * Am: dipole
    * AU: misc

    EpochsArray does not set `Annotations`. If you would like to create
    simulated data with Annotations that are then preserved in the Epochs
    object, you would use `mne.io.RawArray` first and then create an
    `mne.Epochs` object.
    """

    @verbose
    def __init__(self, data, info, events=None, tmin=0, event_id=None,
                 reject=None, flat=None, reject_tmin=None,
                 reject_tmax=None, baseline=None, proj=True,
                 on_missing='raise', metadata=None, selection=None,
                 *, drop_log=None, raw_sfreq=None, verbose=None):  # noqa: D102
        dtype = np.complex128 if np.any(np.iscomplex(data)) else np.float64
        data = np.asanyarray(data, dtype=dtype)
        if data.ndim != 3:
            raise ValueError('Data must be a 3D array of shape (n_epochs, '
                             'n_channels, n_samples)')

        if len(info['ch_names']) != data.shape[1]:
            raise ValueError('Info and data must have same number of '
                             'channels.')
        if events is None:
            n_epochs = len(data)
            events = _gen_events(n_epochs)
        info = info.copy()  # do not modify original info
        tmax = (data.shape[2] - 1) / info['sfreq'] + tmin

        super(EpochsArray, self).__init__(
            info, data, events, event_id, tmin, tmax, baseline,
            reject=reject, flat=flat, reject_tmin=reject_tmin,
            reject_tmax=reject_tmax, decim=1, metadata=metadata,
            selection=selection, proj=proj, on_missing=on_missing,
            drop_log=drop_log, raw_sfreq=raw_sfreq, verbose=verbose)
        if self.baseline is not None:
            self._do_baseline = True
        if len(events) != np.in1d(self.events[:, 2],
                                  list(self.event_id.values())).sum():
            raise ValueError('The events must only contain event numbers from '
                             'event_id')
        detrend_picks = self._detrend_picks
        for e in self._data:
            # This is safe without assignment b/c there is no decim
            self._detrend_offset_decim(e, detrend_picks)
        self.drop_bad()


def combine_event_ids(epochs, old_event_ids, new_event_id, copy=True):
    """Collapse event_ids from an epochs instance into a new event_id.

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs to operate on.
    old_event_ids : str, or list
        Conditions to collapse together.
    new_event_id : dict, or int
        A one-element dict (or a single integer) for the new
        condition. Note that for safety, this cannot be any
        existing id (in epochs.event_id.values()).
    copy : bool
        Whether to return a new instance or modify in place.

    Returns
    -------
    epochs : instance of Epochs
        The modified epochs.

    Notes
    -----
    This For example (if epochs.event_id was ``{'Left': 1, 'Right': 2}``::

        combine_event_ids(epochs, ['Left', 'Right'], {'Directional': 12})

    would create a 'Directional' entry in epochs.event_id replacing
    'Left' and 'Right' (combining their trials).
    """
    epochs = epochs.copy() if copy else epochs
    old_event_ids = np.asanyarray(old_event_ids)
    if isinstance(new_event_id, int):
        new_event_id = {str(new_event_id): new_event_id}
    else:
        if not isinstance(new_event_id, dict):
            raise ValueError('new_event_id must be a dict or int')
        if not len(list(new_event_id.keys())) == 1:
            raise ValueError('new_event_id dict must have one entry')
    new_event_num = list(new_event_id.values())[0]
    new_event_num = operator.index(new_event_num)
    if new_event_num in epochs.event_id.values():
        raise ValueError('new_event_id value must not already exist')
    # could use .pop() here, but if a latter one doesn't exist, we're
    # in trouble, so run them all here and pop() later
    old_event_nums = np.array([epochs.event_id[key] for key in old_event_ids])
    # find the ones to replace
    inds = np.any(epochs.events[:, 2][:, np.newaxis] ==
                  old_event_nums[np.newaxis, :], axis=1)
    # replace the event numbers in the events list
    epochs.events[inds, 2] = new_event_num
    # delete old entries
    for key in old_event_ids:
        epochs.event_id.pop(key)
    # add the new entry
    epochs.event_id.update(new_event_id)
    return epochs


def equalize_epoch_counts(epochs_list, method='mintime'):
    """Equalize the number of trials in multiple Epoch instances.

    Parameters
    ----------
    epochs_list : list of Epochs instances
        The Epochs instances to equalize trial counts for.
    method : str
        If 'truncate', events will be truncated from the end of each event
        list. If 'mintime', timing differences between each event list will be
        minimized.

    Notes
    -----
    This tries to make the remaining epochs occurring as close as possible in
    time. This method works based on the idea that if there happened to be some
    time-varying (like on the scale of minutes) noise characteristics during
    a recording, they could be compensated for (to some extent) in the
    equalization process. This method thus seeks to reduce any of those effects
    by minimizing the differences in the times of the events in the two sets of
    epochs. For example, if one had event times [1, 2, 3, 4, 120, 121] and the
    other one had [3.5, 4.5, 120.5, 121.5], it would remove events at times
    [1, 2] in the first epochs and not [120, 121].

