File: evoked.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (1594 lines) | stat: -rw-r--r-- 60,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
#          Denis Engemann <denis.engemann@gmail.com>
#          Andrew Dykstra <andrew.r.dykstra@gmail.com>
#          Mads Jensen <mje.mads@gmail.com>
#          Jona Sassenhagen <jona.sassenhagen@gmail.com>
#
# License: BSD-3-Clause

from copy import deepcopy

import numpy as np

from .baseline import rescale, _log_rescale, _check_baseline
from .channels.channels import (UpdateChannelsMixin,
                                SetChannelsMixin, InterpolationMixin)
from .channels.layout import _merge_ch_data, _pair_grad_sensors
from .defaults import (_INTERPOLATION_DEFAULT, _EXTRAPOLATE_DEFAULT,
                       _BORDER_DEFAULT)
from .filter import detrend, FilterMixin, _check_fun
from .utils import (check_fname, logger, verbose, warn, sizeof_fmt, repr_html,
                    SizeMixin, copy_function_doc_to_method_doc, _validate_type,
                    fill_doc, _check_option, _build_data_frame,
                    _check_pandas_installed, _check_pandas_index_arguments,
                    _convert_times, _scale_dataframe_data, _check_time_format,
                    _check_preload, _check_fname, TimeMixin)
from .viz import (plot_evoked, plot_evoked_topomap, plot_evoked_field,
                  plot_evoked_image, plot_evoked_topo)
from .viz.evoked import plot_evoked_white, plot_evoked_joint
from .viz.topomap import _topomap_animation

from .io.constants import FIFF
from .io.open import fiff_open
from .io.tag import read_tag
from .io.tree import dir_tree_find
from .io.pick import pick_types, _picks_to_idx, _FNIRS_CH_TYPES_SPLIT
from .io.meas_info import (ContainsMixin, read_meas_info, write_meas_info,
                           _read_extended_ch_info, _rename_list,
                           _ensure_infos_match)
from .io.proj import ProjMixin
from .io.write import (start_and_end_file, start_block, end_block,
                       write_int, write_string, write_float_matrix,
                       write_id, write_float, write_complex_float_matrix)
from .io.base import _check_maxshield, _get_ch_factors
from .parallel import parallel_func
from .time_frequency.spectrum import Spectrum, SpectrumMixin

_aspect_dict = {
    'average': FIFF.FIFFV_ASPECT_AVERAGE,
    'standard_error': FIFF.FIFFV_ASPECT_STD_ERR,
    'single_epoch': FIFF.FIFFV_ASPECT_SINGLE,
    'partial_average': FIFF.FIFFV_ASPECT_SUBAVERAGE,
    'alternating_subaverage': FIFF.FIFFV_ASPECT_ALTAVERAGE,
    'sample_cut_out_by_graph': FIFF.FIFFV_ASPECT_SAMPLE,
    'power_density_spectrum': FIFF.FIFFV_ASPECT_POWER_DENSITY,
    'dipole_amplitude_cuvre': FIFF.FIFFV_ASPECT_DIPOLE_WAVE,
    'squid_modulation_lower_bound': FIFF.FIFFV_ASPECT_IFII_LOW,
    'squid_modulation_upper_bound': FIFF.FIFFV_ASPECT_IFII_HIGH,
    'squid_gate_setting': FIFF.FIFFV_ASPECT_GATE,
}
_aspect_rev = {val: key for key, val in _aspect_dict.items()}


@fill_doc
class Evoked(ProjMixin, ContainsMixin, UpdateChannelsMixin, SetChannelsMixin,
             InterpolationMixin, FilterMixin, TimeMixin, SizeMixin,
             SpectrumMixin):
    """Evoked data.

    Parameters
    ----------
    fname : str
        Name of evoked/average FIF file to load.
        If None no data is loaded.
    condition : int, or str
        Dataset ID number (int) or comment/name (str). Optional if there is
        only one data set in file.
    proj : bool, optional
        Apply SSP projection vectors.
    kind : str
        Either 'average' or 'standard_error'. The type of data to read.
        Only used if 'condition' is a str.
    allow_maxshield : bool | str (default False)
        If True, allow loading of data that has been recorded with internal
        active compensation (MaxShield). Data recorded with MaxShield should
        generally not be loaded directly, but should first be processed using
        SSS/tSSS to remove the compensation signals that may also affect brain
        activity. Can also be "yes" to load without eliciting a warning.
    %(verbose)s

    Attributes
    ----------
    %(info_not_none)s
    ch_names : list of str
        List of channels' names.
    nave : int
        Number of averaged epochs.
    kind : str
        Type of data, either average or standard_error.
    comment : str
        Comment on dataset. Can be the condition.
    data : array of shape (n_channels, n_times)
        Evoked response.
    first : int
        First time sample.
    last : int
        Last time sample.
    tmin : float
        The first time point in seconds.
    tmax : float
        The last time point in seconds.
    times :  array
        Time vector in seconds. Goes from ``tmin`` to ``tmax``. Time interval
        between consecutive time samples is equal to the inverse of the
        sampling frequency.
    baseline : None | tuple of length 2
         This attribute reflects whether the data has been baseline-corrected
         (it will be a ``tuple`` then) or not (it will be ``None``).

    Notes
    -----
    Evoked objects can only contain the average of a single set of conditions.
    """

    @verbose
    def __init__(self, fname, condition=None, proj=True,
                 kind='average', allow_maxshield=False, *,
                 verbose=None):  # noqa: D102
        _validate_type(proj, bool, "'proj'")
        # Read the requested data
        fname = _check_fname(fname=fname, must_exist=True, overwrite='read')
        self.info, self.nave, self._aspect_kind, self.comment, times, \
            self.data, self.baseline = _read_evoked(fname, condition, kind,
                                                    allow_maxshield)
        self._set_times(times)
        self._raw_times = self.times.copy()
        self._decim = 1

        self._update_first_last()
        self.preload = True
        # project and baseline correct
        if proj:
            self.apply_proj()
        self.filename = fname

    @property
    def kind(self):
        """The data kind."""
        return _aspect_rev[self._aspect_kind]

    @kind.setter
    def kind(self, kind):
        _check_option('kind', kind, list(_aspect_dict.keys()))
        self._aspect_kind = _aspect_dict[kind]

    @property
    def data(self):
        """The data matrix."""
        return self._data

    @data.setter
    def data(self, data):
        """Set the data matrix."""
        self._data = data

    @fill_doc
    def get_data(self, picks=None, units=None, tmin=None, tmax=None):
        """Get evoked data as 2D array.

        Parameters
        ----------
        %(picks_all)s
        %(units)s
        tmin : float | None
            Start time of data to get in seconds.
        tmax : float | None
            End time of data to get in seconds.

        Returns
        -------
        data : ndarray, shape (n_channels, n_times)
            A view on evoked data.

