1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
|
"""Compatibility fixes for older versions of libraries
If you add content to this file, please give the version of the package
at which the fix is no longer needed.
# originally copied from scikit-learn
"""
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# Fabian Pedregosa <fpedregosa@acm.org>
# Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD
import inspect
from math import log
from pprint import pprint
from io import StringIO
import os
import warnings
import numpy as np
###############################################################################
# distutils
# distutils has been deprecated since Python 3.10 and is scheduled for removal
# from the standard library with the release of Python 3.12. For version
# comparisons, we use setuptools's `parse_version` if available.
def _compare_version(version_a, operator, version_b):
"""Compare two version strings via a user-specified operator.
Parameters
----------
version_a : str
First version string.
operator : '==' | '>' | '<' | '>=' | '<='
Operator to compare ``version_a`` and ``version_b`` in the form of
``version_a operator version_b``.
version_b : str
Second version string.
Returns
-------
bool
The result of the version comparison.
"""
from packaging.version import parse
with warnings.catch_warnings(record=True):
warnings.simplefilter('ignore')
return eval(f'parse("{version_a}") {operator} parse("{version_b}")')
###############################################################################
# Misc
def _median_complex(data, axis):
"""Compute marginal median on complex data safely.
Can be removed when numpy introduces a fix.
See: https://github.com/scipy/scipy/pull/12676/.
"""
# np.median must be passed real arrays for the desired result
if np.iscomplexobj(data):
data = (np.median(np.real(data), axis=axis)
+ 1j * np.median(np.imag(data), axis=axis))
else:
data = np.median(data, axis=axis)
return data
def _safe_svd(A, **kwargs):
"""Wrapper to get around the SVD did not converge error of death"""
# Intel has a bug with their GESVD driver:
# https://software.intel.com/en-us/forums/intel-distribution-for-python/topic/628049 # noqa: E501
# For SciPy 0.18 and up, we can work around it by using
# lapack_driver='gesvd' instead.
from scipy import linalg
if kwargs.get('overwrite_a', False):
raise ValueError('Cannot set overwrite_a=True with this function')
try:
return linalg.svd(A, **kwargs)
except np.linalg.LinAlgError as exp:
from .utils import warn
warn('SVD error (%s), attempting to use GESVD instead of GESDD'
% (exp,))
return linalg.svd(A, lapack_driver='gesvd', **kwargs)
def _csc_matrix_cast(x):
from scipy.sparse import csc_matrix
return csc_matrix(x)
###############################################################################
# Backporting nibabel's read_geometry
def _get_read_geometry():
"""Get the geometry reading function."""
try:
import nibabel as nib
has_nibabel = True
except ImportError:
has_nibabel = False
if has_nibabel:
from nibabel.freesurfer import read_geometry
else:
read_geometry = _read_geometry
return read_geometry
def _read_geometry(filepath, read_metadata=False, read_stamp=False):
"""Backport from nibabel."""
from .surface import _fread3, _fread3_many
volume_info = dict()
TRIANGLE_MAGIC = 16777214
QUAD_MAGIC = 16777215
NEW_QUAD_MAGIC = 16777213
with open(filepath, "rb") as fobj:
magic = _fread3(fobj)
if magic in (QUAD_MAGIC, NEW_QUAD_MAGIC): # Quad file
nvert = _fread3(fobj)
nquad = _fread3(fobj)
(fmt, div) = (">i2", 100.) if magic == QUAD_MAGIC else (">f4", 1.)
