1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
|
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
# Andrew Dykstra <andrew.r.dykstra@gmail.com>
# Mads Jensen <mje.mads@gmail.com>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
#
# License: BSD-3-Clause
from copy import deepcopy
import numpy as np
from .baseline import rescale, _log_rescale, _check_baseline
from .channels.channels import (UpdateChannelsMixin,
SetChannelsMixin, InterpolationMixin)
from .channels.layout import _merge_ch_data, _pair_grad_sensors
from .defaults import (_INTERPOLATION_DEFAULT, _EXTRAPOLATE_DEFAULT,
_BORDER_DEFAULT)
from .filter import detrend, FilterMixin, _check_fun
from .utils import (check_fname, logger, verbose, warn, sizeof_fmt, repr_html,
SizeMixin, copy_function_doc_to_method_doc, _validate_type,
fill_doc, _check_option, _build_data_frame,
_check_pandas_installed, _check_pandas_index_arguments,
_convert_times, _scale_dataframe_data, _check_time_format,
_check_preload, _check_fname, TimeMixin)
from .viz import (plot_evoked, plot_evoked_topomap, plot_evoked_field,
plot_evoked_image, plot_evoked_topo)
from .viz.evoked import plot_evoked_white, plot_evoked_joint
from .viz.topomap import _topomap_animation
from .io.constants import FIFF
from .io.open import fiff_open
from .io.tag import read_tag
from .io.tree import dir_tree_find
from .io.pick import pick_types, _picks_to_idx, _FNIRS_CH_TYPES_SPLIT
from .io.meas_info import (ContainsMixin, read_meas_info, write_meas_info,
_read_extended_ch_info, _rename_list,
_ensure_infos_match)
from .io.proj import ProjMixin
from .io.write import (start_and_end_file, start_block, end_block,
write_int, write_string, write_float_matrix,
write_id, write_float, write_complex_float_matrix)
from .io.base import _check_maxshield, _get_ch_factors
from .parallel import parallel_func
from .time_frequency.spectrum import Spectrum, SpectrumMixin
_aspect_dict = {
'average': FIFF.FIFFV_ASPECT_AVERAGE,
'standard_error': FIFF.FIFFV_ASPECT_STD_ERR,
'single_epoch': FIFF.FIFFV_ASPECT_SINGLE,
'partial_average': FIFF.FIFFV_ASPECT_SUBAVERAGE,
'alternating_subaverage': FIFF.FIFFV_ASPECT_ALTAVERAGE,
'sample_cut_out_by_graph': FIFF.FIFFV_ASPECT_SAMPLE,
'power_density_spectrum': FIFF.FIFFV_ASPECT_POWER_DENSITY,
'dipole_amplitude_cuvre': FIFF.FIFFV_ASPECT_DIPOLE_WAVE,
'squid_modulation_lower_bound': FIFF.FIFFV_ASPECT_IFII_LOW,
'squid_modulation_upper_bound': FIFF.FIFFV_ASPECT_IFII_HIGH,
'squid_gate_setting': FIFF.FIFFV_ASPECT_GATE,
}
_aspect_rev = {val: key for key, val in _aspect_dict.items()}
@fill_doc
class Evoked(ProjMixin, ContainsMixin, UpdateChannelsMixin, SetChannelsMixin,
InterpolationMixin, FilterMixin, TimeMixin, SizeMixin,
SpectrumMixin):
"""Evoked data.
Parameters
----------
fname : str
Name of evoked/average FIF file to load.
If None no data is loaded.
condition : int, or str
Dataset ID number (int) or comment/name (str). Optional if there is
only one data set in file.
proj : bool, optional
Apply SSP projection vectors.
kind : str
Either 'average' or 'standard_error'. The type of data to read.
Only used if 'condition' is a str.
allow_maxshield : bool | str (default False)
If True, allow loading of data that has been recorded with internal
active compensation (MaxShield). Data recorded with MaxShield should
generally not be loaded directly, but should first be processed using
SSS/tSSS to remove the compensation signals that may also affect brain
activity. Can also be "yes" to load without eliciting a warning.
%(verbose)s
Attributes
----------
%(info_not_none)s
ch_names : list of str
List of channels' names.
nave : int
Number of averaged epochs.
kind : str
Type of data, either average or standard_error.
comment : str
Comment on dataset. Can be the condition.
data : array of shape (n_channels, n_times)
Evoked response.
first : int
First time sample.
last : int
Last time sample.
tmin : float
The first time point in seconds.
tmax : float
The last time point in seconds.
times : array
Time vector in seconds. Goes from ``tmin`` to ``tmax``. Time interval
between consecutive time samples is equal to the inverse of the
sampling frequency.
baseline : None | tuple of length 2
This attribute reflects whether the data has been baseline-corrected
(it will be a ``tuple`` then) or not (it will be ``None``).
Notes
-----
Evoked objects can only contain the average of a single set of conditions.
"""
@verbose
def __init__(self, fname, condition=None, proj=True,
kind='average', allow_maxshield=False, *,
verbose=None): # noqa: D102
_validate_type(proj, bool, "'proj'")
# Read the requested data
fname = _check_fname(fname=fname, must_exist=True, overwrite='read')
self.info, self.nave, self._aspect_kind, self.comment, times, \
self.data, self.baseline = _read_evoked(fname, condition, kind,
allow_maxshield)
self._set_times(times)
self._raw_times = self.times.copy()
self._decim = 1
self._update_first_last()
self.preload = True
# project and baseline correct
if proj:
self.apply_proj()
self.filename = fname
@property
def kind(self):
"""The data kind."""
return _aspect_rev[self._aspect_kind]
@kind.setter
def kind(self, kind):
_check_option('kind', kind, list(_aspect_dict.keys()))
self._aspect_kind = _aspect_dict[kind]
@property
def data(self):
"""The data matrix."""
return self._data
@data.setter
def data(self, data):
"""Set the data matrix."""
self._data = data
@fill_doc
def get_data(self, picks=None, units=None, tmin=None, tmax=None):
"""Get evoked data as 2D array.
Parameters
----------
%(picks_all)s
%(units)s
tmin : float | None
Start time of data to get in seconds.
tmax : float | None
End time of data to get in seconds.
Returns
-------
data : ndarray, shape (n_channels, n_times)
A view on evoked data.