    Examples
    --------
    >>> equalize_epoch_counts([epochs1, epochs2])  # doctest: +SKIP
    """
    if not all(isinstance(e, BaseEpochs) for e in epochs_list):
        raise ValueError('All inputs must be Epochs instances')

    # make sure bad epochs are dropped
    for e in epochs_list:
        if not e._bad_dropped:
            e.drop_bad()
    event_times = [e.events[:, 0] for e in epochs_list]
    indices = _get_drop_indices(event_times, method)
    for e, inds in zip(epochs_list, indices):
        e.drop(inds, reason='EQUALIZED_COUNT')


def _get_drop_indices(event_times, method):
    """Get indices to drop from multiple event timing lists."""
    small_idx = np.argmin([e.shape[0] for e in event_times])
    small_e_times = event_times[small_idx]
    _check_option('method', method, ['mintime', 'truncate'])
    indices = list()
    for e in event_times:
        if method == 'mintime':
            mask = _minimize_time_diff(small_e_times, e)
        else:
            mask = np.ones(e.shape[0], dtype=bool)
            mask[small_e_times.shape[0]:] = False
        indices.append(np.where(np.logical_not(mask))[0])

    return indices


def _minimize_time_diff(t_shorter, t_longer):
    """Find a boolean mask to minimize timing differences."""
    from scipy.interpolate import interp1d
    keep = np.ones((len(t_longer)), dtype=bool)
    # special case: length zero or one
    if len(t_shorter) < 2:  # interp1d won't work
        keep.fill(False)
        if len(t_shorter) == 1:
            idx = np.argmin(np.abs(t_longer - t_shorter))
            keep[idx] = True
        return keep
    scores = np.ones((len(t_longer)))
    x1 = np.arange(len(t_shorter))
    # The first set of keep masks to test
    kwargs = dict(copy=False, bounds_error=False, assume_sorted=True)
    shorter_interp = interp1d(x1, t_shorter, fill_value=t_shorter[-1],
                              **kwargs)
    for ii in range(len(t_longer) - len(t_shorter)):
        scores.fill(np.inf)
        # set up the keep masks to test, eliminating any rows that are already
        # gone
        keep_mask = ~np.eye(len(t_longer), dtype=bool)[keep]
        keep_mask[:, ~keep] = False
        # Check every possible removal to see if it minimizes
        x2 = np.arange(len(t_longer) - ii - 1)
        t_keeps = np.array([t_longer[km] for km in keep_mask])
        longer_interp = interp1d(x2, t_keeps, axis=1,
                                 fill_value=t_keeps[:, -1],
                                 **kwargs)
        d1 = longer_interp(x1) - t_shorter
        d2 = shorter_interp(x2) - t_keeps
        scores[keep] = np.abs(d1, d1).sum(axis=1) + np.abs(d2, d2).sum(axis=1)
        keep[np.argmin(scores)] = False
    return keep


@verbose
def _is_good(e, ch_names, channel_type_idx, reject, flat, full_report=False,
             ignore_chs=[], verbose=None):
    """Test if data segment e is good according to reject and flat.

    If full_report=True, it will give True/False as well as a list of all
    offending channels.
    """
    bad_tuple = tuple()
    has_printed = False
    checkable = np.ones(len(ch_names), dtype=bool)
    checkable[np.array([c in ignore_chs
                        for c in ch_names], dtype=bool)] = False
    for refl, f, t in zip([reject, flat], [np.greater, np.less], ['', 'flat']):
        if refl is not None:
            for key, thresh in refl.items():
                idx = channel_type_idx[key]
                name = key.upper()
                if len(idx) > 0:
                    e_idx = e[idx]
                    deltas = np.max(e_idx, axis=1) - np.min(e_idx, axis=1)
                    checkable_idx = checkable[idx]
                    idx_deltas = np.where(np.logical_and(f(deltas, thresh),
                                                         checkable_idx))[0]

                    if len(idx_deltas) > 0:
                        bad_names = [ch_names[idx[i]] for i in idx_deltas]
                        if (not has_printed):
                            logger.info('    Rejecting %s epoch based on %s : '
                                        '%s' % (t, name, bad_names))
                            has_printed = True
                        if not full_report:
                            return False
                        else:
                            bad_tuple += tuple(bad_names)

    if not full_report:
        return True
    else:
        if bad_tuple == ():
            return True, None
        else:
            return False, bad_tuple


def _read_one_epoch_file(f, tree, preload):
    """Read a single FIF file."""
    with f as fid:
        #   Read the measurement info
        info, meas = read_meas_info(fid, tree, clean_bads=True)

        # read in the Annotations if they exist
        annotations = _read_annotations_fif(fid, tree)
        events, mappings = _read_events_fif(fid, tree)