        Notes
        -----
        .. versionadded:: 0.24
        """
        picks = _picks_to_idx(self.info, picks, "all", exclude=())

        start, stop = self._handle_tmin_tmax(tmin, tmax)

        data = self.data[picks, start:stop]

        if units is not None:
            ch_factors = _get_ch_factors(self, units, picks)
            data *= ch_factors[:, np.newaxis]

        return data

    @verbose
    def apply_function(self, fun, picks=None, dtype=None, n_jobs=None,
                       verbose=None, **kwargs):
        """Apply a function to a subset of channels.

        %(applyfun_summary_evoked)s

        Parameters
        ----------
        %(fun_applyfun_evoked)s
        %(picks_all_data_noref)s
        %(dtype_applyfun)s
        %(n_jobs)s Ignored if ``channel_wise=False`` as the workload
            is split across channels.
        %(verbose)s
        %(kwargs_fun)s

        Returns
        -------
        self : instance of Evoked
            The evoked object with transformed data.
        """
        _check_preload(self, 'evoked.apply_function')
        picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False)

        if not callable(fun):
            raise ValueError('fun needs to be a function')

        data_in = self._data
        if dtype is not None and dtype != self._data.dtype:
            self._data = self._data.astype(dtype)

        # check the dimension of the incoming evoked data
        _check_option('evoked.ndim', self._data.ndim, [2])

        parallel, p_fun, n_jobs = parallel_func(_check_fun, n_jobs)
        if n_jobs == 1:
            # modify data inplace to save memory
            for idx in picks:
                self._data[idx, :] = _check_fun(fun, data_in[idx, :], **kwargs)
        else:
            # use parallel function
            data_picks_new = parallel(p_fun(
                fun, data_in[p, :], **kwargs) for p in picks)
            for pp, p in enumerate(picks):
                self._data[p, :] = data_picks_new[pp]

        return self

    @verbose
    def apply_baseline(self, baseline=(None, 0), *, verbose=None):
        """Baseline correct evoked data.

        Parameters
        ----------
        %(baseline_evoked)s
            Defaults to ``(None, 0)``, i.e. beginning of the the data until
            time point zero.
        %(verbose)s

        Returns
        -------
        evoked : instance of Evoked
            The baseline-corrected Evoked object.

        Notes
        -----
        Baseline correction can be done multiple times.

        .. versionadded:: 0.13.0
        """
        baseline = _check_baseline(baseline, times=self.times,
                                   sfreq=self.info['sfreq'])
        if self.baseline is not None and baseline is None:
            raise ValueError('The data has already been baseline-corrected. '
                             'Cannot remove existing baseline correction.')
        elif baseline is None:
            # Do not rescale
            logger.info(_log_rescale(None))
        else:
            # Actually baseline correct the data. Logging happens in rescale().
            self.data = rescale(self.data, self.times, baseline, copy=False)
            self.baseline = baseline

        return self

    @verbose
    def save(self, fname, *, overwrite=False, verbose=None):
        """Save evoked data to a file.

        Parameters
        ----------
        fname : str
            The name of the file, which should end with ``-ave.fif(.gz)`` or
            ``_ave.fif(.gz)``.
        %(overwrite)s
        %(verbose)s

        Notes
        -----
        To write multiple conditions into a single file, use
        `mne.write_evokeds`.

        .. versionchanged:: 0.23
            Information on baseline correction will be stored with the data,
            and will be restored when reading again via `mne.read_evokeds`.
        """
        write_evokeds(fname, self, overwrite=overwrite)

    @verbose
    def export(self, fname, fmt='auto', *, overwrite=False, verbose=None):
        """Export Evoked to external formats.

        %(export_fmt_support_evoked)s

        %(export_warning)s

        Parameters
        ----------
        %(fname_export_params)s
        %(export_fmt_params_evoked)s
        %(overwrite)s
        %(verbose)s

        Notes
        -----
        .. versionadded:: 1.1

        %(export_warning_note_evoked)s
        """
        from .export import export_evokeds
        export_evokeds(fname, self, fmt, overwrite=overwrite, verbose=verbose)

    def __repr__(self):  # noqa: D105
        max_comment_length = 1000
        if len(self.comment) > max_comment_length:
            comment = self.comment[:max_comment_length]
            comment += "..."
        else:
            comment = self.comment
        s = "'%s' (%s, N=%s)" % (comment, self.kind, self.nave)
        s += ", %0.5g – %0.5g sec" % (self.times[0], self.times[-1])
        s += ', baseline '
        if self.baseline is None:
            s += 'off'
        else:
            s += f'{self.baseline[0]:g} – {self.baseline[1]:g} sec'
            if self.baseline != _check_baseline(
                    self.baseline, times=self.times, sfreq=self.info['sfreq'],
                    on_baseline_outside_data='adjust'):
                s += ' (baseline period was cropped after baseline correction)'
        s += ", %s ch" % self.data.shape[0]
        s += ", ~%s" % (sizeof_fmt(self._size),)
        return "<Evoked | %s>" % s

    @repr_html
    def _repr_html_(self):
        from .html_templates import repr_templates_env
        if self.baseline is None:
            baseline = 'off'
        else:
            baseline = tuple([f'{b:.3f}' for b in self.baseline])
            baseline = f'{baseline[0]} – {baseline[1]} sec'

        t = repr_templates_env.get_template('evoked.html.jinja')
        t = t.render(evoked=self, baseline=baseline)
        return t

    @property
    def ch_names(self):
        """Channel names."""
        return self.info['ch_names']

    @copy_function_doc_to_method_doc(plot_evoked)
    def plot(self, picks=None, exclude='bads', unit=True, show=True, ylim=None,
             xlim='tight', proj=False, hline=None, units=None, scalings=None,
             titles=None, axes=None, gfp=False, window_title=None,
             spatial_colors='auto', zorder='unsorted', selectable=True,
             noise_cov=None, time_unit='s', sphere=None, *, highlight=None,
             verbose=None):
        return plot_evoked(
            self, picks=picks, exclude=exclude, unit=unit, show=show,
            ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units,
            scalings=scalings, titles=titles, axes=axes, gfp=gfp,
            window_title=window_title, spatial_colors=spatial_colors,
            zorder=zorder, selectable=selectable, noise_cov=noise_cov,
            time_unit=time_unit, sphere=sphere, highlight=highlight,
            verbose=verbose)

    @copy_function_doc_to_method_doc(plot_evoked_image)
    def plot_image(self, picks=None, exclude='bads', unit=True, show=True,
                   clim=None, xlim='tight', proj=False, units=None,
                   scalings=None, titles=None, axes=None, cmap='RdBu_r',
                   colorbar=True, mask=None, mask_style=None,
                   mask_cmap='Greys', mask_alpha=.25, time_unit='s',
                   show_names=None, group_by=None, sphere=None):
        return plot_evoked_image(
            self, picks=picks, exclude=exclude, unit=unit, show=show,
            clim=clim, xlim=xlim, proj=proj, units=units, scalings=scalings,
            titles=titles, axes=axes, cmap=cmap, colorbar=colorbar, mask=mask,
            mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha,
            time_unit=time_unit, show_names=show_names, group_by=group_by,
            sphere=sphere)