Notes
-----
.. versionadded:: 0.24
"""
picks = _picks_to_idx(self.info, picks, "all", exclude=())
start, stop = self._handle_tmin_tmax(tmin, tmax)
data = self.data[picks, start:stop]
if units is not None:
ch_factors = _get_ch_factors(self, units, picks)
data *= ch_factors[:, np.newaxis]
return data
@verbose
def apply_function(self, fun, picks=None, dtype=None, n_jobs=None,
verbose=None, **kwargs):
"""Apply a function to a subset of channels.
%(applyfun_summary_evoked)s
Parameters
----------
%(fun_applyfun_evoked)s
%(picks_all_data_noref)s
%(dtype_applyfun)s
%(n_jobs)s Ignored if ``channel_wise=False`` as the workload
is split across channels.
%(verbose)s
%(kwargs_fun)s
Returns
-------
self : instance of Evoked
The evoked object with transformed data.
"""
_check_preload(self, 'evoked.apply_function')
picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False)
if not callable(fun):
raise ValueError('fun needs to be a function')
data_in = self._data
if dtype is not None and dtype != self._data.dtype:
self._data = self._data.astype(dtype)
# check the dimension of the incoming evoked data
_check_option('evoked.ndim', self._data.ndim, [2])
parallel, p_fun, n_jobs = parallel_func(_check_fun, n_jobs)
if n_jobs == 1:
# modify data inplace to save memory
for idx in picks:
self._data[idx, :] = _check_fun(fun, data_in[idx, :], **kwargs)
else:
# use parallel function
data_picks_new = parallel(p_fun(
fun, data_in[p, :], **kwargs) for p in picks)
for pp, p in enumerate(picks):
self._data[p, :] = data_picks_new[pp]
return self
@verbose
def apply_baseline(self, baseline=(None, 0), *, verbose=None):
"""Baseline correct evoked data.
Parameters
----------
%(baseline_evoked)s
Defaults to ``(None, 0)``, i.e. beginning of the the data until
time point zero.
%(verbose)s
Returns
-------
evoked : instance of Evoked
The baseline-corrected Evoked object.
Notes
-----
Baseline correction can be done multiple times.
.. versionadded:: 0.13.0
"""
baseline = _check_baseline(baseline, times=self.times,
sfreq=self.info['sfreq'])
if self.baseline is not None and baseline is None:
raise ValueError('The data has already been baseline-corrected. '
'Cannot remove existing baseline correction.')
elif baseline is None:
# Do not rescale
logger.info(_log_rescale(None))
else:
# Actually baseline correct the data. Logging happens in rescale().
self.data = rescale(self.data, self.times, baseline, copy=False)
self.baseline = baseline
return self
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save evoked data to a file.
Parameters
----------
fname : str
The name of the file, which should end with ``-ave.fif(.gz)`` or
``_ave.fif(.gz)``.
%(overwrite)s
%(verbose)s
Notes
-----
To write multiple conditions into a single file, use
`mne.write_evokeds`.
.. versionchanged:: 0.23
Information on baseline correction will be stored with the data,
and will be restored when reading again via `mne.read_evokeds`.
"""
write_evokeds(fname, self, overwrite=overwrite)
@verbose
def export(self, fname, fmt='auto', *, overwrite=False, verbose=None):
"""Export Evoked to external formats.
%(export_fmt_support_evoked)s
%(export_warning)s
Parameters
----------
%(fname_export_params)s
%(export_fmt_params_evoked)s
%(overwrite)s
%(verbose)s
Notes
-----
.. versionadded:: 1.1
%(export_warning_note_evoked)s
"""
from .export import export_evokeds
export_evokeds(fname, self, fmt, overwrite=overwrite, verbose=verbose)
def __repr__(self): # noqa: D105
max_comment_length = 1000
if len(self.comment) > max_comment_length:
comment = self.comment[:max_comment_length]
comment += "..."
else:
comment = self.comment
s = "'%s' (%s, N=%s)" % (comment, self.kind, self.nave)
s += ", %0.5g – %0.5g sec" % (self.times[0], self.times[-1])
s += ', baseline '
if self.baseline is None:
s += 'off'
else:
s += f'{self.baseline[0]:g} – {self.baseline[1]:g} sec'
if self.baseline != _check_baseline(
self.baseline, times=self.times, sfreq=self.info['sfreq'],
on_baseline_outside_data='adjust'):
s += ' (baseline period was cropped after baseline correction)'
s += ", %s ch" % self.data.shape[0]
s += ", ~%s" % (sizeof_fmt(self._size),)
return "<Evoked | %s>" % s
@repr_html
def _repr_html_(self):
from .html_templates import repr_templates_env
if self.baseline is None:
baseline = 'off'
else:
baseline = tuple([f'{b:.3f}' for b in self.baseline])
baseline = f'{baseline[0]} – {baseline[1]} sec'
t = repr_templates_env.get_template('evoked.html.jinja')
t = t.render(evoked=self, baseline=baseline)
return t
@property
def ch_names(self):
"""Channel names."""