coords = np.fromfile(fobj, fmt, nvert * 3).astype(np.float64) / div
coords = coords.reshape(-1, 3)
quads = _fread3_many(fobj, nquad * 4)
quads = quads.reshape(nquad, 4)
#
# Face splitting follows
#
faces = np.zeros((2 * nquad, 3), dtype=np.int64)
nface = 0
for quad in quads:
if (quad[0] % 2) == 0:
faces[nface] = quad[0], quad[1], quad[3]
nface += 1
faces[nface] = quad[2], quad[3], quad[1]
nface += 1
else:
faces[nface] = quad[0], quad[1], quad[2]
nface += 1
faces[nface] = quad[0], quad[2], quad[3]
nface += 1
elif magic == TRIANGLE_MAGIC: # Triangle file
create_stamp = fobj.readline().rstrip(b'\n').decode('utf-8')
fobj.readline()
vnum = np.fromfile(fobj, ">i4", 1)[0]
fnum = np.fromfile(fobj, ">i4", 1)[0]
coords = np.fromfile(fobj, ">f4", vnum * 3).reshape(vnum, 3)
faces = np.fromfile(fobj, ">i4", fnum * 3).reshape(fnum, 3)
if read_metadata:
volume_info = _read_volume_info(fobj)
else:
raise ValueError("File does not appear to be a Freesurfer surface")
coords = coords.astype(np.float64)
ret = (coords, faces)
if read_metadata:
if len(volume_info) == 0:
warnings.warn('No volume information contained in the file')
ret += (volume_info,)
if read_stamp:
ret += (create_stamp,)
return ret
###############################################################################
# NumPy Generator (NumPy 1.17)
def rng_uniform(rng):
"""Get the unform/randint from the rng."""
# prefer Generator.integers, fall back to RandomState.randint
return getattr(rng, 'integers', getattr(rng, 'randint', None))
def _validate_sos(sos):
"""Helper to validate a SOS input"""
sos = np.atleast_2d(sos)
if sos.ndim != 2:
raise ValueError('sos array must be 2D')
n_sections, m = sos.shape
if m != 6:
raise ValueError('sos array must be shape (n_sections, 6)')
if not (sos[:, 3] == 1).all():
raise ValueError('sos[:, 3] should be all ones')
return sos, n_sections
###############################################################################
# Misc utilities
# get_fdata() requires knowing the dtype ahead of time, so let's triage on our
# own instead
def _get_img_fdata(img):
data = np.asanyarray(img.dataobj)
dtype = np.complex128 if np.iscomplexobj(data) else np.float64
return data.astype(dtype)
def _read_volume_info(fobj):
"""An implementation of nibabel.freesurfer.io._read_volume_info, since old
versions of nibabel (<=2.1.0) don't have it.
"""
volume_info = dict()
head = np.fromfile(fobj, '>i4', 1)
if not np.array_equal(head, [20]): # Read two bytes more
head = np.concatenate([head, np.fromfile(fobj, '>i4', 2)])
if not np.array_equal(head, [2, 0, 20]):
warnings.warn("Unknown extension code.")
return volume_info
volume_info['head'] = head
for key in ['valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras',
'zras', 'cras']:
pair = fobj.readline().decode('utf-8').split('=')
if pair[0].strip() != key or len(pair) != 2:
raise IOError('Error parsing volume info.')
if key in ('valid', 'filename'):
volume_info[key] = pair[1].strip()
elif key == 'volume':
volume_info[key] = np.array(pair[1].split()).astype(int)
else:
volume_info[key] = np.array(pair[1].split()).astype(float)
# Ignore the rest
return volume_info
def _serialize_volume_info(volume_info):
"""An implementation of nibabel.freesurfer.io._serialize_volume_info, since
old versions of nibabel (<=2.1.0) don't have it."""
keys = ['head', 'valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras',
'zras', 'cras']
diff = set(volume_info.keys()).difference(keys)
if len(diff) > 0:
raise ValueError('Invalid volume info: %s.' % diff.pop())
strings = list()
for key in keys:
if key == 'head':
if not (np.array_equal(volume_info[key], [20]) or np.array_equal(
volume_info[key], [2, 0, 20])):
warnings.warn("Unknown extension code.")
strings.append(np.array(volume_info[key], dtype='>i4').tobytes())
elif key in ('valid', 'filename'):
val = volume_info[key]
strings.append('{} = {}\n'.format(key, val).encode('utf-8'))
elif key == 'volume':
val = volume_info[key]
strings.append('{} = {} {} {}\n'.format(
key, val[0], val[1], val[2]).encode('utf-8'))
else:
val = volume_info[key]
strings.append('{} = {:0.10g} {:0.10g} {:0.10g}\n'.format(
key.ljust(6), val[0], val[1], val[2]).encode('utf-8'))
return b''.join(strings)
##############################################################################
# adapted from scikit-learn
def is_classifier(estimator):
"""Returns True if the given estimator is (probably) a classifier.
Parameters
----------
estimator : object
Estimator object to test.
Returns
-------
out : bool
True if estimator is a classifier and False otherwise.
