1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
# -*- coding: utf-8 -*-
"""Test exporting functions."""
# Authors: MNE Developers
#
# License: BSD-3-Clause
from contextlib import nullcontext
from datetime import datetime, timezone
from mne.io import RawArray
from mne.io.meas_info import create_info
from pathlib import Path
import os.path as op
import pytest
import numpy as np
from numpy.testing import (assert_allclose, assert_array_almost_equal,
assert_array_equal)
from mne import (read_epochs_eeglab, Epochs, read_evokeds, read_evokeds_mff,
Annotations)
from mne.datasets import testing, misc
from mne.export import export_evokeds, export_evokeds_mff
from mne.fixes import _compare_version
from mne.io import (read_raw_fif, read_raw_eeglab, read_raw_edf,
read_raw_brainvision)
from mne.utils import (_check_eeglabio_installed, requires_version,
object_diff, _check_edflib_installed, _resource_path,
_check_pybv_installed, _record_warnings)
from mne.tests.test_epochs import _get_data
fname_evoked = _resource_path('mne.io.tests.data', 'test-ave.fif')
fname_raw = _resource_path('mne.io.tests.data', 'test_raw.fif')
data_path = testing.data_path(download=False)
egi_evoked_fname = op.join(data_path, 'EGI', 'test_egi_evoked.mff')
misc_path = misc.data_path(download=False)
@pytest.mark.skipif(not _check_pybv_installed(strict=False),
reason='pybv not installed')
@pytest.mark.parametrize(
['meas_date', 'orig_time', 'ext'], [
[None, None, '.vhdr'],
[datetime(2022, 12, 3, 19, 1, 10, 720100, tzinfo=timezone.utc),
None,
'.eeg'],
])
def test_export_raw_pybv(tmp_path, meas_date, orig_time, ext):
"""Test saving a Raw instance to BrainVision format via pybv."""
raw = read_raw_fif(fname_raw, preload=True)
raw.apply_proj()
raw.set_meas_date(meas_date)
# add some annotations
annots = Annotations(
onset=[3, 6, 9, 12, 14], # seconds
duration=[1, 1, 0.5, 0.25, 9], # seconds
description=[
"Stimulus/S 1",
"Stimulus/S2.50",
"Response/R101",
"Look at this",
"Comment/And at this",
],
ch_names=[(), (), (), ("EEG 001",), ("EEG 001", "EEG 002")],
orig_time=orig_time,
)
raw.set_annotations(annots)
temp_fname = tmp_path / ('test' + ext)
with pytest.warns(RuntimeWarning, match="'short' format. Converting"):
raw.export(temp_fname)
raw_read = read_raw_brainvision(str(temp_fname).replace('.eeg', '.vhdr'))
assert raw.ch_names == raw_read.ch_names
assert_allclose(raw.times, raw_read.times)
assert_allclose(raw.get_data(), raw_read.get_data())
@requires_version('pymatreader')
@pytest.mark.skipif(not _check_eeglabio_installed(strict=False),
reason='eeglabio not installed')
def test_export_raw_eeglab(tmp_path):
"""Test saving a Raw instance to EEGLAB's set format."""
raw = read_raw_fif(fname_raw, preload=True)
raw.apply_proj()
temp_fname = op.join(str(tmp_path), 'test.set')
raw.export(temp_fname)
raw.drop_channels([ch for ch in ['epoc']
if ch in raw.ch_names])
with pytest.warns(RuntimeWarning, match='is above the 99th percentile'):
raw_read = read_raw_eeglab(temp_fname, preload=True, montage_units='m')
assert raw.ch_names == raw_read.ch_names
cart_coords = np.array([d['loc'][:3] for d in raw.info['chs']]) # just xyz
cart_coords_read = np.array([d['loc'][:3] for d in raw_read.info['chs']])
assert_allclose(cart_coords, cart_coords_read)
assert_allclose(raw.times, raw_read.times)
assert_allclose(raw.get_data(), raw_read.get_data())
# test overwrite
with pytest.raises(FileExistsError, match='Destination file exists'):
raw.export(temp_fname, overwrite=False)
raw.export(temp_fname, overwrite=True)
# test pathlib.Path files
raw.export(Path(temp_fname), overwrite=True)
# test warning with unapplied projectors
raw = read_raw_fif(fname_raw, preload=True)
with pytest.warns(RuntimeWarning,
match='Raw instance has unapplied projectors.'):
raw.export(temp_fname, overwrite=True)
@pytest.mark.skipif(not _check_edflib_installed(strict=False),
reason='edflib-python not installed')
def test_double_export_edf(tmp_path):
"""Test exporting an EDF file multiple times."""