return self.info['ch_names']
@copy_function_doc_to_method_doc(plot_evoked)
def plot(self, picks=None, exclude='bads', unit=True, show=True, ylim=None,
xlim='tight', proj=False, hline=None, units=None, scalings=None,
titles=None, axes=None, gfp=False, window_title=None,
spatial_colors='auto', zorder='unsorted', selectable=True,
noise_cov=None, time_unit='s', sphere=None, *, highlight=None,
verbose=None):
return plot_evoked(
self, picks=picks, exclude=exclude, unit=unit, show=show,
ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units,
scalings=scalings, titles=titles, axes=axes, gfp=gfp,
window_title=window_title, spatial_colors=spatial_colors,
zorder=zorder, selectable=selectable, noise_cov=noise_cov,
time_unit=time_unit, sphere=sphere, highlight=highlight,
verbose=verbose)
@copy_function_doc_to_method_doc(plot_evoked_image)
def plot_image(self, picks=None, exclude='bads', unit=True, show=True,
clim=None, xlim='tight', proj=False, units=None,
scalings=None, titles=None, axes=None, cmap='RdBu_r',
colorbar=True, mask=None, mask_style=None,
mask_cmap='Greys', mask_alpha=.25, time_unit='s',
show_names=None, group_by=None, sphere=None):
return plot_evoked_image(
self, picks=picks, exclude=exclude, unit=unit, show=show,
clim=clim, xlim=xlim, proj=proj, units=units, scalings=scalings,
titles=titles, axes=axes, cmap=cmap, colorbar=colorbar, mask=mask,
mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha,
time_unit=time_unit, show_names=show_names, group_by=group_by,
sphere=sphere)
@copy_function_doc_to_method_doc(plot_evoked_topo)
def plot_topo(self, layout=None, layout_scale=0.945, color=None,
border='none', ylim=None, scalings=None, title=None,
proj=False, vline=[0.0], fig_background=None,
merge_grads=False, legend=True, axes=None,
background_color='w', noise_cov=None, exclude='bads',
show=True):
"""
Notes
-----
.. versionadded:: 0.10.0
"""
return plot_evoked_topo(
self, layout=layout, layout_scale=layout_scale,
color=color, border=border, ylim=ylim, scalings=scalings,
title=title, proj=proj, vline=vline, fig_background=fig_background,
merge_grads=merge_grads, legend=legend, axes=axes,
background_color=background_color, noise_cov=noise_cov,
exclude=exclude, show=show)
@copy_function_doc_to_method_doc(plot_evoked_topomap)
def plot_topomap(
self, times="auto", *, average=None, ch_type=None, scalings=None,
proj=False, sensors=True, show_names=False, mask=None,
mask_params=None, contours=6, outlines='head', sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT, border=_BORDER_DEFAULT, res=64,
size=1, cmap=None, vlim=(None, None), cnorm=None, colorbar=True,
cbar_fmt='%3.1f', units=None, axes=None, time_unit='s',
time_format=None, nrows=1, ncols='auto', show=True):
return plot_evoked_topomap(
self, times=times, ch_type=ch_type, vlim=vlim, cmap=cmap,
cnorm=cnorm, sensors=sensors, colorbar=colorbar, scalings=scalings,
units=units, res=res, size=size, cbar_fmt=cbar_fmt,
time_unit=time_unit, time_format=time_format, proj=proj, show=show,
show_names=show_names, mask=mask, mask_params=mask_params,
outlines=outlines, contours=contours, image_interp=image_interp,
average=average, axes=axes, extrapolate=extrapolate, sphere=sphere,
border=border, nrows=nrows, ncols=ncols)
@copy_function_doc_to_method_doc(plot_evoked_field)
def plot_field(self, surf_maps, time=None, time_label='t = %0.0f ms',
n_jobs=None, fig=None, vmax=None, n_contours=21,
*, interaction='terrain', verbose=None):
return plot_evoked_field(self, surf_maps, time=time,
time_label=time_label, n_jobs=n_jobs,
fig=fig, vmax=vmax, n_contours=n_contours,
interaction=interaction, verbose=verbose)
@copy_function_doc_to_method_doc(plot_evoked_white)
def plot_white(self, noise_cov, show=True, rank=None, time_unit='s',
sphere=None, axes=None, verbose=None):
return plot_evoked_white(
self, noise_cov=noise_cov, rank=rank, show=show,
time_unit=time_unit, sphere=sphere, axes=axes, verbose=verbose)
@copy_function_doc_to_method_doc(plot_evoked_joint)
def plot_joint(self, times="peaks", title='', picks=None,
exclude='bads', show=True, ts_args=None,
topomap_args=None):
return plot_evoked_joint(self, times=times, title=title, picks=picks,
exclude=exclude, show=show, ts_args=ts_args,
topomap_args=topomap_args)
@fill_doc
def animate_topomap(self, ch_type=None, times=None, frame_rate=None,
butterfly=False, blit=True, show=True, time_unit='s',
sphere=None, *, image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT, vmin=None, vmax=None,
verbose=None):
"""Make animation of evoked data as topomap timeseries.
The animation can be paused/resumed with left mouse button.
Left and right arrow keys can be used to move backward or forward
in time.
Parameters
----------
ch_type : str | None
Channel type to plot. Accepted data types: 'mag', 'grad', 'eeg',
'hbo', 'hbr', 'fnirs_cw_amplitude',
'fnirs_fd_ac_amplitude', 'fnirs_fd_phase', and 'fnirs_od'.
If None, first available channel type from the above list is used.
Defaults to None.
times : array of float | None
The time points to plot. If None, 10 evenly spaced samples are
calculated over the evoked time series. Defaults to None.
frame_rate : int | None
Frame rate for the animation in Hz. If None,
frame rate = sfreq / 10. Defaults to None.
butterfly : bool
Whether to plot the data as butterfly plot under the topomap.
Defaults to False.
blit : bool
Whether to use blit to optimize drawing. In general, it is
recommended to use blit in combination with ``show=True``. If you
intend to save the animation it is better to disable blit.
Defaults to True.
show : bool
Whether to show the animation. Defaults to True.
time_unit : str
The units for the time axis, can be "ms" (default in 0.16)
or "s" (will become the default in 0.17).
.. versionadded:: 0.16
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 0.22
%(vmin_vmax_topomap)s
.. versionadded:: 1.1.0
%(verbose)s
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
anim : instance of matplotlib.animation.FuncAnimation
Animation of the topomap.
Notes
-----
.. versionadded:: 0.12.0
"""
return _topomap_animation(
self, ch_type=ch_type, times=times, frame_rate=frame_rate,
butterfly=butterfly, blit=blit, show=show, time_unit=time_unit,
sphere=sphere, image_interp=image_interp,
extrapolate=extrapolate, vmin=vmin, vmax=vmax, verbose=verbose)
def as_type(self, ch_type='grad', mode='fast'):
"""Compute virtual evoked using interpolated fields.
.. Warning:: Using virtual evoked to compute inverse can yield
unexpected results. The virtual channels have ``'_v'`` appended
at the end of the names to emphasize that the data contained in
them are interpolated.
Parameters
----------
ch_type : str
The destination channel type. It can be 'mag' or 'grad'.
mode : str
Either ``'accurate'`` or ``'fast'``, determines the quality of the
Legendre polynomial expansion used. ``'fast'`` should be sufficient
for most applications.
Returns
-------
evoked : instance of mne.Evoked
The transformed evoked object containing only virtual channels.
Notes
-----
This method returns a copy and does not modify the data it
operates on. It also returns an EvokedArray instance.