        #   Metadata
        metadata = None
        metadata_tree = dir_tree_find(tree, FIFF.FIFFB_MNE_METADATA)
        if len(metadata_tree) > 0:
            for dd in metadata_tree[0]['directory']:
                kind = dd.kind
                pos = dd.pos
                if kind == FIFF.FIFF_DESCRIPTION:
                    metadata = read_tag(fid, pos).data
                    metadata = _prepare_read_metadata(metadata)
                    break

        #   Locate the data of interest
        processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
        del meas
        if len(processed) == 0:
            raise ValueError('Could not find processed data')

        epochs_node = dir_tree_find(tree, FIFF.FIFFB_MNE_EPOCHS)
        if len(epochs_node) == 0:
            # before version 0.11 we errantly saved with this tag instead of
            # an MNE tag
            epochs_node = dir_tree_find(tree, FIFF.FIFFB_MNE_EPOCHS)
            if len(epochs_node) == 0:
                epochs_node = dir_tree_find(tree, 122)  # 122 used before v0.11
                if len(epochs_node) == 0:
                    raise ValueError('Could not find epochs data')

        my_epochs = epochs_node[0]

        # Now find the data in the block
        data = None
        data_tag = None
        bmin, bmax = None, None
        baseline = None
        selection = None
        drop_log = None
        raw_sfreq = None
        reject_params = {}
        for k in range(my_epochs['nent']):
            kind = my_epochs['directory'][k].kind
            pos = my_epochs['directory'][k].pos
            if kind == FIFF.FIFF_FIRST_SAMPLE:
                tag = read_tag(fid, pos)
                first = int(tag.data)
            elif kind == FIFF.FIFF_LAST_SAMPLE:
                tag = read_tag(fid, pos)
                last = int(tag.data)
            elif kind == FIFF.FIFF_EPOCH:
                # delay reading until later
                fid.seek(pos, 0)
                data_tag = read_tag_info(fid)
                data_tag.pos = pos
                data_tag.type = data_tag.type ^ (1 << 30)
            elif kind in [FIFF.FIFF_MNE_BASELINE_MIN, 304]:
                # Constant 304 was used before v0.11
                tag = read_tag(fid, pos)
                bmin = float(tag.data)
            elif kind in [FIFF.FIFF_MNE_BASELINE_MAX, 305]:
                # Constant 305 was used before v0.11
                tag = read_tag(fid, pos)
                bmax = float(tag.data)
            elif kind == FIFF.FIFF_MNE_EPOCHS_SELECTION:
                tag = read_tag(fid, pos)
                selection = np.array(tag.data)
            elif kind == FIFF.FIFF_MNE_EPOCHS_DROP_LOG:
                tag = read_tag(fid, pos)
                drop_log = tag.data
                drop_log = json.loads(drop_log)
                drop_log = tuple(tuple(x) for x in drop_log)
            elif kind == FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT:
                tag = read_tag(fid, pos)
                reject_params = json.loads(tag.data)
            elif kind == FIFF.FIFF_MNE_EPOCHS_RAW_SFREQ:
                tag = read_tag(fid, pos)
                raw_sfreq = tag.data

        if bmin is not None or bmax is not None:
            baseline = (bmin, bmax)

        n_samp = last - first + 1
        logger.info('    Found the data of interest:')
        logger.info('        t = %10.2f ... %10.2f ms'
                    % (1000 * first / info['sfreq'],
                       1000 * last / info['sfreq']))
        if info['comps'] is not None:
            logger.info('        %d CTF compensation matrices available'
                        % len(info['comps']))

        # Inspect the data
        if data_tag is None:
            raise ValueError('Epochs data not found')
        epoch_shape = (len(info['ch_names']), n_samp)
        size_expected = len(events) * np.prod(epoch_shape)
        # on read double-precision is always used
        if data_tag.type == FIFF.FIFFT_FLOAT:
            datatype = np.float64
            fmt = '>f4'
        elif data_tag.type == FIFF.FIFFT_DOUBLE:
            datatype = np.float64
            fmt = '>f8'
        elif data_tag.type == FIFF.FIFFT_COMPLEX_FLOAT:
            datatype = np.complex128
            fmt = '>c8'
        elif data_tag.type == FIFF.FIFFT_COMPLEX_DOUBLE:
            datatype = np.complex128
            fmt = '>c16'
        fmt_itemsize = np.dtype(fmt).itemsize
        assert fmt_itemsize in (4, 8, 16)
        size_actual = data_tag.size // fmt_itemsize - 16 // fmt_itemsize

        if not size_actual == size_expected:
            raise ValueError('Incorrect number of samples (%d instead of %d)'
                             % (size_actual, size_expected))

        # Calibration factors
        cals = np.array([[info['chs'][k]['cal'] *
                          info['chs'][k].get('scale', 1.0)]
                         for k in range(info['nchan'])], np.float64)

        # Read the data
        if preload:
            data = read_tag(fid, data_tag.pos).data.astype(datatype)
            data *= cals