    @copy_function_doc_to_method_doc(plot_evoked_topo)
    def plot_topo(self, layout=None, layout_scale=0.945, color=None,
                  border='none', ylim=None, scalings=None, title=None,
                  proj=False, vline=[0.0], fig_background=None,
                  merge_grads=False, legend=True, axes=None,
                  background_color='w', noise_cov=None, exclude='bads',
                  show=True):
        """
        Notes
        -----
        .. versionadded:: 0.10.0
        """
        return plot_evoked_topo(
            self, layout=layout, layout_scale=layout_scale,
            color=color, border=border, ylim=ylim, scalings=scalings,
            title=title, proj=proj, vline=vline, fig_background=fig_background,
            merge_grads=merge_grads, legend=legend, axes=axes,
            background_color=background_color, noise_cov=noise_cov,
            exclude=exclude, show=show)

    @copy_function_doc_to_method_doc(plot_evoked_topomap)
    def plot_topomap(
            self, times="auto", *, average=None, ch_type=None, scalings=None,
            proj=False, sensors=True, show_names=False, mask=None,
            mask_params=None, contours=6, outlines='head', sphere=None,
            image_interp=_INTERPOLATION_DEFAULT,
            extrapolate=_EXTRAPOLATE_DEFAULT, border=_BORDER_DEFAULT, res=64,
            size=1, cmap=None, vlim=(None, None), cnorm=None, colorbar=True,
            cbar_fmt='%3.1f', units=None, axes=None, time_unit='s',
            time_format=None, nrows=1, ncols='auto', show=True):
        return plot_evoked_topomap(
            self, times=times, ch_type=ch_type, vlim=vlim, cmap=cmap,
            cnorm=cnorm, sensors=sensors, colorbar=colorbar, scalings=scalings,
            units=units, res=res, size=size, cbar_fmt=cbar_fmt,
            time_unit=time_unit, time_format=time_format, proj=proj, show=show,
            show_names=show_names, mask=mask, mask_params=mask_params,
            outlines=outlines, contours=contours, image_interp=image_interp,
            average=average, axes=axes, extrapolate=extrapolate, sphere=sphere,
            border=border, nrows=nrows, ncols=ncols)

    @copy_function_doc_to_method_doc(plot_evoked_field)
    def plot_field(self, surf_maps, time=None, time_label='t = %0.0f ms',
                   n_jobs=None, fig=None, vmax=None, n_contours=21,
                   *, interaction='terrain', verbose=None):
        return plot_evoked_field(self, surf_maps, time=time,
                                 time_label=time_label, n_jobs=n_jobs,
                                 fig=fig, vmax=vmax, n_contours=n_contours,
                                 interaction=interaction, verbose=verbose)

    @copy_function_doc_to_method_doc(plot_evoked_white)
    def plot_white(self, noise_cov, show=True, rank=None, time_unit='s',
                   sphere=None, axes=None, verbose=None):
        return plot_evoked_white(
            self, noise_cov=noise_cov, rank=rank, show=show,
            time_unit=time_unit, sphere=sphere, axes=axes, verbose=verbose)

    @copy_function_doc_to_method_doc(plot_evoked_joint)
    def plot_joint(self, times="peaks", title='', picks=None,
                   exclude='bads', show=True, ts_args=None,
                   topomap_args=None):
        return plot_evoked_joint(self, times=times, title=title, picks=picks,
                                 exclude=exclude, show=show, ts_args=ts_args,
                                 topomap_args=topomap_args)

    @fill_doc
    def animate_topomap(self, ch_type=None, times=None, frame_rate=None,
                        butterfly=False, blit=True, show=True, time_unit='s',
                        sphere=None, *, image_interp=_INTERPOLATION_DEFAULT,
                        extrapolate=_EXTRAPOLATE_DEFAULT, vmin=None, vmax=None,
                        verbose=None):
        """Make animation of evoked data as topomap timeseries.

        The animation can be paused/resumed with left mouse button.
        Left and right arrow keys can be used to move backward or forward
        in time.

        Parameters
        ----------
        ch_type : str | None
            Channel type to plot. Accepted data types: 'mag', 'grad', 'eeg',
            'hbo', 'hbr', 'fnirs_cw_amplitude',
            'fnirs_fd_ac_amplitude', 'fnirs_fd_phase', and 'fnirs_od'.
            If None, first available channel type from the above list is used.
            Defaults to None.
        times : array of float | None
            The time points to plot. If None, 10 evenly spaced samples are
            calculated over the evoked time series. Defaults to None.
        frame_rate : int | None
            Frame rate for the animation in Hz. If None,
            frame rate = sfreq / 10. Defaults to None.
        butterfly : bool
            Whether to plot the data as butterfly plot under the topomap.
            Defaults to False.
        blit : bool
            Whether to use blit to optimize drawing. In general, it is
            recommended to use blit in combination with ``show=True``. If you
            intend to save the animation it is better to disable blit.
            Defaults to True.
        show : bool
            Whether to show the animation. Defaults to True.
        time_unit : str
            The units for the time axis, can be "ms" (default in 0.16)
            or "s" (will become the default in 0.17).

            .. versionadded:: 0.16
        %(sphere_topomap_auto)s
        %(image_interp_topomap)s
        %(extrapolate_topomap)s

            .. versionadded:: 0.22
        %(vmin_vmax_topomap)s

            .. versionadded:: 1.1.0
        %(verbose)s

        Returns
        -------
        fig : instance of matplotlib.figure.Figure
            The figure.
        anim : instance of matplotlib.animation.FuncAnimation
            Animation of the topomap.

        Notes
        -----
        .. versionadded:: 0.12.0
        """
        return _topomap_animation(
            self, ch_type=ch_type, times=times, frame_rate=frame_rate,
            butterfly=butterfly, blit=blit, show=show, time_unit=time_unit,
            sphere=sphere, image_interp=image_interp,
            extrapolate=extrapolate, vmin=vmin, vmax=vmax, verbose=verbose)

    def as_type(self, ch_type='grad', mode='fast'):
        """Compute virtual evoked using interpolated fields.

        .. Warning:: Using virtual evoked to compute inverse can yield
            unexpected results. The virtual channels have ``'_v'`` appended
            at the end of the names to emphasize that the data contained in
            them are interpolated.

        Parameters
        ----------
        ch_type : str
            The destination channel type. It can be 'mag' or 'grad'.
        mode : str
            Either ``'accurate'`` or ``'fast'``, determines the quality of the
            Legendre polynomial expansion used. ``'fast'`` should be sufficient
            for most applications.

        Returns
        -------
        evoked : instance of mne.Evoked
            The transformed evoked object containing only virtual channels.

        Notes
        -----
        This method returns a copy and does not modify the data it
        operates on. It also returns an EvokedArray instance.

        .. versionadded:: 0.9.0
        """
        from .forward import _as_meg_type_inst
        return _as_meg_type_inst(self, ch_type=ch_type, mode=mode)

    @fill_doc
    def detrend(self, order=1, picks=None):
        """Detrend data.