.. versionadded:: 0.9.0
"""
from .forward import _as_meg_type_inst
return _as_meg_type_inst(self, ch_type=ch_type, mode=mode)
@fill_doc
def detrend(self, order=1, picks=None):
"""Detrend data.
This function operates in-place.
Parameters
----------
order : int
Either 0 or 1, the order of the detrending. 0 is a constant
(DC) detrend, 1 is a linear detrend.
%(picks_good_data)s
Returns
-------
evoked : instance of Evoked
The detrended evoked object.
"""
picks = _picks_to_idx(self.info, picks)
self.data[picks] = detrend(self.data[picks], order, axis=-1)
return self
def copy(self):
"""Copy the instance of evoked.
Returns
-------
evoked : instance of Evoked
A copy of the object.
"""
evoked = deepcopy(self)
return evoked
def __neg__(self):
"""Negate channel responses.
Returns
-------
evoked_neg : instance of Evoked
The Evoked instance with channel data negated and '-'
prepended to the comment.
"""
out = self.copy()
out.data *= -1
if out.comment is not None and ' + ' in out.comment:
out.comment = f'({out.comment})' # multiple conditions in evoked
out.comment = f'- {out.comment or "unknown"}'
return out
def get_peak(self, ch_type=None, tmin=None, tmax=None,
mode='abs', time_as_index=False, merge_grads=False,
return_amplitude=False):
"""Get location and latency of peak amplitude.
Parameters
----------
ch_type : str | None
The channel type to use. Defaults to None. If more than one channel
type is present in the data, this value **must** be provided.
tmin : float | None
The minimum point in time to be considered for peak getting.
If None (default), the beginning of the data is used.
tmax : float | None
The maximum point in time to be considered for peak getting.
If None (default), the end of the data is used.
mode : 'pos' | 'neg' | 'abs'
How to deal with the sign of the data. If 'pos' only positive
values will be considered. If 'neg' only negative values will
be considered. If 'abs' absolute values will be considered.
Defaults to 'abs'.
time_as_index : bool
Whether to return the time index instead of the latency in seconds.
merge_grads : bool
If True, compute peak from merged gradiometer data.
return_amplitude : bool
If True, return also the amplitude at the maximum response.
.. versionadded:: 0.16
Returns
-------
ch_name : str
The channel exhibiting the maximum response.
latency : float | int
The time point of the maximum response, either latency in seconds
or index.
amplitude : float
The amplitude of the maximum response. Only returned if
return_amplitude is True.
.. versionadded:: 0.16
""" # noqa: E501
supported = ('mag', 'grad', 'eeg', 'seeg', 'dbs', 'ecog', 'misc',
'None') + _FNIRS_CH_TYPES_SPLIT
types_used = self.get_channel_types(unique=True, only_data_chs=True)
_check_option('ch_type', str(ch_type), supported)
if ch_type is not None and ch_type not in types_used:
raise ValueError(
f'Channel type "{ch_type}" not found in this evoked object.'
)
elif len(types_used) > 1 and ch_type is None:
raise RuntimeError(
'Multiple data channel types found. Please pass the "ch_type" '
'parameter.'
)
if merge_grads:
if ch_type != 'grad':
raise ValueError('Channel type must be "grad" for merge_grads')
elif mode == 'neg':
raise ValueError('Negative mode (mode=neg) does not make '
'sense with merge_grads=True')
meg = eeg = misc = seeg = dbs = ecog = fnirs = False
picks = None
if ch_type in ('mag', 'grad'):
meg = ch_type
elif ch_type == 'eeg':
eeg = True
elif ch_type == 'misc':
misc = True
elif ch_type == 'seeg':
seeg = True
elif ch_type == 'dbs':
dbs = True
elif ch_type == 'ecog':
ecog = True
elif ch_type in _FNIRS_CH_TYPES_SPLIT:
fnirs = ch_type
if ch_type is not None:
if merge_grads:
picks = _pair_grad_sensors(self.info, topomap_coords=False)
else:
picks = pick_types(self.info, meg=meg, eeg=eeg, misc=misc,
seeg=seeg, ecog=ecog, ref_meg=False,
fnirs=fnirs, dbs=dbs)
data = self.data
ch_names = self.ch_names
if picks is not None:
data = data[picks]
ch_names = [ch_names[k] for k in picks]
if merge_grads:
data, _ = _merge_ch_data(data, ch_type, [])
ch_names = [ch_name[:-1] + 'X' for ch_name in ch_names[::2]]
ch_idx, time_idx, max_amp = _get_peak(data, self.times, tmin,
tmax, mode)
out = (ch_names[ch_idx], time_idx if time_as_index else
self.times[time_idx])
if return_amplitude:
out += (max_amp,)
return out
@verbose
def compute_psd(self, method='multitaper', fmin=0, fmax=np.inf, tmin=None,
tmax=None, picks=None, proj=False, *, n_jobs=1,
verbose=None, **method_kw):
"""Perform spectral analysis on sensor data.
Parameters
----------
%(method_psd)s
Default is ``'multitaper'``.
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
spectrum : instance of Spectrum
The spectral representation of the data.
Notes
-----
.. versionadded:: 1.2
References
----------
.. footbibliography::
"""
return Spectrum(
self, method=method, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax,
picks=picks, proj=proj, reject_by_annotation=False, n_jobs=n_jobs,
verbose=verbose, **method_kw)
@verbose
def plot_psd(self, fmin=0, fmax=np.inf, tmin=None, tmax=None, picks=None,
proj=False, *, method='auto', average=False, dB=True,
estimate='auto', xscale='linear', area_mode='std',
area_alpha=0.33, color='black', line_alpha=None,
spatial_colors=True, sphere=None, exclude='bads', ax=None,
show=True, n_jobs=1, verbose=None, **method_kw):
"""%(plot_psd_doc)s.
Parameters
----------
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(method_plot_psd_auto)s
%(average_plot_psd)s
%(dB_plot_psd)s
%(estimate_plot_psd)s
%(xscale_plot_psd)s
%(area_mode_plot_psd)s
%(area_alpha_plot_psd)s
%(color_plot_psd)s
%(line_alpha_plot_psd)s
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
.. versionadded:: 0.22.0
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the bad
channels are excluded. Pass an empty list to plot all channels
(including channels marked "bad", if any).
.. versionadded:: 0.24.0
%(ax_plot_psd)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
fig : instance of Figure
Figure with frequency spectra of the data channels.