rng = np.random.RandomState(123456)
format = 'edf'
ch_types = ['eeg', 'eeg', 'stim', 'ecog', 'ecog', 'seeg', 'eog', 'ecg',
'emg', 'dbs', 'bio']
info = create_info(len(ch_types), sfreq=1000, ch_types=ch_types)
data = rng.random(size=(len(ch_types), 1000)) * 1e-5
# include subject info and measurement date
info['subject_info'] = dict(first_name='mne', last_name='python',
birthday=(1992, 1, 20), sex=1, hand=3)
raw = RawArray(data, info)
# export once
temp_fname = tmp_path / f'test.{format}'
raw.export(temp_fname, add_ch_type=True)
raw_read = read_raw_edf(temp_fname, infer_types=True, preload=True)
# export again
raw_read.load_data()
raw_read.export(temp_fname, add_ch_type=True, overwrite=True)
raw_read = read_raw_edf(temp_fname, infer_types=True, preload=True)
# stim channel should be dropped
raw.drop_channels('2')
assert raw.ch_names == raw_read.ch_names
# only compare the original length, since extra zeros are appended
orig_raw_len = len(raw)
assert_array_almost_equal(
raw.get_data(), raw_read.get_data()[:, :orig_raw_len], decimal=4)
assert_allclose(
raw.times, raw_read.times[:orig_raw_len], rtol=0, atol=1e-5)
# check channel types except for 'bio', which loses its type
orig_ch_types = raw.get_channel_types()
read_ch_types = raw_read.get_channel_types()
assert_array_equal(orig_ch_types, read_ch_types)
# check handling of missing subject metadata
del info['subject_info']['sex']
raw_2 = RawArray(data, info)
raw_2.export(temp_fname, add_ch_type=True, overwrite=True)
@pytest.mark.skipif(not _check_edflib_installed(strict=False),
reason='edflib-python not installed')
def test_export_edf_annotations(tmp_path):
"""Test that exporting EDF preserves annotations."""
rng = np.random.RandomState(123456)
format = 'edf'
ch_types = ['eeg', 'eeg', 'stim', 'ecog', 'ecog', 'seeg',
'eog', 'ecg', 'emg', 'dbs', 'bio']
ch_names = np.arange(len(ch_types)).astype(str).tolist()
info = create_info(ch_names, sfreq=1000,
ch_types=ch_types)
data = rng.random(size=(len(ch_names), 2000)) * 1.e-5
raw = RawArray(data, info)
annotations = Annotations(
onset=[0.01, 0.05, 0.90, 1.05], duration=[0, 1, 0, 0],
description=['test1', 'test2', 'test3', 'test4'])
raw.set_annotations(annotations)
# export
temp_fname = op.join(str(tmp_path), f'test.{format}')
raw.export(temp_fname)
# read in the file
raw_read = read_raw_edf(temp_fname, preload=True)
assert_array_equal(raw.annotations.onset, raw_read.annotations.onset)
assert_array_equal(raw.annotations.duration, raw_read.annotations.duration)
assert_array_equal(raw.annotations.description,
raw_read.annotations.description)
@pytest.mark.skipif(not _check_edflib_installed(strict=False),
reason='edflib-python not installed')
def test_rawarray_edf(tmp_path):
"""Test saving a Raw array with integer sfreq to EDF."""
