File: fixes.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (1065 lines) | stat: -rw-r--r-- 36,234 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
"""Compatibility fixes for older versions of libraries

If you add content to this file, please give the version of the package
at which the fix is no longer needed.

# originally copied from scikit-learn

"""
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
#          Gael Varoquaux <gael.varoquaux@normalesup.org>
#          Fabian Pedregosa <fpedregosa@acm.org>
#          Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD

import inspect
from math import log
from pprint import pprint
from io import StringIO
import os
import warnings

import numpy as np


###############################################################################
# distutils

# distutils has been deprecated since Python 3.10 and is scheduled for removal
# from the standard library with the release of Python 3.12. For version
# comparisons, we use setuptools's `parse_version` if available.

def _compare_version(version_a, operator, version_b):
    """Compare two version strings via a user-specified operator.

    Parameters
    ----------
    version_a : str
        First version string.
    operator : '==' | '>' | '<' | '>=' | '<='
        Operator to compare ``version_a`` and ``version_b`` in the form of
        ``version_a operator version_b``.
    version_b : str
        Second version string.

    Returns
    -------
    bool
        The result of the version comparison.
    """
    from packaging.version import parse
    with warnings.catch_warnings(record=True):
        warnings.simplefilter('ignore')
        return eval(f'parse("{version_a}") {operator} parse("{version_b}")')


###############################################################################
# Misc

def _median_complex(data, axis):
    """Compute marginal median on complex data safely.

    Can be removed when numpy introduces a fix.
    See: https://github.com/scipy/scipy/pull/12676/.
    """
    # np.median must be passed real arrays for the desired result
    if np.iscomplexobj(data):
        data = (np.median(np.real(data), axis=axis)
                + 1j * np.median(np.imag(data), axis=axis))
    else:
        data = np.median(data, axis=axis)
    return data


def _safe_svd(A, **kwargs):
    """Wrapper to get around the SVD did not converge error of death"""
    # Intel has a bug with their GESVD driver:
    #     https://software.intel.com/en-us/forums/intel-distribution-for-python/topic/628049  # noqa: E501
    # For SciPy 0.18 and up, we can work around it by using
    # lapack_driver='gesvd' instead.
    from scipy import linalg
    if kwargs.get('overwrite_a', False):
        raise ValueError('Cannot set overwrite_a=True with this function')
    try:
        return linalg.svd(A, **kwargs)
    except np.linalg.LinAlgError as exp:
        from .utils import warn
        warn('SVD error (%s), attempting to use GESVD instead of GESDD'
                % (exp,))
        return linalg.svd(A, lapack_driver='gesvd', **kwargs)


def _csc_matrix_cast(x):
    from scipy.sparse import csc_matrix
    return csc_matrix(x)


###############################################################################
# Backporting nibabel's read_geometry

def _get_read_geometry():
    """Get the geometry reading function."""
    try:
        import nibabel as nib
        has_nibabel = True
    except ImportError:
        has_nibabel = False
    if has_nibabel:
        from nibabel.freesurfer import read_geometry
    else:
        read_geometry = _read_geometry
    return read_geometry


def _read_geometry(filepath, read_metadata=False, read_stamp=False):
    """Backport from nibabel."""
    from .surface import _fread3, _fread3_many
    volume_info = dict()

    TRIANGLE_MAGIC = 16777214
    QUAD_MAGIC = 16777215
    NEW_QUAD_MAGIC = 16777213
    with open(filepath, "rb") as fobj:
        magic = _fread3(fobj)
        if magic in (QUAD_MAGIC, NEW_QUAD_MAGIC):  # Quad file
            nvert = _fread3(fobj)
            nquad = _fread3(fobj)
            (fmt, div) = (">i2", 100.) if magic == QUAD_MAGIC else (">f4", 1.)
            coords = np.fromfile(fobj, fmt, nvert * 3).astype(np.float64) / div
            coords = coords.reshape(-1, 3)
            quads = _fread3_many(fobj, nquad * 4)
            quads = quads.reshape(nquad, 4)
            #
            #   Face splitting follows
            #
            faces = np.zeros((2 * nquad, 3), dtype=np.int64)
            nface = 0
            for quad in quads:
                if (quad[0] % 2) == 0:
                    faces[nface] = quad[0], quad[1], quad[3]
                    nface += 1
                    faces[nface] = quad[2], quad[3], quad[1]
                    nface += 1
                else:
                    faces[nface] = quad[0], quad[1], quad[2]
                    nface += 1
                    faces[nface] = quad[0], quad[2], quad[3]
                    nface += 1