Notes
-----
%(notes_plot_psd_meth)s
"""
return super().plot_psd(
fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, picks=picks, proj=proj,
reject_by_annotation=False, method=method, average=average, dB=dB,
estimate=estimate, xscale=xscale, area_mode=area_mode,
area_alpha=area_alpha, color=color, line_alpha=line_alpha,
spatial_colors=spatial_colors, sphere=sphere, exclude=exclude,
ax=ax, show=show, n_jobs=n_jobs, verbose=verbose, **method_kw)
@verbose
def to_data_frame(self, picks=None, index=None,
scalings=None, copy=True, long_format=False,
time_format=None, *, verbose=None):
"""Export data in tabular structure as a pandas DataFrame.
Channels are converted to columns in the DataFrame. By default,
an additional column "time" is added, unless ``index='time'``
(in which case time values form the DataFrame's index).
Parameters
----------
%(picks_all)s
%(index_df_evk)s
Defaults to ``None``.
%(scalings_df)s
%(copy_df)s
%(long_format_df_raw)s
%(time_format_df)s
.. versionadded:: 0.20
%(verbose)s
Returns
-------
%(df_return)s
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# arg checking
valid_index_args = ['time']
valid_time_formats = ['ms', 'timedelta']
index = _check_pandas_index_arguments(index, valid_index_args)
time_format = _check_time_format(time_format, valid_time_formats)
# get data
picks = _picks_to_idx(self.info, picks, 'all', exclude=())
data = self.data[picks, :]
times = self.times
data = data.T
if copy:
data = data.copy()
data = _scale_dataframe_data(self, data, picks, scalings)
# prepare extra columns / multiindex
mindex = list()
times = _convert_times(self, times, time_format)
mindex.append(('time', times))
# build DataFrame
df = _build_data_frame(self, data, picks, long_format, mindex, index,
default_index=['time'])
return df
@fill_doc
class EvokedArray(Evoked):
"""Evoked object from numpy array.
Parameters
----------
data : array of shape (n_channels, n_times)
The channels' evoked response. See notes for proper units of measure.
%(info_not_none)s Consider using :func:`mne.create_info` to populate this
structure.
tmin : float
Start time before event. Defaults to 0.
comment : str
Comment on dataset. Can be the condition. Defaults to ''.
nave : int
Number of averaged epochs. Defaults to 1.
kind : str
Type of data, either average or standard_error. Defaults to 'average'.
%(baseline_evoked)s
Defaults to ``None``, i.e. no baseline correction.
.. versionadded:: 0.23
%(verbose)s
See Also
--------
EpochsArray, io.RawArray, create_info
Notes
-----
Proper units of measure:
* V: eeg, eog, seeg, dbs, emg, ecg, bio, ecog
* T: mag
* T/m: grad
* M: hbo, hbr
* Am: dipole
* AU: misc
"""
@verbose
def __init__(self, data, info, tmin=0., comment='', nave=1, kind='average',
baseline=None, *, verbose=None): # noqa: D102
dtype = np.complex128 if np.iscomplexobj(data) else np.float64
data = np.asanyarray(data, dtype=dtype)
if data.ndim != 2:
raise ValueError('Data must be a 2D array of shape (n_channels, '
'n_samples), got shape %s' % (data.shape,))
if len(info['ch_names']) != np.shape(data)[0]:
raise ValueError('Info (%s) and data (%s) must have same number '
'of channels.' % (len(info['ch_names']),
np.shape(data)[0]))
self.data = data
self.first = int(round(tmin * info['sfreq']))
self.last = self.first + np.shape(data)[-1] - 1
self._set_times(np.arange(self.first, self.last + 1,
dtype=np.float64) / info['sfreq'])
self._raw_times = self.times.copy()
self._decim = 1
self.info = info.copy() # do not modify original info
self.nave = nave
self.kind = kind
self.comment = comment
self.picks = None
self.preload = True
self._projector = None
_validate_type(self.kind, "str", "kind")
if self.kind not in _aspect_dict:
raise ValueError('unknown kind "%s", should be "average" or '
'"standard_error"' % (self.kind,))
self._aspect_kind = _aspect_dict[self.kind]
self.baseline = baseline
if self.baseline is not None: # omit log msg if not baselining
self.apply_baseline(self.baseline)
def _get_entries(fid, evoked_node, allow_maxshield=False):
"""Get all evoked entries."""
comments = list()
aspect_kinds = list()
for ev in evoked_node:
for k in range(ev['nent']):
my_kind = ev['directory'][k].kind
pos = ev['directory'][k].pos
if my_kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comments.append(tag.data)
my_aspect = _get_aspect(ev, allow_maxshield)[0]
for k in range(my_aspect['nent']):
my_kind = my_aspect['directory'][k].kind
pos = my_aspect['directory'][k].pos
if my_kind == FIFF.FIFF_ASPECT_KIND:
tag = read_tag(fid, pos)
aspect_kinds.append(int(tag.data))
comments = np.atleast_1d(comments)
aspect_kinds = np.atleast_1d(aspect_kinds)
if len(comments) != len(aspect_kinds) or len(comments) == 0:
fid.close()
raise ValueError('Dataset names in FIF file '
'could not be found.')
t = [_aspect_rev[a] for a in aspect_kinds]
t = ['"' + c + '" (' + tt + ')' for tt, c in zip(t, comments)]
t = '\n'.join(t)
return comments, aspect_kinds, t
def _get_aspect(evoked, allow_maxshield):
"""Get Evoked data aspect."""
is_maxshield = False
aspect = dir_tree_find(evoked, FIFF.FIFFB_ASPECT)
if len(aspect) == 0:
_check_maxshield(allow_maxshield)
aspect = dir_tree_find(evoked, FIFF.FIFFB_IAS_ASPECT)
is_maxshield = True
if len(aspect) > 1:
logger.info('Multiple data aspects found. Taking first one.')
return aspect[0], is_maxshield
def _get_evoked_node(fname):
"""Get info in evoked file."""
f, tree, _ = fiff_open(fname)
with f as fid:
_, meas = read_meas_info(fid, tree, verbose=False)
evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
return evoked_node
def _check_evokeds_ch_names_times(all_evoked):
evoked = all_evoked[0]
ch_names = evoked.ch_names
for ii, ev in enumerate(all_evoked[1:]):
if ev.ch_names != ch_names:
if set(ev.ch_names) != set(ch_names):
raise ValueError(
"%s and %s do not contain the same channels." % (evoked,
ev))
else:
warn("Order of channels differs, reordering channels ...")
ev = ev.copy()
ev.reorder_channels(ch_names)
all_evoked[ii + 1] = ev
if not np.max(np.abs(ev.times - evoked.times)) < 1e-7:
raise ValueError("%s and %s do not contain the same time instants"
% (evoked, ev))
return all_evoked
def combine_evoked(all_evoked, weights):
"""Merge evoked data by weighted addition or subtraction.