        # Put it all together
        tmin = first / info['sfreq']
        tmax = last / info['sfreq']
        event_id = ({str(e): e for e in np.unique(events[:, 2])}
                    if mappings is None else mappings)
        # In case epochs didn't have a FIFF.FIFF_MNE_EPOCHS_SELECTION tag
        # (version < 0.8):
        if selection is None:
            selection = np.arange(len(events))
        if drop_log is None:
            drop_log = ((),) * len(events)

    return (info, data, data_tag, events, event_id, metadata, tmin, tmax,
            baseline, selection, drop_log, epoch_shape, cals, reject_params,
            fmt, annotations, raw_sfreq)


@verbose
def read_epochs(fname, proj=True, preload=True, verbose=None):
    """Read epochs from a fif file.

    Parameters
    ----------
    %(fname_epochs)s
    %(proj_epochs)s
    preload : bool
        If True, read all epochs from disk immediately. If ``False``, epochs
        will be read on demand.
    %(verbose)s

    Returns
    -------
    epochs : instance of Epochs
        The epochs.
    """
    return EpochsFIF(fname, proj, preload, verbose)


class _RawContainer(object):
    """Helper for a raw data container."""

    def __init__(self, fid, data_tag, event_samps, epoch_shape,
                 cals, fmt):  # noqa: D102
        self.fid = fid
        self.data_tag = data_tag
        self.event_samps = event_samps
        self.epoch_shape = epoch_shape
        self.cals = cals
        self.proj = False
        self.fmt = fmt

    def __del__(self):  # noqa: D105
        self.fid.close()


@fill_doc
class EpochsFIF(BaseEpochs):
    """Epochs read from disk.

    Parameters
    ----------
    %(fname_epochs)s
    %(proj_epochs)s
    preload : bool
        If True, read all epochs from disk immediately. If False, epochs will
        be read on demand.
    %(verbose)s

    See Also
    --------
    mne.Epochs
    mne.epochs.combine_event_ids
    mne.Epochs.equalize_event_counts
    """

    @verbose
    def __init__(self, fname, proj=True, preload=True,
                 verbose=None):  # noqa: D102
        if _path_like(fname):
            check_fname(
                fname=fname, filetype='epochs',
                endings=('-epo.fif', '-epo.fif.gz', '_epo.fif', '_epo.fif.gz')
            )
            fname = _check_fname(fname=fname, must_exist=True,
                                 overwrite='read')
        elif not preload:
            raise ValueError('preload must be used with file-like objects')

        fnames = [fname]
        ep_list = list()
        raw = list()
        for fname in fnames:
            fname_rep = _get_fname_rep(fname)
            logger.info('Reading %s ...' % fname_rep)
            fid, tree, _ = fiff_open(fname, preload=preload)
            next_fname = _get_next_fname(fid, fname, tree)
            (info, data, data_tag, events, event_id, metadata, tmin, tmax,
             baseline, selection, drop_log, epoch_shape, cals,
             reject_params, fmt, annotations, raw_sfreq) = \
                _read_one_epoch_file(fid, tree, preload)

            if (events[:, 0] < 0).any():
                events = events.copy()
                warn('Incorrect events detected on disk, setting event '
                     'numbers to consecutive increasing integers')
                events[:, 0] = np.arange(1, len(events) + 1)
            # here we ignore missing events, since users should already be
            # aware of missing events if they have saved data that way
            # we also retain original baseline without re-applying baseline
            # correction (data is being baseline-corrected when written to
            # disk)
            epoch = BaseEpochs(
                info, data, events, event_id, tmin, tmax,
                baseline=None,
                metadata=metadata, on_missing='ignore',
                selection=selection, drop_log=drop_log,
                proj=False, verbose=False, raw_sfreq=raw_sfreq)
            epoch.baseline = baseline
            epoch._do_baseline = False  # might be superfluous but won't hurt
            ep_list.append(epoch)

            if not preload:
                # store everything we need to index back to the original data
                raw.append(_RawContainer(fiff_open(fname)[0], data_tag,
                                         events[:, 0].copy(), epoch_shape,
                                         cals, fmt))

            if next_fname is not None:
                fnames.append(next_fname)

        unsafe_annot_add = raw_sfreq is None
        (info, data, raw_sfreq, events, event_id, tmin, tmax, metadata,
         baseline, selection, drop_log) = _concatenate_epochs(
            ep_list,
            with_data=preload,
            add_offset=False,
            on_mismatch='raise',
        )
        # we need this uniqueness for non-preloaded data to work properly
        if len(np.unique(events[:, 0])) != len(events):
            raise RuntimeError('Event time samples were not unique')