rng = np.random.RandomState(12345)
format = 'edf'
ch_types = ['eeg', 'eeg', 'stim', 'ecog', 'seeg', 'eog', 'ecg', 'emg',
'dbs', 'bio']
ch_names = np.arange(len(ch_types)).astype(str).tolist()
info = create_info(ch_names, sfreq=1000,
ch_types=ch_types)
data = rng.random(size=(len(ch_names), 1000)) * 1e-5
# include subject info and measurement date
subject_info = dict(first_name='mne', last_name='python',
birthday=(1992, 1, 20), sex=1, hand=3)
info['subject_info'] = subject_info
raw = RawArray(data, info)
time_now = datetime.now()
meas_date = datetime(year=time_now.year, month=time_now.month,
day=time_now.day, hour=time_now.hour,
minute=time_now.minute, second=time_now.second,
tzinfo=timezone.utc)
raw.set_meas_date(meas_date)
temp_fname = op.join(str(tmp_path), f'test.{format}')
raw.export(temp_fname, add_ch_type=True)
raw_read = read_raw_edf(temp_fname, infer_types=True, preload=True)
# stim channel should be dropped
raw.drop_channels('2')
assert raw.ch_names == raw_read.ch_names
# only compare the original length, since extra zeros are appended
orig_raw_len = len(raw)
assert_array_almost_equal(
raw.get_data(), raw_read.get_data()[:, :orig_raw_len], decimal=4)
assert_allclose(
raw.times, raw_read.times[:orig_raw_len], rtol=0, atol=1e-5)
# check channel types except for 'bio', which loses its type
orig_ch_types = raw.get_channel_types()
read_ch_types = raw_read.get_channel_types()
assert_array_equal(orig_ch_types, read_ch_types)
assert raw.info['meas_date'] == raw_read.info['meas_date']
# channel name can't be longer than 16 characters with the type added
raw_bad = raw.copy()
raw_bad.rename_channels({'1': 'abcdefghijklmnopqrstuvwxyz'})
with pytest.raises(RuntimeError, match='Signal label'), \
pytest.warns(RuntimeWarning, match='Data has a non-integer'):
raw_bad.export(temp_fname, overwrite=True)
# include bad birthday that is non-EDF compliant
bad_info = info.copy()
bad_info['subject_info']['birthday'] = (1700, 1, 20)
raw = RawArray(data, bad_info)
with pytest.raises(RuntimeError, match='Setting patient birth date'):
raw.export(temp_fname, overwrite=True)
# include bad measurement date that is non-EDF compliant
raw = RawArray(data, info)
meas_date = datetime(year=1984, month=1, day=1, tzinfo=timezone.utc)
raw.set_meas_date(meas_date)
with pytest.raises(RuntimeError, match='Setting start date time'):
raw.export(temp_fname, overwrite=True)
# test that warning is raised if there are non-voltage based channels
raw = RawArray(data, info)
with pytest.warns(RuntimeWarning, match='The unit'):
raw.set_channel_types({'9': 'hbr'})
with pytest.warns(RuntimeWarning, match='Non-voltage channels'):
raw.export(temp_fname, overwrite=True)
# data should match up to the non-accepted channel
raw_read = read_raw_edf(temp_fname, preload=True)
orig_raw_len = len(raw)
assert_array_almost_equal(
raw.get_data()[:-1, :], raw_read.get_data()[:, :orig_raw_len],
decimal=4)
assert_allclose(
raw.times, raw_read.times[:orig_raw_len], rtol=0, atol=1e-5)
# the data should still match though
raw_read = read_raw_edf(temp_fname, preload=True)
raw.drop_channels('2')
assert raw.ch_names == raw_read.ch_names
orig_raw_len = len(raw)
assert_array_almost_equal(
raw.get_data(), raw_read.get_data()[:, :orig_raw_len], decimal=4)
assert_allclose(
raw.times, raw_read.times[:orig_raw_len], rtol=0, atol=1e-5)
@pytest.mark.skipif(not _check_edflib_installed(strict=False),
reason='edflib-python not installed')
@pytest.mark.parametrize(
['dataset', 'format'], [
['test', 'edf'],
pytest.param('misc', 'edf', marks=[pytest.mark.slowtest,
misc._pytest_mark()]),
])
def test_export_raw_edf(tmp_path, dataset, format):
"""Test saving a Raw instance to EDF format."""