Each `~mne.Evoked` in ``all_evoked`` should have the same channels and the
same time instants. Subtraction can be performed by passing
``weights=[1, -1]``.
.. Warning::
Other than cases like simple subtraction mentioned above (where all
weights are -1 or 1), if you provide numeric weights instead of using
``'equal'`` or ``'nave'``, the resulting `~mne.Evoked` object's
``.nave`` attribute (which is used to scale noise covariance when
applying the inverse operator) may not be suitable for inverse imaging.
Parameters
----------
all_evoked : list of Evoked
The evoked datasets.
weights : list of float | 'equal' | 'nave'
The weights to apply to the data of each evoked instance, or a string
describing the weighting strategy to apply: ``'nave'`` computes
sum-to-one weights proportional to each object's ``nave`` attribute;
``'equal'`` weights each `~mne.Evoked` by ``1 / len(all_evoked)``.
Returns
-------
evoked : Evoked
The new evoked data.
Notes
-----
.. versionadded:: 0.9.0
"""
naves = np.array([evk.nave for evk in all_evoked], float)
if isinstance(weights, str):
_check_option('weights', weights, ['nave', 'equal'])
if weights == 'nave':
weights = naves / naves.sum()
else:
weights = np.ones_like(naves) / len(naves)
else:
weights = np.array(weights, float)
if weights.ndim != 1 or weights.size != len(all_evoked):
raise ValueError('weights must be the same size as all_evoked')
# cf. https://en.wikipedia.org/wiki/Weighted_arithmetic_mean, section on
# "weighted sample variance". The variance of a weighted sample mean is:
#
# σ² = w₁² σ₁² + w₂² σ₂² + ... + wₙ² σₙ²
#
# We estimate the variance of each evoked instance as 1 / nave to get:
#
# σ² = w₁² / nave₁ + w₂² / nave₂ + ... + wₙ² / naveₙ
#
# And our resulting nave is the reciprocal of this:
new_nave = 1. / np.sum(weights ** 2 / naves)
# This general formula is equivalent to formulae in Matti's manual
# (pp 128-129), where:
# new_nave = sum(naves) when weights='nave' and
# new_nave = 1. / sum(1. / naves) when weights are all 1.
all_evoked = _check_evokeds_ch_names_times(all_evoked)
evoked = all_evoked[0].copy()
# use union of bad channels
bads = list(set(b for e in all_evoked for b in e.info['bads']))
evoked.info['bads'] = bads
evoked.data = sum(w * e.data for w, e in zip(weights, all_evoked))
evoked.nave = new_nave
comment = ''
for idx, (w, e) in enumerate(zip(weights, all_evoked)):
# pick sign
sign = '' if w >= 0 else '-'
# format weight
weight = '' if np.isclose(abs(w), 1.) else f'{abs(w):0.3f}'
# format multiplier
multiplier = ' × ' if weight else ''
# format comment
if e.comment is not None and ' + ' in e.comment: # multiple conditions
this_comment = f'({e.comment})'
else:
this_comment = f'{e.comment or "unknown"}'
# assemble everything
if idx == 0:
comment += f'{sign}{weight}{multiplier}{this_comment}'
else:
comment += f' {sign or "+"} {weight}{multiplier}{this_comment}'
# special-case: combine_evoked([e1, -e2], [1, -1])
evoked.comment = comment.replace(' - - ', ' + ')
return evoked
@verbose
def read_evokeds(fname, condition=None, baseline=None, kind='average',
proj=True, allow_maxshield=False, verbose=None):
"""Read evoked dataset(s).
Parameters
----------
fname : path-like
The filename, which should end with ``-ave.fif`` or ``-ave.fif.gz``.
condition : int or str | list of int or str | None
The index or list of indices of the evoked dataset to read. FIF files
can contain multiple datasets. If None, all datasets are returned as a
list.
%(baseline_evoked)s
If ``None`` (default), do not apply baseline correction.
.. note:: Note that if the read `~mne.Evoked` objects have already
been baseline-corrected, the data retrieved from disk will
**always** be baseline-corrected (in fact, only the
baseline-corrected version of the data will be saved, so
there is no way to undo this procedure). Only **after** the
data has been loaded, a custom (additional) baseline
correction **may** be optionally applied by passing a tuple
here. Passing ``None`` will **not** remove an existing
baseline correction, but merely omit the optional, additional
baseline correction.
kind : str
Either 'average' or 'standard_error', the type of data to read.
proj : bool
If False, available projectors won't be applied to the data.
allow_maxshield : bool | str (default False)
If True, allow loading of data that has been recorded with internal
active compensation (MaxShield). Data recorded with MaxShield should
generally not be loaded directly, but should first be processed using
SSS/tSSS to remove the compensation signals that may also affect brain
activity. Can also be "yes" to load without eliciting a warning.
%(verbose)s
Returns
-------
evoked : Evoked or list of Evoked
The evoked dataset(s); one `~mne.Evoked` if ``condition`` is an
integer or string; or a list of `~mne.Evoked` if ``condition`` is
``None`` or a list.
See Also
--------
write_evokeds
Notes
-----
.. versionchanged:: 0.23
If the read `~mne.Evoked` objects had been baseline-corrected before
saving, this will be reflected in their ``baseline`` attribute after
reading.