        # correct the drop log
        assert len(drop_log) % len(fnames) == 0
        step = len(drop_log) // len(fnames)
        offsets = np.arange(step, len(drop_log) + 1, step)
        drop_log = list(drop_log)
        for i1, i2 in zip(offsets[:-1], offsets[1:]):
            other_log = drop_log[i1:i2]
            for k, (a, b) in enumerate(zip(drop_log, other_log)):
                if a == ('IGNORED',) and b != ('IGNORED',):
                    drop_log[k] = b
        drop_log = tuple(drop_log[:step])

        # call BaseEpochs constructor
        # again, ensure we're retaining the baseline period originally loaded
        # from disk without trying to re-apply baseline correction
        super(EpochsFIF, self).__init__(
            info, data, events, event_id, tmin, tmax,
            baseline=None, raw=raw,
            proj=proj, preload_at_end=False, on_missing='ignore',
            selection=selection, drop_log=drop_log, filename=fname_rep,
            metadata=metadata, verbose=verbose, raw_sfreq=raw_sfreq,
            annotations=annotations, **reject_params)
        self.baseline = baseline
        self._do_baseline = False
        # use the private property instead of drop_bad so that epochs
        # are not all read from disk for preload=False
        self._bad_dropped = True
        # private property to suggest that people re-save epochs if they add
        # annotations
        self._unsafe_annot_add = unsafe_annot_add

    @verbose
    def _get_epoch_from_raw(self, idx, verbose=None):
        """Load one epoch from disk."""
        # Find the right file and offset to use
        event_samp = self.events[idx, 0]
        for raw in self._raw:
            idx = np.where(raw.event_samps == event_samp)[0]
            if len(idx) == 1:
                fmt = raw.fmt
                idx = idx[0]
                size = np.prod(raw.epoch_shape) * np.dtype(fmt).itemsize
                offset = idx * size + 16  # 16 = Tag header
                break
        else:
            # read the correct subset of the data
            raise RuntimeError('Correct epoch could not be found, please '
                               'contact mne-python developers')
        # the following is equivalent to this, but faster:
        #
        # >>> data = read_tag(raw.fid, raw.data_tag.pos).data.astype(float)
        # >>> data *= raw.cals[np.newaxis, :, :]
        # >>> data = data[idx]
        #
        # Eventually this could be refactored in io/tag.py if other functions
        # could make use of it
        raw.fid.seek(raw.data_tag.pos + offset, 0)
        if fmt == '>c8':
            read_fmt = '>f4'
        elif fmt == '>c16':
            read_fmt = '>f8'
        else:
            read_fmt = fmt
        data = np.frombuffer(raw.fid.read(size), read_fmt)
        if read_fmt != fmt:
            data = data.view(fmt)
            data = data.astype(np.complex128)
        else:
            data = data.astype(np.float64)

        data.shape = raw.epoch_shape
        data *= raw.cals
        return data


@fill_doc
def bootstrap(epochs, random_state=None):
    """Compute epochs selected by bootstrapping.

    Parameters
    ----------
    epochs : Epochs instance
        epochs data to be bootstrapped
    %(random_state)s

    Returns
    -------
    epochs : Epochs instance
        The bootstrap samples
    """
    if not epochs.preload:
        raise RuntimeError('Modifying data of epochs is only supported '
                           'when preloading is used. Use preload=True '
                           'in the constructor.')

    rng = check_random_state(random_state)
    epochs_bootstrap = epochs.copy()
    n_events = len(epochs_bootstrap.events)
    idx = rng_uniform(rng)(0, n_events, n_events)
    epochs_bootstrap = epochs_bootstrap[idx]
    return epochs_bootstrap


def _check_merge_epochs(epochs_list):
    """Aux function."""
    if len({tuple(epochs.event_id.items()) for epochs in epochs_list}) != 1:
        raise NotImplementedError("Epochs with unequal values for event_id")
    if len({epochs.tmin for epochs in epochs_list}) != 1:
        raise NotImplementedError("Epochs with unequal values for tmin")
    if len({epochs.tmax for epochs in epochs_list}) != 1:
        raise NotImplementedError("Epochs with unequal values for tmax")
    if len({epochs.baseline for epochs in epochs_list}) != 1:
        raise NotImplementedError("Epochs with unequal values for baseline")


def _concatenate_epochs(epochs_list, *, with_data=True, add_offset=True,
                        on_mismatch='raise'):
    """Auxiliary function for concatenating epochs."""
    if not isinstance(epochs_list, (list, tuple)):
        raise TypeError('epochs_list must be a list or tuple, got %s'
                        % (type(epochs_list),))

    # to make warning messages only occur once during concatenation
    warned = False

    for ei, epochs in enumerate(epochs_list):
        if not isinstance(epochs, BaseEpochs):
            raise TypeError('epochs_list[%d] must be an instance of Epochs, '
                            'got %s' % (ei, type(epochs)))

        if (getattr(epochs, 'annotations', None) is not None and
                len(epochs.annotations) > 0 and
                not warned):
            warned = True
            warn('Concatenation of Annotations within Epochs is not supported '
                 'yet. All annotations will be dropped.')