"""
return getattr(estimator, "_estimator_type", None) == "classifier"
def is_regressor(estimator):
"""Returns True if the given estimator is (probably) a regressor.
Parameters
----------
estimator : object
Estimator object to test.
Returns
-------
out : bool
True if estimator is a regressor and False otherwise.
"""
return getattr(estimator, "_estimator_type", None) == "regressor"
_DEFAULT_TAGS = {
'non_deterministic': False,
'requires_positive_X': False,
'requires_positive_y': False,
'X_types': ['2darray'],
'poor_score': False,
'no_validation': False,
'multioutput': False,
"allow_nan": False,
'stateless': False,
'multilabel': False,
'_skip_test': False,
'_xfail_checks': False,
'multioutput_only': False,
'binary_only': False,
'requires_fit': True,
'preserves_dtype': [np.float64],
'requires_y': False,
'pairwise': False,
}
class BaseEstimator(object):
"""Base class for all estimators in scikit-learn.
Notes
-----
All estimators should specify all the parameters that can be set
at the class level in their ``__init__`` as explicit keyword
arguments (no ``*args`` or ``**kwargs``).
"""
@classmethod
def _get_param_names(cls):
"""Get parameter names for the estimator"""
# fetch the constructor or the original constructor before
# deprecation wrapping if any
init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
if init is object.__init__:
# No explicit constructor to introspect
return []
# introspect the constructor arguments to find the model parameters
# to represent
init_signature = inspect.signature(init)
# Consider the constructor parameters excluding 'self'
parameters = [p for p in init_signature.parameters.values()
if p.name != 'self' and p.kind != p.VAR_KEYWORD]
for p in parameters:
if p.kind == p.VAR_POSITIONAL:
raise RuntimeError("scikit-learn estimators should always "
"specify their parameters in the signature"
" of their __init__ (no varargs)."
" %s with constructor %s doesn't "
" follow this convention."
% (cls, init_signature))
# Extract and sort argument names excluding 'self'
return sorted([p.name for p in parameters])
def get_params(self, deep=True):
"""Get parameters for this estimator.
Parameters
----------
deep : bool, optional
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : dict
Parameter names mapped to their values.
"""
out = dict()
for key in self._get_param_names():
# We need deprecation warnings to always be on in order to
# catch deprecated param values.
# This is set in utils/__init__.py but it gets overwritten
# when running under python3 somehow.
warnings.simplefilter("always", DeprecationWarning)
try:
with warnings.catch_warnings(record=True) as w:
value = getattr(self, key, None)
if len(w) and w[0].category == DeprecationWarning:
# if the parameter is deprecated, don't show it
continue
finally:
warnings.filters.pop(0)
# XXX: should we rather test if instance of estimator?
if deep and hasattr(value, 'get_params'):
deep_items = value.get_params().items()
out.update((key + '__' + k, val) for k, val in deep_items)
out[key] = value
return out
def set_params(self, **params):
"""Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
``<component>__<parameter>`` so that it's possible to update each
component of a nested object.
Parameters
----------
**params : dict
Parameters.
Returns
-------
inst : instance
The object.
"""
if not params:
# Simple optimisation to gain speed (inspect is slow)
return self
valid_params = self.get_params(deep=True)
for key, value in params.items():
split = key.split('__', 1)
if len(split) > 1:
# nested objects case
name, sub_name = split
if name not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(name, self))
sub_object = valid_params[name]
sub_object.set_params(**{sub_name: value})
else:
# simple objects case
if key not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(key, self.__class__.__name__))
setattr(self, key, value)
return self
def __repr__(self):
params = StringIO()
pprint(self.get_params(deep=False), params)
params.seek(0)
class_name = self.__class__.__name__
return '%s(%s)' % (class_name, params.read().strip())
# __getstate__ and __setstate__ are omitted because they only contain
# conditionals that are not satisfied by our objects (e.g.,
# ``if type(self).__module__.startswith('sklearn.')``.
def _more_tags(self):
return _DEFAULT_TAGS
def _get_tags(self):
collected_tags = {}
for base_class in reversed(inspect.getmro(self.__class__)):
if hasattr(base_class, '_more_tags'):
# need the if because mixins might not have _more_tags
# but might do redundant work in estimators
# (i.e. calling more tags on BaseEstimator multiple times)
more_tags = base_class._more_tags(self)
collected_tags.update(more_tags)
return collected_tags
# newer sklearn deprecates importing from sklearn.metrics.scoring,
# but older sklearn does not expose check_scoring in sklearn.metrics.
def _get_check_scoring():
try:
from sklearn.metrics import check_scoring # noqa
except ImportError:
from sklearn.metrics.scorer import check_scoring # noqa
return check_scoring
def _check_fit_params(X, fit_params, indices=None):
"""Check and validate the parameters passed during `fit`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data array.