"""
fname = _check_fname(fname, overwrite='read', must_exist=True)
check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz',
'_ave.fif', '_ave.fif.gz'))
logger.info('Reading %s ...' % fname)
return_list = True
if condition is None:
evoked_node = _get_evoked_node(fname)
condition = range(len(evoked_node))
elif not isinstance(condition, list):
condition = [condition]
return_list = False
out = []
for c in condition:
evoked = Evoked(fname, c, kind=kind, proj=proj,
allow_maxshield=allow_maxshield,
verbose=verbose)
if baseline is None and evoked.baseline is None:
logger.info(_log_rescale(None))
elif baseline is None and evoked.baseline is not None:
# Don't touch an existing baseline
bmin, bmax = evoked.baseline
logger.info(f'Loaded Evoked data is baseline-corrected '
f'(baseline: [{bmin:g}, {bmax:g}] sec)')
else:
evoked.apply_baseline(baseline)
out.append(evoked)
return out if return_list else out[0]
def _read_evoked(fname, condition=None, kind='average', allow_maxshield=False):
"""Read evoked data from a FIF file."""
if fname is None:
raise ValueError('No evoked filename specified')
f, tree, _ = fiff_open(fname)
with f as fid:
# Read the measurement info
info, meas = read_meas_info(fid, tree, clean_bads=True)
# Locate the data of interest
processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
if len(processed) == 0:
raise ValueError('Could not find processed data')
evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
if len(evoked_node) == 0:
raise ValueError('Could not find evoked data')
# find string-based entry
if isinstance(condition, str):
if kind not in _aspect_dict.keys():
raise ValueError('kind must be "average" or '
'"standard_error"')
comments, aspect_kinds, t = _get_entries(fid, evoked_node,
allow_maxshield)
goods = (np.in1d(comments, [condition]) &
np.in1d(aspect_kinds, [_aspect_dict[kind]]))
found_cond = np.where(goods)[0]
if len(found_cond) != 1:
raise ValueError('condition "%s" (%s) not found, out of '
'found datasets:\n%s'
% (condition, kind, t))
condition = found_cond[0]
elif condition is None:
if len(evoked_node) > 1:
_, _, conditions = _get_entries(fid, evoked_node,
allow_maxshield)
raise TypeError("Evoked file has more than one "
"condition, the condition parameters "
"must be specified from:\n%s" % conditions)
else:
condition = 0
if condition >= len(evoked_node) or condition < 0:
raise ValueError('Data set selector out of range')
my_evoked = evoked_node[condition]
# Identify the aspects
with info._unlock():
my_aspect, info['maxshield'] = _get_aspect(my_evoked,
allow_maxshield)
# Now find the data in the evoked block
nchan = 0
sfreq = -1
chs = []
baseline = bmin = bmax = None
comment = last = first = first_time = nsamp = None
for k in range(my_evoked['nent']):
my_kind = my_evoked['directory'][k].kind
pos = my_evoked['directory'][k].pos
if my_kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comment = tag.data
elif my_kind == FIFF.FIFF_FIRST_SAMPLE:
tag = read_tag(fid, pos)
first = int(tag.data)
elif my_kind == FIFF.FIFF_LAST_SAMPLE:
tag = read_tag(fid, pos)
last = int(tag.data)
elif my_kind == FIFF.FIFF_NCHAN:
tag = read_tag(fid, pos)
nchan = int(tag.data)
elif my_kind == FIFF.FIFF_SFREQ:
tag = read_tag(fid, pos)
sfreq = float(tag.data)
elif my_kind == FIFF.FIFF_CH_INFO:
tag = read_tag(fid, pos)
chs.append(tag.data)
elif my_kind == FIFF.FIFF_FIRST_TIME:
tag = read_tag(fid, pos)
first_time = float(tag.data)
elif my_kind == FIFF.FIFF_NO_SAMPLES:
tag = read_tag(fid, pos)
nsamp = int(tag.data)
elif my_kind == FIFF.FIFF_MNE_BASELINE_MIN:
tag = read_tag(fid, pos)
bmin = float(tag.data)
elif my_kind == FIFF.FIFF_MNE_BASELINE_MAX:
tag = read_tag(fid, pos)
bmax = float(tag.data)
if comment is None:
comment = 'No comment'
if bmin is not None or bmax is not None:
# None's should've been replaced with floats
assert bmin is not None and bmax is not None
baseline = (bmin, bmax)
# Local channel information?
if nchan > 0:
if chs is None:
raise ValueError('Local channel information was not found '
'when it was expected.')
if len(chs) != nchan:
raise ValueError('Number of channels and number of '
'channel definitions are different')
ch_names_mapping = _read_extended_ch_info(chs, my_evoked, fid)
info['chs'] = chs
info['bads'][:] = _rename_list(info['bads'], ch_names_mapping)
logger.info(' Found channel information in evoked data. '
'nchan = %d' % nchan)
if sfreq > 0:
info['sfreq'] = sfreq
# Read the data in the aspect block
nave = 1
epoch = []
for k in range(my_aspect['nent']):
kind = my_aspect['directory'][k].kind
pos = my_aspect['directory'][k].pos
if kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comment = tag.data
elif kind == FIFF.FIFF_ASPECT_KIND:
tag = read_tag(fid, pos)
aspect_kind = int(tag.data)
elif kind == FIFF.FIFF_NAVE:
tag = read_tag(fid, pos)
nave = int(tag.data)
elif kind == FIFF.FIFF_EPOCH:
tag = read_tag(fid, pos)
epoch.append(tag)
nepoch = len(epoch)
if nepoch != 1 and nepoch != info['nchan']:
raise ValueError('Number of epoch tags is unreasonable '
'(nepoch = %d nchan = %d)'
% (nepoch, info['nchan']))
if nepoch == 1:
# Only one epoch
data = epoch[0].data
# May need a transpose if the number of channels is one
if data.shape[1] == 1 and info['nchan'] == 1:
data = data.T
else:
# Put the old style epochs together
data = np.concatenate([e.data[None, :] for e in epoch], axis=0)
if np.isrealobj(data):
data = data.astype(np.float64)
else:
data = data.astype(np.complex128)
if first_time is not None and nsamp is not None:
times = first_time + np.arange(nsamp) / info['sfreq']
elif first is not None:
nsamp = last - first + 1
times = np.arange(first, last + 1) / info['sfreq']
else:
raise RuntimeError('Could not read time parameters')
del first, last
if nsamp is not None and data.shape[1] != nsamp:
raise ValueError('Incorrect number of samples (%d instead of '
' %d)' % (data.shape[1], nsamp))
logger.info(' Found the data of interest:')
logger.info(' t = %10.2f ... %10.2f ms (%s)'
% (1000 * times[0], 1000 * times[-1], comment))
if info['comps'] is not None:
logger.info(' %d CTF compensation matrices available'
% len(info['comps']))
logger.info(' nave = %d - aspect type = %d'
% (nave, aspect_kind))
# Calibrate
cals = np.array([info['chs'][k]['cal'] *
info['chs'][k].get('scale', 1.0)
for k in range(info['nchan'])])
data *= cals[:, np.newaxis]
return info, nave, aspect_kind, comment, times, data, baseline
@verbose
def write_evokeds(fname, evoked, *, on_mismatch='raise', overwrite=False,
verbose=None):
"""Write an evoked dataset to a file.