            # create a copy, so that the Annotations are not modified in place
            # from the original object
            epochs = epochs.copy()
            epochs.set_annotations(None)
    out = epochs_list[0]
    offsets = [0]
    if with_data:
        out.drop_bad()
        offsets.append(len(out))
    events = [out.events]
    metadata = [out.metadata]
    baseline, tmin, tmax = out.baseline, out.tmin, out.tmax
    raw_sfreq = out._raw_sfreq
    info = deepcopy(out.info)
    drop_log = out.drop_log
    event_id = deepcopy(out.event_id)
    selection = out.selection
    # offset is the last epoch + tmax + 10 second
    shift = int((10 + tmax) * out.info['sfreq'])
    events_offset = int(np.max(events[0][:, 0])) + shift
    events_overflow = False
    warned = False
    for ii, epochs in enumerate(epochs_list[1:], 1):
        _ensure_infos_match(epochs.info, info, f'epochs[{ii}]',
                            on_mismatch=on_mismatch)
        if not np.allclose(epochs.times, epochs_list[0].times):
            raise ValueError('Epochs must have same times')

        if epochs.baseline != baseline:
            raise ValueError('Baseline must be same for all epochs')

        if epochs._raw_sfreq != raw_sfreq and not warned:
            warned = True
            warn('The original raw sampling rate of the Epochs does not '
                 'match for all Epochs. Please proceed cautiously.')

        # compare event_id
        common_keys = list(set(event_id).intersection(set(epochs.event_id)))
        for key in common_keys:
            if not event_id[key] == epochs.event_id[key]:
                msg = ('event_id values must be the same for identical keys '
                       'for all concatenated epochs. Key "{}" maps to {} in '
                       'some epochs and to {} in others.')
                raise ValueError(msg.format(key, event_id[key],
                                            epochs.event_id[key]))

        if with_data:
            epochs.drop_bad()
            offsets.append(len(epochs))
        evs = epochs.events.copy()
        if len(epochs.events) == 0:
            warn('One of the Epochs objects to concatenate was empty.')
        elif add_offset:
            # We need to cast to a native Python int here to detect an
            # overflow of a numpy int32 (which is the default on windows)
            max_timestamp = int(np.max(evs[:, 0]))
            evs[:, 0] += events_offset
            events_offset += max_timestamp + shift
            if events_offset > INT32_MAX:
                warn(f'Event number greater than {INT32_MAX} created, '
                     'events[:, 0] will be assigned consecutive increasing '
                     'integer values')
                events_overflow = True
                add_offset = False  # we no longer need to add offset
        events.append(evs)
        selection = np.concatenate((selection, epochs.selection))
        drop_log = drop_log + epochs.drop_log
        event_id.update(epochs.event_id)
        metadata.append(epochs.metadata)
    events = np.concatenate(events, axis=0)
    # check to see if we exceeded our maximum event offset
    if events_overflow:
        events[:, 0] = np.arange(1, len(events) + 1)

    # Create metadata object (or make it None)
    n_have = sum(this_meta is not None for this_meta in metadata)
    if n_have == 0:
        metadata = None
    elif n_have != len(metadata):
        raise ValueError('%d of %d epochs instances have metadata, either '
                         'all or none must have metadata'
                         % (n_have, len(metadata)))
    else:
        pd = _check_pandas_installed(strict=False)
        if pd is not False:
            metadata = pd.concat(metadata)
        else:  # dict of dicts
            metadata = sum(metadata, list())
    assert len(offsets) == (len(epochs_list) if with_data else 0) + 1
    data = None
    if with_data:
        offsets = np.cumsum(offsets)
        for start, stop, epochs in zip(offsets[:-1], offsets[1:], epochs_list):
            this_data = epochs.get_data()
            if data is None:
                data = np.empty(
                    (offsets[-1], len(out.ch_names), len(out.times)),
                    dtype=this_data.dtype)
            data[start:stop] = this_data
    return (info, data, raw_sfreq, events, event_id, tmin, tmax, metadata,
            baseline, selection, drop_log)


@verbose
def concatenate_epochs(epochs_list, add_offset=True, *, on_mismatch='raise',
                       verbose=None):
    """Concatenate a list of `~mne.Epochs` into one `~mne.Epochs` object.

    .. note:: Unlike `~mne.concatenate_raws`, this function does **not**
              modify any of the input data.

    Parameters
    ----------
    epochs_list : list
        List of `~mne.Epochs` instances to concatenate (in that order).
    add_offset : bool
        If True, a fixed offset is added to the event times from different
        Epochs sets, such that they are easy to distinguish after the
        concatenation.
        If False, the event times are unaltered during the concatenation.
    %(on_mismatch_info)s
    %(verbose)s

        .. versionadded:: 0.24

    Returns
    -------
    epochs : instance of EpochsArray
        The result of the concatenation. All data will be loaded into memory.