if dataset == 'test':
raw = read_raw_fif(fname_raw)
elif dataset == 'misc':
fname = op.join(misc_path, 'ecog', 'sample_ecog_ieeg.fif')
raw = read_raw_fif(fname)
# only test with EEG channels
raw.pick_types(eeg=True, ecog=True, seeg=True)
raw.load_data()
orig_ch_names = raw.ch_names
temp_fname = op.join(str(tmp_path), f'test.{format}')
# test runtime errors
with pytest.raises(RuntimeError, match='The maximum'), \
pytest.warns(RuntimeWarning, match='Data has a non-integer'):
raw.export(temp_fname, physical_range=(-1e6, 0))
with pytest.raises(RuntimeError, match='The minimum'), \
pytest.warns(RuntimeWarning, match='Data has a non-integer'):
raw.export(temp_fname, physical_range=(0, 1e6))
if dataset == 'test':
with pytest.warns(RuntimeWarning, match='Data has a non-integer'):
raw.export(temp_fname)
elif dataset == 'misc':
with pytest.warns(RuntimeWarning, match='EDF format requires'):
raw.export(temp_fname)
if 'epoc' in raw.ch_names:
raw.drop_channels(['epoc'])
raw_read = read_raw_edf(temp_fname, preload=True)
assert orig_ch_names == raw_read.ch_names
# only compare the original length, since extra zeros are appended
orig_raw_len = len(raw)
# assert data and times are not different
# Due to the physical range of the data, reading and writing is
# not lossless. For example, a physical min/max of -/+ 3200 uV
# will result in a resolution of 0.09 uV. This resolution
# though is acceptable for most EEG manufacturers.
assert_array_almost_equal(
raw.get_data(), raw_read.get_data()[:, :orig_raw_len], decimal=4)
# Due to the data record duration limitations of EDF files, one
# cannot store arbitrary float sampling rate exactly. Usually this
# results in two sampling rates that are off by very low number of
# decimal points. This for practical purposes does not matter
# but will result in an error when say the number of time points
# is very very large.
assert_allclose(
raw.times, raw_read.times[:orig_raw_len], rtol=0, atol=1e-5)
@pytest.mark.xfail(reason='eeglabio (usage?) bugs that should be fixed')
@requires_version('pymatreader')
@pytest.mark.skipif(not _check_eeglabio_installed(strict=False),
reason='eeglabio not installed')
@pytest.mark.parametrize('preload', (True, False))
def test_export_epochs_eeglab(tmp_path, preload):
"""Test saving an Epochs instance to EEGLAB's set format."""
import eeglabio
raw, events = _get_data()[:2]
raw.load_data()
epochs = Epochs(raw, events, preload=preload)
temp_fname = op.join(str(tmp_path), 'test.set')
# TODO: eeglabio 0.2 warns about invalid events
if _compare_version(eeglabio.__version__, '==', '0.0.2-1'):
ctx = _record_warnings
else:
ctx = nullcontext
with ctx():
epochs.export(temp_fname)
epochs.drop_channels([ch for ch in ['epoc', 'STI 014']
if ch in epochs.ch_names])
epochs_read = read_epochs_eeglab(temp_fname)
assert epochs.ch_names == epochs_read.ch_names
cart_coords = np.array([d['loc'][:3]
for d in epochs.info['chs']]) # just xyz
cart_coords_read = np.array([d['loc'][:3]
for d in epochs_read.info['chs']])
assert_allclose(cart_coords, cart_coords_read)
assert_array_equal(epochs.events[:, 0],
epochs_read.events[:, 0]) # latency
assert epochs.event_id.keys() == epochs_read.event_id.keys() # just keys
assert_allclose(epochs.times, epochs_read.times)
assert_allclose(epochs.get_data(), epochs_read.get_data())
# test overwrite
with pytest.raises(FileExistsError, match='Destination file exists'):
epochs.export(temp_fname, overwrite=False)
with ctx():
epochs.export(temp_fname, overwrite=True)
# test pathlib.Path files
with ctx():
epochs.export(Path(temp_fname), overwrite=True)
# test warning with unapplied projectors
epochs = Epochs(raw, events, preload=preload, proj=False)
with pytest.warns(RuntimeWarning,
match='Epochs instance has unapplied projectors.'):
epochs.export(Path(temp_fname), overwrite=True)
@pytest.mark.filterwarnings('ignore::FutureWarning')
@requires_version('mffpy', '0.5.7')
@testing.requires_testing_data
@pytest.mark.parametrize('fmt', ('auto', 'mff'))
@pytest.mark.parametrize('do_history', (True, False))
def test_export_evokeds_to_mff(tmp_path, fmt, do_history):
"""Test exporting evoked dataset to MFF."""