fit_params : dict
Dictionary containing the parameters passed at fit.
indices : array-like of shape (n_samples,), default=None
Indices to be selected if the parameter has the same size as
`X`.
Returns
-------
fit_params_validated : dict
Validated parameters. We ensure that the values support
indexing.
"""
try:
from sklearn.utils.validation import \
_check_fit_params as _sklearn_check_fit_params
return _sklearn_check_fit_params(X, fit_params, indices)
except ImportError:
from sklearn.model_selection import _validation
fit_params_validated = \
{k: _validation._index_param_value(X, v, indices)
for k, v in fit_params.items()}
return fit_params_validated
###############################################################################
# Copied from sklearn to simplify code paths
def empirical_covariance(X, assume_centered=False):
"""Computes the Maximum likelihood covariance estimator
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Data from which to compute the covariance estimate
assume_centered : Boolean
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Returns
-------
covariance : 2D ndarray, shape (n_features, n_features)
Empirical covariance (Maximum Likelihood Estimator).
"""
X = np.asarray(X)
if X.ndim == 1:
X = np.reshape(X, (1, -1))
if X.shape[0] == 1:
warnings.warn("Only one sample available. "
"You may want to reshape your data array")
if assume_centered:
covariance = np.dot(X.T, X) / X.shape[0]
else:
covariance = np.cov(X.T, bias=1)
if covariance.ndim == 0:
covariance = np.array([[covariance]])
return covariance
class EmpiricalCovariance(BaseEstimator):
"""Maximum likelihood covariance estimator
Read more in the :ref:`User Guide <covariance>`.
Parameters
----------
store_precision : bool
Specifies if the estimated precision is stored.
assume_centered : bool
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False (default), data are centered before computation.
Attributes
----------
covariance_ : 2D ndarray, shape (n_features, n_features)
Estimated covariance matrix
precision_ : 2D ndarray, shape (n_features, n_features)
Estimated pseudo-inverse matrix.
(stored only if store_precision is True)
"""
def __init__(self, store_precision=True, assume_centered=False):
self.store_precision = store_precision
self.assume_centered = assume_centered
def _set_covariance(self, covariance):
"""Saves the covariance and precision estimates
Storage is done accordingly to `self.store_precision`.
Precision stored only if invertible.
Parameters
----------
covariance : 2D ndarray, shape (n_features, n_features)
Estimated covariance matrix to be stored, and from which precision
is computed.
"""
from scipy import linalg
# covariance = check_array(covariance)
# set covariance
self.covariance_ = covariance
# set precision
if self.store_precision:
self.precision_ = linalg.pinvh(covariance)
else:
self.precision_ = None
def get_precision(self):
"""Getter for the precision matrix.
Returns
-------
precision_ : array-like,
The precision matrix associated to the current covariance object.
"""
from scipy import linalg
if self.store_precision:
precision = self.precision_
else:
precision = linalg.pinvh(self.covariance_)
return precision
def fit(self, X, y=None):
"""Fit the Maximum Likelihood Estimator covariance model.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data, where n_samples is the number of samples and
n_features is the number of features.
y : ndarray | None
Not used, present for API consistency.
Returns
-------
self : object
Returns self.
""" # noqa: E501
# X = check_array(X)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
covariance = empirical_covariance(
X, assume_centered=self.assume_centered)
self._set_covariance(covariance)
return self
def score(self, X_test, y=None):
"""Compute the log-likelihood of a Gaussian dataset.
Uses ``self.covariance_`` as an estimator of its covariance matrix.
Parameters
----------
X_test : array-like, shape = [n_samples, n_features]
Test data of which we compute the likelihood, where n_samples is
the number of samples and n_features is the number of features.