    Notes
    -----
    .. versionadded:: 0.9.0
    """
    (info, data, raw_sfreq, events, event_id, tmin, tmax, metadata,
     baseline, selection, drop_log) = _concatenate_epochs(
        epochs_list,
        with_data=True,
        add_offset=add_offset,
        on_mismatch=on_mismatch,
    )
    selection = np.where([len(d) == 0 for d in drop_log])[0]
    out = EpochsArray(
        data=data, info=info, events=events, event_id=event_id,
        tmin=tmin, baseline=baseline, selection=selection, drop_log=drop_log,
        proj=False, on_missing='ignore', metadata=metadata,
        raw_sfreq=raw_sfreq)
    out.drop_bad()
    return out


@verbose
def average_movements(epochs, head_pos=None, orig_sfreq=None, picks=None,
                      origin='auto', weight_all=True, int_order=8, ext_order=3,
                      destination=None, ignore_ref=False, return_mapping=False,
                      mag_scale=100., verbose=None):
    """Average data using Maxwell filtering, transforming using head positions.

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs to operate on.
    %(head_pos_maxwell)s
    orig_sfreq : float | None
        The original sample frequency of the data (that matches the
        event sample numbers in ``epochs.events``). Can be ``None``
        if data have not been decimated or resampled.
    %(picks_all_data)s
    %(origin_maxwell)s
    weight_all : bool
        If True, all channels are weighted by the SSS basis weights.
        If False, only MEG channels are weighted, other channels
        receive uniform weight per epoch.
    %(int_order_maxwell)s
    %(ext_order_maxwell)s
    %(destination_maxwell_dest)s
    %(ignore_ref_maxwell)s
    return_mapping : bool
        If True, return the mapping matrix.
    %(mag_scale_maxwell)s

        .. versionadded:: 0.13
    %(verbose)s

    Returns
    -------
    evoked : instance of Evoked
        The averaged epochs.

    See Also
    --------
    mne.preprocessing.maxwell_filter
    mne.chpi.read_head_pos

    Notes
    -----
    The Maxwell filtering version of this algorithm is described in [1]_,
    in section V.B "Virtual signals and movement correction", equations
    40-44. For additional validation, see [2]_.

    Regularization has not been added because in testing it appears to
    decrease dipole localization accuracy relative to using all components.
    Fine calibration and cross-talk cancellation, however, could be added
    to this algorithm based on user demand.

    .. versionadded:: 0.11

    References
    ----------
    .. [1] Taulu S. and Kajola M. "Presentation of electromagnetic
           multichannel data: The signal space separation method,"
           Journal of Applied Physics, vol. 97, pp. 124905 1-10, 2005.
    .. [2] Wehner DT, Hämäläinen MS, Mody M, Ahlfors SP. "Head movements
           of children in MEG: Quantification, effects on source
           estimation, and compensation. NeuroImage 40:541–550, 2008.
    """  # noqa: E501
    from .preprocessing.maxwell import (_trans_sss_basis, _reset_meg_bads,
                                        _check_usable, _col_norm_pinv,
                                        _get_n_moments, _get_mf_picks_fix_mags,
                                        _prep_mf_coils, _check_destination,
                                        _remove_meg_projs, _get_coil_scale)
    if head_pos is None:
        raise TypeError('head_pos must be provided and cannot be None')
    from .chpi import head_pos_to_trans_rot_t
    if not isinstance(epochs, BaseEpochs):
        raise TypeError('epochs must be an instance of Epochs, not %s'
                        % (type(epochs),))
    orig_sfreq = epochs.info['sfreq'] if orig_sfreq is None else orig_sfreq
    orig_sfreq = float(orig_sfreq)
    if isinstance(head_pos, np.ndarray):
        head_pos = head_pos_to_trans_rot_t(head_pos)
    trn, rot, t = head_pos
    del head_pos
    _check_usable(epochs)
    origin = _check_origin(origin, epochs.info, 'head')
    recon_trans = _check_destination(destination, epochs.info, True)