        This function operates in-place.

        Parameters
        ----------
        order : int
            Either 0 or 1, the order of the detrending. 0 is a constant
            (DC) detrend, 1 is a linear detrend.
        %(picks_good_data)s

        Returns
        -------
        evoked : instance of Evoked
            The detrended evoked object.
        """
        picks = _picks_to_idx(self.info, picks)
        self.data[picks] = detrend(self.data[picks], order, axis=-1)
        return self

    def copy(self):
        """Copy the instance of evoked.

        Returns
        -------
        evoked : instance of Evoked
            A copy of the object.
        """
        evoked = deepcopy(self)
        return evoked

    def __neg__(self):
        """Negate channel responses.

        Returns
        -------
        evoked_neg : instance of Evoked
            The Evoked instance with channel data negated and '-'
            prepended to the comment.
        """
        out = self.copy()
        out.data *= -1

        if out.comment is not None and ' + ' in out.comment:
            out.comment = f'({out.comment})'  # multiple conditions in evoked
        out.comment = f'- {out.comment or "unknown"}'
        return out

    def get_peak(self, ch_type=None, tmin=None, tmax=None,
                 mode='abs', time_as_index=False, merge_grads=False,
                 return_amplitude=False):
        """Get location and latency of peak amplitude.

        Parameters
        ----------
        ch_type : str | None
            The channel type to use. Defaults to None. If more than one channel
            type is present in the data, this value **must** be provided.
        tmin : float | None
            The minimum point in time to be considered for peak getting.
            If None (default), the beginning of the data is used.
        tmax : float | None
            The maximum point in time to be considered for peak getting.
            If None (default), the end of the data is used.
        mode : 'pos' | 'neg' | 'abs'
            How to deal with the sign of the data. If 'pos' only positive
            values will be considered. If 'neg' only negative values will
            be considered. If 'abs' absolute values will be considered.
            Defaults to 'abs'.
        time_as_index : bool
            Whether to return the time index instead of the latency in seconds.
        merge_grads : bool
            If True, compute peak from merged gradiometer data.
        return_amplitude : bool
            If True, return also the amplitude at the maximum response.

            .. versionadded:: 0.16

        Returns
        -------
        ch_name : str
            The channel exhibiting the maximum response.
        latency : float | int
            The time point of the maximum response, either latency in seconds
            or index.
        amplitude : float
            The amplitude of the maximum response. Only returned if
            return_amplitude is True.

            .. versionadded:: 0.16
        """  # noqa: E501
        supported = ('mag', 'grad', 'eeg', 'seeg', 'dbs', 'ecog', 'misc',
                     'None') + _FNIRS_CH_TYPES_SPLIT
        types_used = self.get_channel_types(unique=True, only_data_chs=True)

        _check_option('ch_type', str(ch_type), supported)

        if ch_type is not None and ch_type not in types_used:
            raise ValueError(
                f'Channel type "{ch_type}" not found in this evoked object.'
            )

        elif len(types_used) > 1 and ch_type is None:
            raise RuntimeError(
                'Multiple data channel types found. Please pass the "ch_type" '
                'parameter.'
            )

        if merge_grads:
            if ch_type != 'grad':
                raise ValueError('Channel type must be "grad" for merge_grads')
            elif mode == 'neg':
                raise ValueError('Negative mode (mode=neg) does not make '
                                 'sense with merge_grads=True')

        meg = eeg = misc = seeg = dbs = ecog = fnirs = False
        picks = None
        if ch_type in ('mag', 'grad'):
            meg = ch_type
        elif ch_type == 'eeg':
            eeg = True
        elif ch_type == 'misc':
            misc = True
        elif ch_type == 'seeg':
            seeg = True
        elif ch_type == 'dbs':
            dbs = True
        elif ch_type == 'ecog':
            ecog = True
        elif ch_type in _FNIRS_CH_TYPES_SPLIT:
            fnirs = ch_type

        if ch_type is not None:
            if merge_grads:
                picks = _pair_grad_sensors(self.info, topomap_coords=False)
            else:
                picks = pick_types(self.info, meg=meg, eeg=eeg, misc=misc,
                                   seeg=seeg, ecog=ecog, ref_meg=False,
                                   fnirs=fnirs, dbs=dbs)
        data = self.data
        ch_names = self.ch_names

        if picks is not None:
            data = data[picks]
            ch_names = [ch_names[k] for k in picks]

        if merge_grads:
            data, _ = _merge_ch_data(data, ch_type, [])
            ch_names = [ch_name[:-1] + 'X' for ch_name in ch_names[::2]]

        ch_idx, time_idx, max_amp = _get_peak(data, self.times, tmin,
                                              tmax, mode)

        out = (ch_names[ch_idx], time_idx if time_as_index else
               self.times[time_idx])

        if return_amplitude:
            out += (max_amp,)

        return out

    @verbose
    def compute_psd(self, method='multitaper', fmin=0, fmax=np.inf, tmin=None,
                    tmax=None, picks=None, proj=False, *, n_jobs=1,
                    verbose=None, **method_kw):
        """Perform spectral analysis on sensor data.

        Parameters
        ----------
        %(method_psd)s
            Default is ``'multitaper'``.
        %(fmin_fmax_psd)s
        %(tmin_tmax_psd)s
        %(picks_good_data_noref)s
        %(proj_psd)s
        %(n_jobs)s
        %(verbose)s
        %(method_kw_psd)s

        Returns
        -------
        spectrum : instance of Spectrum
            The spectral representation of the data.

        Notes
        -----
        .. versionadded:: 1.2

        References
        ----------
        .. footbibliography::
        """
        return Spectrum(
            self, method=method, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax,
            picks=picks, proj=proj, reject_by_annotation=False, n_jobs=n_jobs,
            verbose=verbose, **method_kw)

    @verbose
    def plot_psd(self, fmin=0, fmax=np.inf, tmin=None, tmax=None, picks=None,
                 proj=False, *, method='auto', average=False, dB=True,
                 estimate='auto', xscale='linear', area_mode='std',
                 area_alpha=0.33, color='black', line_alpha=None,
                 spatial_colors=True, sphere=None, exclude='bads', ax=None,
                 show=True, n_jobs=1, verbose=None, **method_kw):
        """%(plot_psd_doc)s.

        Parameters
        ----------
        %(fmin_fmax_psd)s
        %(tmin_tmax_psd)s
        %(picks_good_data_noref)s
        %(proj_psd)s
        %(method_plot_psd_auto)s
        %(average_plot_psd)s
        %(dB_plot_psd)s
        %(estimate_plot_psd)s
        %(xscale_plot_psd)s
        %(area_mode_plot_psd)s
        %(area_alpha_plot_psd)s
        %(color_plot_psd)s
        %(line_alpha_plot_psd)s
        %(spatial_colors_psd)s
        %(sphere_topomap_auto)s

            .. versionadded:: 0.22.0
        exclude : list of str | 'bads'
            Channels names to exclude from being shown. If 'bads', the bad
            channels are excluded. Pass an empty list to plot all channels
            (including channels marked "bad", if any).