X_test is assumed to be drawn from the same distribution than
the data used in fit (including centering).
y : ndarray | None
Not used, present for API consistency.
Returns
-------
res : float
The likelihood of the data set with `self.covariance_` as an
estimator of its covariance matrix.
"""
# compute empirical covariance of the test set
test_cov = empirical_covariance(
X_test - self.location_, assume_centered=True)
# compute log likelihood
res = log_likelihood(test_cov, self.get_precision())
return res
def error_norm(self, comp_cov, norm='frobenius', scaling=True,
squared=True):
"""Computes the Mean Squared Error between two covariance estimators.
Parameters
----------
comp_cov : array-like, shape = [n_features, n_features]
The covariance to compare with.
norm : str
The type of norm used to compute the error. Available error types:
- 'frobenius' (default): sqrt(tr(A^t.A))
- 'spectral': sqrt(max(eigenvalues(A^t.A))
where A is the error ``(comp_cov - self.covariance_)``.
scaling : bool
If True (default), the squared error norm is divided by n_features.
If False, the squared error norm is not rescaled.
squared : bool
Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned.
If False, the error norm is returned.
Returns
-------
The Mean Squared Error (in the sense of the Frobenius norm) between
`self` and `comp_cov` covariance estimators.
"""
from scipy import linalg
# compute the error
error = comp_cov - self.covariance_
# compute the error norm
if norm == "frobenius":
squared_norm = np.sum(error ** 2)
elif norm == "spectral":
squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
else:
raise NotImplementedError(
"Only spectral and frobenius norms are implemented")
# optionally scale the error norm
if scaling:
squared_norm = squared_norm / error.shape[0]
# finally get either the squared norm or the norm
if squared:
result = squared_norm
else:
result = np.sqrt(squared_norm)
return result
def mahalanobis(self, observations):
"""Computes the squared Mahalanobis distances of given observations.
Parameters
----------
observations : array-like, shape = [n_observations, n_features]
The observations, the Mahalanobis distances of the which we
compute. Observations are assumed to be drawn from the same
distribution than the data used in fit.
Returns
-------
mahalanobis_distance : array, shape = [n_observations,]
Squared Mahalanobis distances of the observations.
"""
precision = self.get_precision()
# compute mahalanobis distances
centered_obs = observations - self.location_
mahalanobis_dist = np.sum(
np.dot(centered_obs, precision) * centered_obs, 1)
return mahalanobis_dist
def log_likelihood(emp_cov, precision):
"""Computes the sample mean of the log_likelihood under a covariance model
computes the empirical expected log-likelihood (accounting for the
normalization terms and scaling), allowing for universal comparison (beyond
this software package)
Parameters
----------
emp_cov : 2D ndarray (n_features, n_features)
Maximum Likelihood Estimator of covariance
precision : 2D ndarray (n_features, n_features)
The precision matrix of the covariance model to be tested
Returns
-------
sample mean of the log-likelihood
"""
p = precision.shape[0]
log_likelihood_ = - np.sum(emp_cov * precision) + _logdet(precision)
log_likelihood_ -= p * np.log(2 * np.pi)
log_likelihood_ /= 2.
return log_likelihood_
# sklearn uses np.linalg for this, but ours is more robust to zero eigenvalues
def _logdet(A):
"""Compute the log det of a positive semidefinite matrix."""
from scipy import linalg
vals = linalg.eigvalsh(A)
# avoid negative (numerical errors) or zero (semi-definite matrix) values
tol = vals.max() * vals.size * np.finfo(np.float64).eps
vals = np.where(vals > tol, vals, tol)
return np.sum(np.log(vals))
def _infer_dimension_(spectrum, n_samples, n_features):
"""Infers the dimension of a dataset of shape (n_samples, n_features)
The dataset is described by its spectrum `spectrum`.