    logger.info('Aligning and averaging up to %s epochs'
                % (len(epochs.events)))
    if not np.array_equal(epochs.events[:, 0], np.unique(epochs.events[:, 0])):
        raise RuntimeError('Epochs must have monotonically increasing events')
    info_to = epochs.info.copy()
    meg_picks, mag_picks, grad_picks, good_mask, _ = \
        _get_mf_picks_fix_mags(info_to, int_order, ext_order, ignore_ref)
    coil_scale, mag_scale = _get_coil_scale(
        meg_picks, mag_picks, grad_picks, mag_scale, info_to)
    n_channels, n_times = len(epochs.ch_names), len(epochs.times)
    other_picks = np.setdiff1d(np.arange(n_channels), meg_picks)
    data = np.zeros((n_channels, n_times))
    count = 0
    # keep only MEG w/bad channels marked in "info_from"
    info_from = pick_info(info_to, meg_picks[good_mask], copy=True)
    all_coils_recon = _prep_mf_coils(info_to, ignore_ref=ignore_ref)
    all_coils = _prep_mf_coils(info_from, ignore_ref=ignore_ref)
    # remove MEG bads in "to" info
    _reset_meg_bads(info_to)
    # set up variables
    w_sum = 0.
    n_in, n_out = _get_n_moments([int_order, ext_order])
    S_decomp = 0.  # this will end up being a weighted average
    last_trans = None
    decomp_coil_scale = coil_scale[good_mask]
    exp = dict(int_order=int_order, ext_order=ext_order, head_frame=True,
               origin=origin)
    n_in = _get_n_moments(int_order)
    for ei, epoch in enumerate(epochs):
        event_time = epochs.events[epochs._current - 1, 0] / orig_sfreq
        use_idx = np.where(t <= event_time)[0]
        if len(use_idx) == 0:
            trans = info_to['dev_head_t']['trans']
        else:
            use_idx = use_idx[-1]
            trans = np.vstack([np.hstack([rot[use_idx], trn[[use_idx]].T]),
                               [[0., 0., 0., 1.]]])
        loc_str = ', '.join('%0.1f' % tr for tr in (trans[:3, 3] * 1000))
        if last_trans is None or not np.allclose(last_trans, trans):
            logger.info('    Processing epoch %s (device location: %s mm)'
                        % (ei + 1, loc_str))
            reuse = False
            last_trans = trans
        else:
            logger.info('    Processing epoch %s (device location: same)'
                        % (ei + 1,))
            reuse = True
        epoch = epoch.copy()  # because we operate inplace
        if not reuse:
            S = _trans_sss_basis(exp, all_coils, trans,
                                 coil_scale=decomp_coil_scale)
            # Get the weight from the un-regularized version (eq. 44)
            weight = np.linalg.norm(S[:, :n_in])
            # XXX Eventually we could do cross-talk and fine-cal here
            S *= weight
        S_decomp += S  # eq. 41
        epoch[slice(None) if weight_all else meg_picks] *= weight
        data += epoch  # eq. 42
        w_sum += weight
        count += 1
    del info_from
    mapping = None
    if count == 0:
        data.fill(np.nan)
    else:
        data[meg_picks] /= w_sum
        data[other_picks] /= w_sum if weight_all else count
        # Finalize weighted average decomp matrix
        S_decomp /= w_sum
        # Get recon matrix
        # (We would need to include external here for regularization to work)
        exp['ext_order'] = 0
        S_recon = _trans_sss_basis(exp, all_coils_recon, recon_trans)
        exp['ext_order'] = ext_order
        # We could determine regularization on basis of destination basis
        # matrix, restricted to good channels, as regularizing individual
        # matrices within the loop above does not seem to work. But in
        # testing this seemed to decrease localization quality in most cases,
        # so we do not provide the option here.
        S_recon /= coil_scale
        # Invert
        pS_ave = _col_norm_pinv(S_decomp)[0][:n_in]
        pS_ave *= decomp_coil_scale.T
        # Get mapping matrix
        mapping = np.dot(S_recon, pS_ave)
        # Apply mapping
        data[meg_picks] = np.dot(mapping, data[meg_picks[good_mask]])
    info_to['dev_head_t'] = recon_trans  # set the reconstruction transform
    evoked = epochs._evoked_from_epoch_data(data, info_to, picks,
                                            n_events=count, kind='average',
                                            comment=epochs._name)
    _remove_meg_projs(evoked)  # remove MEG projectors, they won't apply now
    logger.info('Created Evoked dataset from %s epochs' % (count,))
    return (evoked, mapping) if return_mapping else evoked


@verbose
def make_fixed_length_epochs(raw, duration=1., preload=False,
                             reject_by_annotation=True, proj=True, overlap=0.,
                             id=1, verbose=None):
    """Divide continuous raw data into equal-sized consecutive epochs.

    Parameters
    ----------
    raw : instance of Raw
        Raw data to divide into segments.
    duration : float
        Duration of each epoch in seconds. Defaults to 1.
    %(preload)s
    %(reject_by_annotation_epochs)s

        .. versionadded:: 0.21.0
    %(proj_epochs)s

        .. versionadded:: 0.22.0
    overlap : float
        The overlap between epochs, in seconds. Must be
        ``0 <= overlap < duration``. Default is 0, i.e., no overlap.

        .. versionadded:: 0.23.0
    id : int
        The id to use (default 1).

        .. versionadded:: 0.24.0
    %(verbose)s

    Returns
    -------
    epochs : instance of Epochs
        Segmented data.

    Notes
    -----
    .. versionadded:: 0.20
    """
    events = make_fixed_length_events(raw, id=id, duration=duration,
                                      overlap=overlap)
    delta = 1. / raw.info['sfreq']
    return Epochs(raw, events, event_id=[id], tmin=0, tmax=duration - delta,
                  baseline=None, preload=preload,
                  reject_by_annotation=reject_by_annotation, proj=proj,
                  verbose=verbose)