            .. versionadded:: 0.24.0
        %(ax_plot_psd)s
        %(show)s
        %(n_jobs)s
        %(verbose)s
        %(method_kw_psd)s

        Returns
        -------
        fig : instance of Figure
            Figure with frequency spectra of the data channels.

        Notes
        -----
        %(notes_plot_psd_meth)s
        """
        return super().plot_psd(
            fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, picks=picks, proj=proj,
            reject_by_annotation=False, method=method, average=average, dB=dB,
            estimate=estimate, xscale=xscale, area_mode=area_mode,
            area_alpha=area_alpha, color=color, line_alpha=line_alpha,
            spatial_colors=spatial_colors, sphere=sphere, exclude=exclude,
            ax=ax, show=show, n_jobs=n_jobs, verbose=verbose, **method_kw)

    @verbose
    def to_data_frame(self, picks=None, index=None,
                      scalings=None, copy=True, long_format=False,
                      time_format=None, *, verbose=None):
        """Export data in tabular structure as a pandas DataFrame.

        Channels are converted to columns in the DataFrame. By default,
        an additional column "time" is added, unless ``index='time'``
        (in which case time values form the DataFrame's index).

        Parameters
        ----------
        %(picks_all)s
        %(index_df_evk)s
            Defaults to ``None``.
        %(scalings_df)s
        %(copy_df)s
        %(long_format_df_raw)s
        %(time_format_df)s

            .. versionadded:: 0.20
        %(verbose)s

        Returns
        -------
        %(df_return)s
        """
        # check pandas once here, instead of in each private utils function
        pd = _check_pandas_installed()  # noqa
        # arg checking
        valid_index_args = ['time']
        valid_time_formats = ['ms', 'timedelta']
        index = _check_pandas_index_arguments(index, valid_index_args)
        time_format = _check_time_format(time_format, valid_time_formats)
        # get data
        picks = _picks_to_idx(self.info, picks, 'all', exclude=())
        data = self.data[picks, :]
        times = self.times
        data = data.T
        if copy:
            data = data.copy()
        data = _scale_dataframe_data(self, data, picks, scalings)
        # prepare extra columns / multiindex
        mindex = list()
        times = _convert_times(self, times, time_format)
        mindex.append(('time', times))
        # build DataFrame
        df = _build_data_frame(self, data, picks, long_format, mindex, index,
                               default_index=['time'])
        return df


@fill_doc
class EvokedArray(Evoked):
    """Evoked object from numpy array.

    Parameters
    ----------
    data : array of shape (n_channels, n_times)
        The channels' evoked response. See notes for proper units of measure.
    %(info_not_none)s Consider using :func:`mne.create_info` to populate this
        structure.
    tmin : float
        Start time before event. Defaults to 0.
    comment : str
        Comment on dataset. Can be the condition. Defaults to ''.
    nave : int
        Number of averaged epochs. Defaults to 1.
    kind : str
        Type of data, either average or standard_error. Defaults to 'average'.
    %(baseline_evoked)s
        Defaults to ``None``, i.e. no baseline correction.

        .. versionadded:: 0.23
    %(verbose)s

    See Also
    --------
    EpochsArray, io.RawArray, create_info

    Notes
    -----
    Proper units of measure:

    * V: eeg, eog, seeg, dbs, emg, ecg, bio, ecog
    * T: mag
    * T/m: grad
    * M: hbo, hbr
    * Am: dipole
    * AU: misc
    """

    @verbose
    def __init__(self, data, info, tmin=0., comment='', nave=1, kind='average',
                 baseline=None, *, verbose=None):  # noqa: D102
        dtype = np.complex128 if np.iscomplexobj(data) else np.float64
        data = np.asanyarray(data, dtype=dtype)

        if data.ndim != 2:
            raise ValueError('Data must be a 2D array of shape (n_channels, '
                             'n_samples), got shape %s' % (data.shape,))

        if len(info['ch_names']) != np.shape(data)[0]:
            raise ValueError('Info (%s) and data (%s) must have same number '
                             'of channels.' % (len(info['ch_names']),
                                               np.shape(data)[0]))

        self.data = data

        self.first = int(round(tmin * info['sfreq']))
        self.last = self.first + np.shape(data)[-1] - 1
        self._set_times(np.arange(self.first, self.last + 1,
                                  dtype=np.float64) / info['sfreq'])
        self._raw_times = self.times.copy()
        self._decim = 1
        self.info = info.copy()  # do not modify original info
        self.nave = nave
        self.kind = kind
        self.comment = comment
        self.picks = None
        self.preload = True
        self._projector = None
        _validate_type(self.kind, "str", "kind")
        if self.kind not in _aspect_dict:
            raise ValueError('unknown kind "%s", should be "average" or '
                             '"standard_error"' % (self.kind,))
        self._aspect_kind = _aspect_dict[self.kind]

        self.baseline = baseline
        if self.baseline is not None:  # omit log msg if not baselining
            self.apply_baseline(self.baseline)


def _get_entries(fid, evoked_node, allow_maxshield=False):
    """Get all evoked entries."""
    comments = list()
    aspect_kinds = list()
    for ev in evoked_node:
        for k in range(ev['nent']):
            my_kind = ev['directory'][k].kind
            pos = ev['directory'][k].pos
            if my_kind == FIFF.FIFF_COMMENT:
                tag = read_tag(fid, pos)
                comments.append(tag.data)
        my_aspect = _get_aspect(ev, allow_maxshield)[0]
        for k in range(my_aspect['nent']):
            my_kind = my_aspect['directory'][k].kind
            pos = my_aspect['directory'][k].pos
            if my_kind == FIFF.FIFF_ASPECT_KIND:
                tag = read_tag(fid, pos)
                aspect_kinds.append(int(tag.data))
    comments = np.atleast_1d(comments)
    aspect_kinds = np.atleast_1d(aspect_kinds)
    if len(comments) != len(aspect_kinds) or len(comments) == 0:
        fid.close()
        raise ValueError('Dataset names in FIF file '
                         'could not be found.')
    t = [_aspect_rev[a] for a in aspect_kinds]
    t = ['"' + c + '" (' + tt + ')' for tt, c in zip(t, comments)]
    t = '\n'.join(t)
    return comments, aspect_kinds, t


def _get_aspect(evoked, allow_maxshield):
    """Get Evoked data aspect."""
    is_maxshield = False
    aspect = dir_tree_find(evoked, FIFF.FIFFB_ASPECT)
    if len(aspect) == 0:
        _check_maxshield(allow_maxshield)
        aspect = dir_tree_find(evoked, FIFF.FIFFB_IAS_ASPECT)
        is_maxshield = True
    if len(aspect) > 1:
        logger.info('Multiple data aspects found. Taking first one.')
    return aspect[0], is_maxshield


def _get_evoked_node(fname):
    """Get info in evoked file."""
    f, tree, _ = fiff_open(fname)
    with f as fid:
        _, meas = read_meas_info(fid, tree, verbose=False)
        evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
    return evoked_node


def _check_evokeds_ch_names_times(all_evoked):
    evoked = all_evoked[0]
    ch_names = evoked.ch_names
    for ii, ev in enumerate(all_evoked[1:]):
        if ev.ch_names != ch_names:
            if set(ev.ch_names) != set(ch_names):
                raise ValueError(
                    "%s and %s do not contain the same channels." % (evoked,
                                                                     ev))
            else:
                warn("Order of channels differs, reordering channels ...")
                ev = ev.copy()
                ev.reorder_channels(ch_names)
                all_evoked[ii + 1] = ev
        if not np.max(np.abs(ev.times - evoked.times)) < 1e-7:
            raise ValueError("%s and %s do not contain the same time instants"
                             % (evoked, ev))
    return all_evoked


def combine_evoked(all_evoked, weights):
    """Merge evoked data by weighted addition or subtraction.