Parameters
----------
fname : str
The file name, which should end with -ave.fif or -ave.fif.gz.
evoked : Evoked instance, or list of Evoked instances
The evoked dataset, or list of evoked datasets, to save in one file.
Note that the measurement info from the first evoked instance is used,
so be sure that information matches.
%(on_mismatch_info)s
%(overwrite)s
.. versionadded:: 1.0
%(verbose)s
.. versionadded:: 0.24
See Also
--------
read_evokeds
Notes
-----
.. versionchanged:: 0.23
Information on baseline correction will be stored with each individual
`~mne.Evoked` object, and will be restored when reading the data again
via `mne.read_evokeds`.
"""
_write_evokeds(fname, evoked, on_mismatch=on_mismatch, overwrite=overwrite)
def _write_evokeds(fname, evoked, check=True, *, on_mismatch='raise',
overwrite=False):
"""Write evoked data."""
from .dipole import DipoleFixed # avoid circular import
fname = _check_fname(fname=fname, overwrite=overwrite)
if check:
check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz',
'_ave.fif', '_ave.fif.gz'))
if not isinstance(evoked, (list, tuple)):
evoked = [evoked]
warned = False
# Create the file and save the essentials
with start_and_end_file(fname) as fid:
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if evoked[0].info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, evoked[0].info['meas_id'])
# Write measurement info
write_meas_info(fid, evoked[0].info)
# One or more evoked data sets
start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
for ei, e in enumerate(evoked):
if ei:
_ensure_infos_match(info1=evoked[0].info, info2=e.info,
name=f'evoked[{ei}]',
on_mismatch=on_mismatch)
start_block(fid, FIFF.FIFFB_EVOKED)
# Comment is optional
if e.comment is not None and len(e.comment) > 0:
write_string(fid, FIFF.FIFF_COMMENT, e.comment)
# First time, num. samples, first and last sample
write_float(fid, FIFF.FIFF_FIRST_TIME, e.times[0])
write_int(fid, FIFF.FIFF_NO_SAMPLES, len(e.times))
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, e.first)
write_int(fid, FIFF.FIFF_LAST_SAMPLE, e.last)
# Baseline
if not isinstance(e, DipoleFixed) and e.baseline is not None:
bmin, bmax = e.baseline
write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, bmin)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX, bmax)
# The evoked data itself
if e.info.get('maxshield'):
aspect = FIFF.FIFFB_IAS_ASPECT
else:
aspect = FIFF.FIFFB_ASPECT
start_block(fid, aspect)
write_int(fid, FIFF.FIFF_ASPECT_KIND, e._aspect_kind)
# convert nave to integer to comply with FIFF spec
nave_int = int(round(e.nave))
if nave_int != e.nave and not warned:
warn('converting "nave" to integer before saving evoked; this '
'can have a minor effect on the scale of source '
'estimates that are computed using "nave".')
warned = True
write_int(fid, FIFF.FIFF_NAVE, nave_int)
del nave_int
decal = np.zeros((e.info['nchan'], 1))
for k in range(e.info['nchan']):
decal[k] = 1.0 / (e.info['chs'][k]['cal'] *
e.info['chs'][k].get('scale', 1.0))
if np.iscomplexobj(e.data):
write_function = write_complex_float_matrix
else:
write_function = write_float_matrix
write_function(fid, FIFF.FIFF_EPOCH, decal * e.data)
end_block(fid, aspect)
end_block(fid, FIFF.FIFFB_EVOKED)
end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
end_block(fid, FIFF.FIFFB_MEAS)
def _get_peak(data, times, tmin=None, tmax=None, mode='abs'):
"""Get feature-index and time of maximum signal from 2D array.
Note. This is a 'getter', not a 'finder'. For non-evoked type
data and continuous signals, please use proper peak detection algorithms.
Parameters
----------
data : instance of numpy.ndarray (n_locations, n_times)
The data, either evoked in sensor or source space.
times : instance of numpy.ndarray (n_times)
The times in seconds.
tmin : float | None
The minimum point in time to be considered for peak getting.
tmax : float | None
The maximum point in time to be considered for peak getting.
mode : {'pos', 'neg', 'abs'}
How to deal with the sign of the data. If 'pos' only positive
values will be considered. If 'neg' only negative values will
be considered. If 'abs' absolute values will be considered.
Defaults to 'abs'.
Returns
-------
max_loc : int
The index of the feature with the maximum value.
max_time : int
The time point of the maximum response, index.
max_amp : float
Amplitude of the maximum response.
"""
_check_option('mode', mode, ['abs', 'neg', 'pos'])
if tmin is None:
tmin = times[0]
if tmax is None:
tmax = times[-1]
if tmin < times.min() or tmax > times.max():
if tmin < times.min():
param_name = 'tmin'
param_val = tmin
else:
param_name = 'tmax'
param_val = tmax
raise ValueError(
f'{param_name} ({param_val}) is out of bounds. It must be '
f'between {times.min()} and {times.max()}'
)
elif tmin > tmax:
raise ValueError(f'tmin ({tmin}) must be <= tmax ({tmax})')
time_win = (times >= tmin) & (times <= tmax)
mask = np.ones_like(data).astype(bool)
mask[:, time_win] = False
maxfun = np.argmax
if mode == 'pos':
if not np.any(data[~mask] > 0):
raise ValueError('No positive values encountered. Cannot '
'operate in pos mode.')
elif mode == 'neg':
if not np.any(data[~mask] < 0):
raise ValueError('No negative values encountered. Cannot '
'operate in neg mode.')
maxfun = np.argmin
masked_index = np.ma.array(np.abs(data) if mode == 'abs' else data,
mask=mask)
max_loc, max_time = np.unravel_index(maxfun(masked_index), data.shape)
return max_loc, max_time, data[max_loc, max_time]
|