"""
n_spectrum = len(spectrum)
ll = np.empty(n_spectrum)
for rank in range(n_spectrum):
ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features)
return ll.argmax()
def _assess_dimension_(spectrum, rank, n_samples, n_features):
from scipy.special import gammaln
if rank > len(spectrum):
raise ValueError("The tested rank cannot exceed the rank of the"
" dataset")
pu = -rank * log(2.)
for i in range(rank):
pu += (gammaln((n_features - i) / 2.) -
log(np.pi) * (n_features - i) / 2.)
pl = np.sum(np.log(spectrum[:rank]))
pl = -pl * n_samples / 2.
if rank == n_features:
pv = 0
v = 1
else:
v = np.sum(spectrum[rank:]) / (n_features - rank)
pv = -np.log(v) * n_samples * (n_features - rank) / 2.
m = n_features * rank - rank * (rank + 1.) / 2.
pp = log(2. * np.pi) * (m + rank + 1.) / 2.
pa = 0.
spectrum_ = spectrum.copy()
spectrum_[rank:n_features] = v
for i in range(rank):
for j in range(i + 1, len(spectrum)):
pa += log((spectrum[i] - spectrum[j]) *
(1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples)
ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2.
return ll
def svd_flip(u, v, u_based_decision=True):
if u_based_decision:
# columns of u, rows of v
max_abs_cols = np.argmax(np.abs(u), axis=0)
signs = np.sign(u[max_abs_cols, np.arange(u.shape[1])])
u *= signs
v *= signs[:, np.newaxis]
else:
# rows of v, columns of u
max_abs_rows = np.argmax(np.abs(v), axis=1)
signs = np.sign(v[np.arange(v.shape[0]), max_abs_rows])
u *= signs
v *= signs[:, np.newaxis]
return u, v
def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08):
"""Use high precision for cumsum and check that final value matches sum
Parameters
----------
arr : array-like
To be cumulatively summed as flat
axis : int, optional
Axis along which the cumulative sum is computed.
The default (None) is to compute the cumsum over the flattened array.
rtol : float
Relative tolerance, see ``np.allclose``
atol : float
Absolute tolerance, see ``np.allclose``
"""
out = np.cumsum(arr, axis=axis, dtype=np.float64)
expected = np.sum(arr, axis=axis, dtype=np.float64)
if not np.all(np.isclose(out.take(-1, axis=axis), expected, rtol=rtol,
atol=atol, equal_nan=True)):
warnings.warn('cumsum was found to be unstable: '
'its last element does not correspond to sum',
RuntimeWarning)
return out
# This shim can be removed once NumPy 1.19.0+ is required (1.18.4 has sign bug)
def svd(a, hermitian=False):
if hermitian: # faster
s, u = np.linalg.eigh(a)
sgn = np.sign(s)
s = np.abs(s)
sidx = np.argsort(s)[..., ::-1]
sgn = np.take_along_axis(sgn, sidx, axis=-1)
s = np.take_along_axis(s, sidx, axis=-1)
u = np.take_along_axis(u, sidx[..., None, :], axis=-1)
# singular values are unsigned, move the sign into v
vt = (u * sgn[..., np.newaxis, :]).swapaxes(-2, -1).conj()
np.abs(s, out=s)
return u, s, vt
else:
return np.linalg.svd(a)
###############################################################################
# From nilearn
def _crop_colorbar(cbar, cbar_vmin, cbar_vmax):
"""
crop a colorbar to show from cbar_vmin to cbar_vmax
Used when symmetric_cbar=False is used.
"""
import matplotlib
if (cbar_vmin is None) and (cbar_vmax is None):
return
cbar_tick_locs = cbar.locator.locs
if cbar_vmax is None:
cbar_vmax = cbar_tick_locs.max()
if cbar_vmin is None:
cbar_vmin = cbar_tick_locs.min()
new_tick_locs = np.linspace(cbar_vmin, cbar_vmax,
len(cbar_tick_locs))
# matplotlib >= 3.2.0 no longer normalizes axes between 0 and 1
# See https://matplotlib.org/3.2.1/api/prev_api_changes/api_changes_3.2.0.html
# _outline was removed in
# https://github.com/matplotlib/matplotlib/commit/03a542e875eba091a027046d5ec652daa8be6863
# so we use the code from there
if _compare_version(matplotlib.__version__, '>=', '3.2.0'):
cbar.ax.set_ylim(cbar_vmin, cbar_vmax)
X = cbar._mesh()[0]
X = np.array([X[0], X[-1]])
Y = np.array([[cbar_vmin, cbar_vmin], [cbar_vmax, cbar_vmax]])
N = X.shape[0]
ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0]
x = X.T.reshape(-1)[ii]
y = Y.T.reshape(-1)[ii]
xy = (np.column_stack([y, x])
if cbar.orientation == 'horizontal' else
np.column_stack([x, y]))
cbar.outline.set_xy(xy)
else:
cbar.ax.set_ylim(cbar.norm(cbar_vmin), cbar.norm(cbar_vmax))
outline = cbar.outline.get_xy()
outline[:2, 1] += cbar.norm(cbar_vmin)
outline[2:6, 1] -= (1. - cbar.norm(cbar_vmax))
outline[6:, 1] += cbar.norm(cbar_vmin)
cbar.outline.set_xy(outline)
cbar.set_ticks(new_tick_locs)
cbar.update_ticks()
###############################################################################
# Numba (optional requirement)
# Here we choose different defaults to speed things up by default
try:
import numba
if _compare_version(numba.__version__, '<', '0.48'):
raise ImportError
prange = numba.prange
def jit(nopython=True, nogil=True, fastmath=True, cache=True,
**kwargs): # noqa
return numba.jit(nopython=nopython, nogil=nogil, fastmath=fastmath,
cache=cache, **kwargs)
except Exception: # could be ImportError, SystemError, etc.