    Each `~mne.Evoked` in ``all_evoked`` should have the same channels and the
    same time instants. Subtraction can be performed by passing
    ``weights=[1, -1]``.

    .. Warning::
        Other than cases like simple subtraction mentioned above (where all
        weights are -1 or 1), if you provide numeric weights instead of using
        ``'equal'`` or ``'nave'``, the resulting `~mne.Evoked` object's
        ``.nave`` attribute (which is used to scale noise covariance when
        applying the inverse operator) may not be suitable for inverse imaging.

    Parameters
    ----------
    all_evoked : list of Evoked
        The evoked datasets.
    weights : list of float | 'equal' | 'nave'
        The weights to apply to the data of each evoked instance, or a string
        describing the weighting strategy to apply: ``'nave'`` computes
        sum-to-one weights proportional to each object's ``nave`` attribute;
        ``'equal'`` weights each `~mne.Evoked` by ``1 / len(all_evoked)``.

    Returns
    -------
    evoked : Evoked
        The new evoked data.

    Notes
    -----
    .. versionadded:: 0.9.0
    """
    naves = np.array([evk.nave for evk in all_evoked], float)
    if isinstance(weights, str):
        _check_option('weights', weights, ['nave', 'equal'])
        if weights == 'nave':
            weights = naves / naves.sum()
        else:
            weights = np.ones_like(naves) / len(naves)
    else:
        weights = np.array(weights, float)

    if weights.ndim != 1 or weights.size != len(all_evoked):
        raise ValueError('weights must be the same size as all_evoked')

    # cf. https://en.wikipedia.org/wiki/Weighted_arithmetic_mean, section on
    # "weighted sample variance". The variance of a weighted sample mean is:
    #
    #    σ² = w₁² σ₁² + w₂² σ₂² + ... + wₙ² σₙ²
    #
    # We estimate the variance of each evoked instance as 1 / nave to get:
    #
    #    σ² = w₁² / nave₁ + w₂² / nave₂ + ... + wₙ² / naveₙ
    #
    # And our resulting nave is the reciprocal of this:
    new_nave = 1. / np.sum(weights ** 2 / naves)
    # This general formula is equivalent to formulae in Matti's manual
    # (pp 128-129), where:
    # new_nave = sum(naves) when weights='nave' and
    # new_nave = 1. / sum(1. / naves) when weights are all 1.

    all_evoked = _check_evokeds_ch_names_times(all_evoked)
    evoked = all_evoked[0].copy()

    # use union of bad channels
    bads = list(set(b for e in all_evoked for b in e.info['bads']))
    evoked.info['bads'] = bads
    evoked.data = sum(w * e.data for w, e in zip(weights, all_evoked))
    evoked.nave = new_nave

    comment = ''
    for idx, (w, e) in enumerate(zip(weights, all_evoked)):
        # pick sign
        sign = '' if w >= 0 else '-'
        # format weight
        weight = '' if np.isclose(abs(w), 1.) else f'{abs(w):0.3f}'
        # format multiplier
        multiplier = ' × ' if weight else ''
        # format comment
        if e.comment is not None and ' + ' in e.comment:  # multiple conditions
            this_comment = f'({e.comment})'
        else:
            this_comment = f'{e.comment or "unknown"}'
        # assemble everything
        if idx == 0:
            comment += f'{sign}{weight}{multiplier}{this_comment}'
        else:
            comment += f' {sign or "+"} {weight}{multiplier}{this_comment}'
    # special-case: combine_evoked([e1, -e2], [1, -1])
    evoked.comment = comment.replace(' - - ', ' + ')
    return evoked


@verbose
def read_evokeds(fname, condition=None, baseline=None, kind='average',
                 proj=True, allow_maxshield=False, verbose=None):
    """Read evoked dataset(s).

    Parameters
    ----------
    fname : path-like
        The filename, which should end with ``-ave.fif`` or ``-ave.fif.gz``.
    condition : int or str | list of int or str | None
        The index or list of indices of the evoked dataset to read. FIF files
        can contain multiple datasets. If None, all datasets are returned as a
        list.
    %(baseline_evoked)s
        If ``None`` (default), do not apply baseline correction.

        .. note:: Note that if the read  `~mne.Evoked` objects have already
                  been baseline-corrected, the data retrieved from disk will
                  **always** be baseline-corrected (in fact, only the
                  baseline-corrected version of the data will be saved, so
                  there is no way to undo this procedure). Only **after** the
                  data has been loaded, a custom (additional) baseline
                  correction **may** be optionally applied by passing a tuple
                  here. Passing ``None`` will **not** remove an existing
                  baseline correction, but merely omit the optional, additional
                  baseline correction.
    kind : str
        Either 'average' or 'standard_error', the type of data to read.
    proj : bool
        If False, available projectors won't be applied to the data.
    allow_maxshield : bool | str (default False)
        If True, allow loading of data that has been recorded with internal
        active compensation (MaxShield). Data recorded with MaxShield should
        generally not be loaded directly, but should first be processed using
        SSS/tSSS to remove the compensation signals that may also affect brain
        activity. Can also be "yes" to load without eliciting a warning.
    %(verbose)s

    Returns
    -------
    evoked : Evoked or list of Evoked
        The evoked dataset(s); one `~mne.Evoked` if ``condition`` is an
        integer or string; or a list of `~mne.Evoked` if ``condition`` is
        ``None`` or a list.