evoked = read_evokeds_mff(egi_evoked_fname)
export_fname = op.join(str(tmp_path), 'evoked.mff')
history = [
{
'name': 'Test Segmentation',
'method': 'Segmentation',
'settings': ['Setting 1', 'Setting 2'],
'results': ['Result 1', 'Result 2']
},
{
'name': 'Test Averaging',
'method': 'Averaging',
'settings': ['Setting 1', 'Setting 2'],
'results': ['Result 1', 'Result 2']
}
]
if do_history:
export_evokeds_mff(export_fname, evoked, history=history)
else:
export_evokeds(export_fname, evoked, fmt=fmt)
# Drop non-EEG channels
evoked = [ave.drop_channels(['ECG', 'EMG']) for ave in evoked]
evoked_exported = read_evokeds_mff(export_fname)
assert len(evoked) == len(evoked_exported)
for ave, ave_exported in zip(evoked, evoked_exported):
# Compare infos
assert object_diff(ave_exported.info, ave.info) == ''
# Compare data
assert_allclose(ave_exported.data, ave.data)
# Compare properties
assert ave_exported.nave == ave.nave
assert ave_exported.kind == ave.kind
assert ave_exported.comment == ave.comment
assert_allclose(ave_exported.times, ave.times)
# test overwrite
with pytest.raises(FileExistsError, match='Destination file exists'):
if do_history:
export_evokeds_mff(export_fname, evoked, history=history,
overwrite=False)
else:
export_evokeds(export_fname, evoked, overwrite=False)
if do_history:
export_evokeds_mff(export_fname, evoked, history=history,
overwrite=True)
else:
export_evokeds(export_fname, evoked, overwrite=True)
# test export from evoked directly
evoked[0].export(export_fname, overwrite=True)
@pytest.mark.filterwarnings('ignore::FutureWarning')
@requires_version('mffpy', '0.5.7')
@testing.requires_testing_data
def test_export_to_mff_no_device():
"""Test no device type throws ValueError."""
evoked = read_evokeds_mff(egi_evoked_fname, condition='Category 1')
evoked.info['device_info'] = None
with pytest.raises(ValueError, match='No device type.'):
export_evokeds('output.mff', evoked)
@pytest.mark.filterwarnings('ignore::FutureWarning')
@requires_version('mffpy', '0.5.7')
def test_export_to_mff_incompatible_sfreq():
"""Test non-whole number sampling frequency throws ValueError."""
evoked = read_evokeds(fname_evoked)
with pytest.raises(ValueError, match=f'sfreq: {evoked[0].info["sfreq"]}'):
export_evokeds('output.mff', evoked)
@pytest.mark.parametrize('fmt,ext', [
('EEGLAB', 'set'),
('EDF', 'edf'),
('BrainVision', 'vhdr'),
('auto', 'vhdr')
])
def test_export_evokeds_unsupported_format(fmt, ext):
"""Test exporting evoked dataset to non-supported formats."""
evoked = read_evokeds(fname_evoked)
errstr = fmt.lower() if fmt != "auto" else "vhdr"
with pytest.raises(ValueError, match=f"Format '{errstr}' is not .*"):
export_evokeds(f'output.{ext}', evoked, fmt=fmt)
|