has_numba = False
else:
has_numba = (os.getenv('MNE_USE_NUMBA', 'true').lower() == 'true')
if not has_numba:
def jit(**kwargs): # noqa
def _jit(func):
return func
return _jit
prange = range
bincount = np.bincount
mean = np.mean
else:
@jit()
def bincount(x, weights, minlength): # noqa: D103
out = np.zeros(minlength)
for idx, w in zip(x, weights):
out[idx] += w
return out
# fix because Numba does not support axis kwarg for mean
@jit()
def _np_apply_along_axis(func1d, axis, arr):
assert arr.ndim == 2
assert axis in [0, 1]
if axis == 0:
result = np.empty(arr.shape[1])
for i in range(len(result)):
result[i] = func1d(arr[:, i])
else:
result = np.empty(arr.shape[0])
for i in range(len(result)):
result[i] = func1d(arr[i, :])
return result
@jit()
def mean(array, axis):
return _np_apply_along_axis(np.mean, axis, array)
###############################################################################
# Matplotlib
# workaround: plt.close() doesn't spawn close_event on Agg backend
# https://github.com/matplotlib/matplotlib/issues/18609
# scheduled to be fixed by MPL 3.6
def _close_event(fig):
"""Force calling of the MPL figure close event."""
from .utils import logger
from matplotlib import backend_bases
try:
fig.canvas.callbacks.process(
'close_event', backend_bases.CloseEvent(
name='close_event', canvas=fig.canvas))
logger.debug(f'Called {fig!r}.canvas.close_event()')
except ValueError: # old mpl with Qt
logger.debug(f'Calling {fig!r}.canvas.close_event() failed')
pass # pragma: no cover
def _is_last_row(ax):
try:
return ax.get_subplotspec().is_last_row() # 3.4+
except AttributeError:
return ax.is_last_row()
return ax.get_subplotspec().is_last_row()
def _sharex(ax1, ax2):
if hasattr(ax1.axes, 'sharex'):
ax1.axes.sharex(ax2)
else:
ax1.get_shared_x_axes().join(ax1, ax2)
###############################################################################
# SciPy deprecation of pinv + pinvh rcond (never worked properly anyway) in 1.7
def pinvh(a, rtol=None):
"""Compute a pseudo-inverse of a Hermitian matrix."""
s, u = np.linalg.eigh(a)
del a
if rtol is None:
rtol = s.size * np.finfo(s.dtype).eps
maxS = np.max(np.abs(s))
above_cutoff = (abs(s) > maxS * rtol)
psigma_diag = 1.0 / s[above_cutoff]
u = u[:, above_cutoff]
return (u * psigma_diag) @ u.conj().T
def pinv(a, rtol=None):
"""Compute a pseudo-inverse of a matrix."""
u, s, vh = np.linalg.svd(a, full_matrices=False)
del a
maxS = np.max(s)
if rtol is None:
rtol = max(vh.shape + u.shape) * np.finfo(u.dtype).eps
rank = np.sum(s > maxS * rtol)
u = u[:, :rank]
u /= s[:rank]
return (u @ vh[:rank]).conj().T
|