    See Also
    --------
    write_evokeds

    Notes
    -----
    .. versionchanged:: 0.23
        If the read `~mne.Evoked` objects had been baseline-corrected before
        saving, this will be reflected in their ``baseline`` attribute after
        reading.
    """
    fname = _check_fname(fname, overwrite='read', must_exist=True)
    check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz',
                                  '_ave.fif', '_ave.fif.gz'))
    logger.info('Reading %s ...' % fname)
    return_list = True
    if condition is None:
        evoked_node = _get_evoked_node(fname)
        condition = range(len(evoked_node))
    elif not isinstance(condition, list):
        condition = [condition]
        return_list = False

    out = []
    for c in condition:
        evoked = Evoked(fname, c, kind=kind, proj=proj,
                        allow_maxshield=allow_maxshield,
                        verbose=verbose)
        if baseline is None and evoked.baseline is None:
            logger.info(_log_rescale(None))
        elif baseline is None and evoked.baseline is not None:
            # Don't touch an existing baseline
            bmin, bmax = evoked.baseline
            logger.info(f'Loaded Evoked data is baseline-corrected '
                        f'(baseline: [{bmin:g}, {bmax:g}] sec)')
        else:
            evoked.apply_baseline(baseline)
        out.append(evoked)

    return out if return_list else out[0]


def _read_evoked(fname, condition=None, kind='average', allow_maxshield=False):
    """Read evoked data from a FIF file."""
    if fname is None:
        raise ValueError('No evoked filename specified')

    f, tree, _ = fiff_open(fname)
    with f as fid:
        #   Read the measurement info
        info, meas = read_meas_info(fid, tree, clean_bads=True)

        #   Locate the data of interest
        processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
        if len(processed) == 0:
            raise ValueError('Could not find processed data')

        evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
        if len(evoked_node) == 0:
            raise ValueError('Could not find evoked data')

        # find string-based entry
        if isinstance(condition, str):
            if kind not in _aspect_dict.keys():
                raise ValueError('kind must be "average" or '
                                 '"standard_error"')

            comments, aspect_kinds, t = _get_entries(fid, evoked_node,
                                                     allow_maxshield)
            goods = (np.in1d(comments, [condition]) &
                     np.in1d(aspect_kinds, [_aspect_dict[kind]]))
            found_cond = np.where(goods)[0]
            if len(found_cond) != 1:
                raise ValueError('condition "%s" (%s) not found, out of '
                                 'found datasets:\n%s'
                                 % (condition, kind, t))
            condition = found_cond[0]
        elif condition is None:
            if len(evoked_node) > 1:
                _, _, conditions = _get_entries(fid, evoked_node,
                                                allow_maxshield)
                raise TypeError("Evoked file has more than one "
                                "condition, the condition parameters "
                                "must be specified from:\n%s" % conditions)
            else:
                condition = 0

        if condition >= len(evoked_node) or condition < 0:
            raise ValueError('Data set selector out of range')

        my_evoked = evoked_node[condition]

        # Identify the aspects
        with info._unlock():
            my_aspect, info['maxshield'] = _get_aspect(my_evoked,
                                                       allow_maxshield)

        # Now find the data in the evoked block
        nchan = 0
        sfreq = -1
        chs = []
        baseline = bmin = bmax = None
        comment = last = first = first_time = nsamp = None
        for k in range(my_evoked['nent']):
            my_kind = my_evoked['directory'][k].kind
            pos = my_evoked['directory'][k].pos
            if my_kind == FIFF.FIFF_COMMENT:
                tag = read_tag(fid, pos)
                comment = tag.data
            elif my_kind == FIFF.FIFF_FIRST_SAMPLE:
                tag = read_tag(fid, pos)
                first = int(tag.data)
            elif my_kind == FIFF.FIFF_LAST_SAMPLE:
                tag = read_tag(fid, pos)
                last = int(tag.data)
            elif my_kind == FIFF.FIFF_NCHAN:
                tag = read_tag(fid, pos)
                nchan = int(tag.data)
            elif my_kind == FIFF.FIFF_SFREQ:
                tag = read_tag(fid, pos)
                sfreq = float(tag.data)
            elif my_kind == FIFF.FIFF_CH_INFO:
                tag = read_tag(fid, pos)
                chs.append(tag.data)
            elif my_kind == FIFF.FIFF_FIRST_TIME:
                tag = read_tag(fid, pos)
                first_time = float(tag.data)
            elif my_kind == FIFF.FIFF_NO_SAMPLES:
                tag = read_tag(fid, pos)
                nsamp = int(tag.data)
            elif my_kind == FIFF.FIFF_MNE_BASELINE_MIN:
                tag = read_tag(fid, pos)
                bmin = float(tag.data)
            elif my_kind == FIFF.FIFF_MNE_BASELINE_MAX:
                tag = read_tag(fid, pos)
                bmax = float(tag.data)

        if comment is None:
            comment = 'No comment'

        if bmin is not None or bmax is not None:
            # None's should've been replaced with floats
            assert bmin is not None and bmax is not None
            baseline = (bmin, bmax)

        #   Local channel information?
        if nchan > 0:
            if chs is None:
                raise ValueError('Local channel information was not found '
                                 'when it was expected.')

            if len(chs) != nchan:
                raise ValueError('Number of channels and number of '
                                 'channel definitions are different')

            ch_names_mapping = _read_extended_ch_info(chs, my_evoked, fid)
            info['chs'] = chs
            info['bads'][:] = _rename_list(info['bads'], ch_names_mapping)
            logger.info('    Found channel information in evoked data. '
                        'nchan = %d' % nchan)
            if sfreq > 0:
                info['sfreq'] = sfreq

        # Read the data in the aspect block
        nave = 1
        epoch = []
        for k in range(my_aspect['nent']):
            kind = my_aspect['directory'][k].kind
            pos = my_aspect['directory'][k].pos
            if kind == FIFF.FIFF_COMMENT:
                tag = read_tag(fid, pos)
                comment = tag.data
            elif kind == FIFF.FIFF_ASPECT_KIND:
                tag = read_tag(fid, pos)
                aspect_kind = int(tag.data)
            elif kind == FIFF.FIFF_NAVE:
                tag = read_tag(fid, pos)
                nave = int(tag.data)
            elif kind == FIFF.FIFF_EPOCH:
                tag = read_tag(fid, pos)
                epoch.append(tag)

        nepoch = len(epoch)
        if nepoch != 1 and nepoch != info['nchan']:
            raise ValueError('Number of epoch tags is unreasonable '
                             '(nepoch = %d nchan = %d)'
                             % (nepoch, info['nchan']))

        if nepoch == 1:
            # Only one epoch
            data = epoch[0].data
            # May need a transpose if the number of channels is one
            if data.shape[1] == 1 and info['nchan'] == 1:
                data = data.T
        else:
            # Put the old style epochs together
            data = np.concatenate([e.data[None, :] for e in epoch], axis=0)
        if np.isrealobj(data):
            data = data.astype(np.float64)
        else:
            data = data.astype(np.complex128)

        if first_time is not None and nsamp is not None:
            times = first_time + np.arange(nsamp) / info['sfreq']
        elif first is not None:
            nsamp = last - first + 1
            times = np.arange(first, last + 1) / info['sfreq']
        else:
            raise RuntimeError('Could not read time parameters')
        del first, last
        if nsamp is not None and data.shape[1] != nsamp:
            raise ValueError('Incorrect number of samples (%d instead of '
                             ' %d)' % (data.shape[1], nsamp))
        logger.info('    Found the data of interest:')
        logger.info('        t = %10.2f ... %10.2f ms (%s)'
                    % (1000 * times[0], 1000 * times[-1], comment))
        if info['comps'] is not None:
            logger.info('        %d CTF compensation matrices available'
                        % len(info['comps']))
        logger.info('        nave = %d - aspect type = %d'
                    % (nave, aspect_kind))

    # Calibrate
    cals = np.array([info['chs'][k]['cal'] *
                     info['chs'][k].get('scale', 1.0)
                     for k in range(info['nchan'])])
    data *= cals[:, np.newaxis]

    return info, nave, aspect_kind, comment, times, data, baseline


@verbose
def write_evokeds(fname, evoked, *, on_mismatch='raise', overwrite=False,
                  verbose=None):
    """Write an evoked dataset to a file.

    Parameters
    ----------
    fname : str
        The file name, which should end with -ave.fif or -ave.fif.gz.
    evoked : Evoked instance, or list of Evoked instances
        The evoked dataset, or list of evoked datasets, to save in one file.
        Note that the measurement info from the first evoked instance is used,
        so be sure that information matches.
    %(on_mismatch_info)s
    %(overwrite)s

        .. versionadded:: 1.0
    %(verbose)s

        .. versionadded:: 0.24

    See Also
    --------
    read_evokeds

    Notes
    -----
    .. versionchanged:: 0.23
        Information on baseline correction will be stored with each individual
        `~mne.Evoked` object, and will be restored when reading the data again
        via `mne.read_evokeds`.
    """
    _write_evokeds(fname, evoked, on_mismatch=on_mismatch, overwrite=overwrite)


def _write_evokeds(fname, evoked, check=True, *, on_mismatch='raise',
                   overwrite=False):
    """Write evoked data."""
    from .dipole import DipoleFixed  # avoid circular import

    fname = _check_fname(fname=fname, overwrite=overwrite)
    if check:
        check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz',
                                      '_ave.fif', '_ave.fif.gz'))

    if not isinstance(evoked, (list, tuple)):
        evoked = [evoked]

    warned = False
    # Create the file and save the essentials
    with start_and_end_file(fname) as fid:

        start_block(fid, FIFF.FIFFB_MEAS)
        write_id(fid, FIFF.FIFF_BLOCK_ID)
        if evoked[0].info['meas_id'] is not None:
            write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, evoked[0].info['meas_id'])

        # Write measurement info
        write_meas_info(fid, evoked[0].info)

        # One or more evoked data sets
        start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
        for ei, e in enumerate(evoked):
            if ei:
                _ensure_infos_match(info1=evoked[0].info, info2=e.info,
                                    name=f'evoked[{ei}]',
                                    on_mismatch=on_mismatch)
            start_block(fid, FIFF.FIFFB_EVOKED)

            # Comment is optional
            if e.comment is not None and len(e.comment) > 0:
                write_string(fid, FIFF.FIFF_COMMENT, e.comment)

            # First time, num. samples, first and last sample
            write_float(fid, FIFF.FIFF_FIRST_TIME, e.times[0])
            write_int(fid, FIFF.FIFF_NO_SAMPLES, len(e.times))
            write_int(fid, FIFF.FIFF_FIRST_SAMPLE, e.first)
            write_int(fid, FIFF.FIFF_LAST_SAMPLE, e.last)

            # Baseline
            if not isinstance(e, DipoleFixed) and e.baseline is not None:
                bmin, bmax = e.baseline
                write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, bmin)
                write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX, bmax)

            # The evoked data itself
            if e.info.get('maxshield'):
                aspect = FIFF.FIFFB_IAS_ASPECT
            else:
                aspect = FIFF.FIFFB_ASPECT
            start_block(fid, aspect)

            write_int(fid, FIFF.FIFF_ASPECT_KIND, e._aspect_kind)
            # convert nave to integer to comply with FIFF spec
            nave_int = int(round(e.nave))
            if nave_int != e.nave and not warned:
                warn('converting "nave" to integer before saving evoked; this '
                     'can have a minor effect on the scale of source '
                     'estimates that are computed using "nave".')
                warned = True
            write_int(fid, FIFF.FIFF_NAVE, nave_int)
            del nave_int

            decal = np.zeros((e.info['nchan'], 1))
            for k in range(e.info['nchan']):
                decal[k] = 1.0 / (e.info['chs'][k]['cal'] *
                                  e.info['chs'][k].get('scale', 1.0))

            if np.iscomplexobj(e.data):
                write_function = write_complex_float_matrix
            else:
                write_function = write_float_matrix

            write_function(fid, FIFF.FIFF_EPOCH, decal * e.data)
            end_block(fid, aspect)
            end_block(fid, FIFF.FIFFB_EVOKED)

        end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
        end_block(fid, FIFF.FIFFB_MEAS)


def _get_peak(data, times, tmin=None, tmax=None, mode='abs'):
    """Get feature-index and time of maximum signal from 2D array.

    Note. This is a 'getter', not a 'finder'. For non-evoked type
    data and continuous signals, please use proper peak detection algorithms.

    Parameters
    ----------
    data : instance of numpy.ndarray (n_locations, n_times)
        The data, either evoked in sensor or source space.
    times : instance of numpy.ndarray (n_times)
        The times in seconds.
    tmin : float | None
        The minimum point in time to be considered for peak getting.
    tmax : float | None
        The maximum point in time to be considered for peak getting.
    mode : {'pos', 'neg', 'abs'}
        How to deal with the sign of the data. If 'pos' only positive
        values will be considered. If 'neg' only negative values will
        be considered. If 'abs' absolute values will be considered.
        Defaults to 'abs'.

    Returns
    -------
    max_loc : int
        The index of the feature with the maximum value.
    max_time : int
        The time point of the maximum response, index.
    max_amp : float
        Amplitude of the maximum response.
    """
    _check_option('mode', mode, ['abs', 'neg', 'pos'])

    if tmin is None:
        tmin = times[0]
    if tmax is None:
        tmax = times[-1]

    if tmin < times.min() or tmax > times.max():
        if tmin < times.min():
            param_name = 'tmin'
            param_val = tmin
        else:
            param_name = 'tmax'
            param_val = tmax

        raise ValueError(
            f'{param_name} ({param_val}) is out of bounds. It must be '
            f'between {times.min()} and {times.max()}'
        )
    elif tmin > tmax:
        raise ValueError(f'tmin ({tmin}) must be <= tmax ({tmax})')

    time_win = (times >= tmin) & (times <= tmax)
    mask = np.ones_like(data).astype(bool)
    mask[:, time_win] = False

    maxfun = np.argmax
    if mode == 'pos':
        if not np.any(data[~mask] > 0):
            raise ValueError('No positive values encountered. Cannot '
                             'operate in pos mode.')
    elif mode == 'neg':
        if not np.any(data[~mask] < 0):
            raise ValueError('No negative values encountered. Cannot '
                             'operate in neg mode.')
        maxfun = np.argmin

    masked_index = np.ma.array(np.abs(data) if mode == 'abs' else data,
                               mask=mask)

    max_loc, max_time = np.unravel_index(maxfun(masked_index), data.shape)

    return max_loc, max_time, data[max_loc, max_time]