        elif magic == TRIANGLE_MAGIC:  # Triangle file
            create_stamp = fobj.readline().rstrip(b'\n').decode('utf-8')
            fobj.readline()
            vnum = np.fromfile(fobj, ">i4", 1)[0]
            fnum = np.fromfile(fobj, ">i4", 1)[0]
            coords = np.fromfile(fobj, ">f4", vnum * 3).reshape(vnum, 3)
            faces = np.fromfile(fobj, ">i4", fnum * 3).reshape(fnum, 3)

            if read_metadata:
                volume_info = _read_volume_info(fobj)
        else:
            raise ValueError("File does not appear to be a Freesurfer surface")

    coords = coords.astype(np.float64)

    ret = (coords, faces)
    if read_metadata:
        if len(volume_info) == 0:
            warnings.warn('No volume information contained in the file')
        ret += (volume_info,)
    if read_stamp:
        ret += (create_stamp,)

    return ret


###############################################################################
# NumPy Generator (NumPy 1.17)


def rng_uniform(rng):
    """Get the unform/randint from the rng."""
    # prefer Generator.integers, fall back to RandomState.randint
    return getattr(rng, 'integers', getattr(rng, 'randint', None))


def _validate_sos(sos):
    """Helper to validate a SOS input"""
    sos = np.atleast_2d(sos)
    if sos.ndim != 2:
        raise ValueError('sos array must be 2D')
    n_sections, m = sos.shape
    if m != 6:
        raise ValueError('sos array must be shape (n_sections, 6)')
    if not (sos[:, 3] == 1).all():
        raise ValueError('sos[:, 3] should be all ones')
    return sos, n_sections


###############################################################################
# Misc utilities

# get_fdata() requires knowing the dtype ahead of time, so let's triage on our
# own instead
def _get_img_fdata(img):
    data = np.asanyarray(img.dataobj)
    dtype = np.complex128 if np.iscomplexobj(data) else np.float64
    return data.astype(dtype)


def _read_volume_info(fobj):
    """An implementation of nibabel.freesurfer.io._read_volume_info, since old
    versions of nibabel (<=2.1.0) don't have it.
    """
    volume_info = dict()
    head = np.fromfile(fobj, '>i4', 1)
    if not np.array_equal(head, [20]):  # Read two bytes more
        head = np.concatenate([head, np.fromfile(fobj, '>i4', 2)])
        if not np.array_equal(head, [2, 0, 20]):
            warnings.warn("Unknown extension code.")
            return volume_info

    volume_info['head'] = head
    for key in ['valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras',
                'zras', 'cras']:
        pair = fobj.readline().decode('utf-8').split('=')
        if pair[0].strip() != key or len(pair) != 2:
            raise IOError('Error parsing volume info.')
        if key in ('valid', 'filename'):
            volume_info[key] = pair[1].strip()
        elif key == 'volume':
            volume_info[key] = np.array(pair[1].split()).astype(int)
        else:
            volume_info[key] = np.array(pair[1].split()).astype(float)
    # Ignore the rest
    return volume_info


def _serialize_volume_info(volume_info):
    """An implementation of nibabel.freesurfer.io._serialize_volume_info, since
    old versions of nibabel (<=2.1.0) don't have it."""
    keys = ['head', 'valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras',
            'zras', 'cras']
    diff = set(volume_info.keys()).difference(keys)
    if len(diff) > 0:
        raise ValueError('Invalid volume info: %s.' % diff.pop())

    strings = list()
    for key in keys:
        if key == 'head':
            if not (np.array_equal(volume_info[key], [20]) or np.array_equal(
                    volume_info[key], [2, 0, 20])):
                warnings.warn("Unknown extension code.")
            strings.append(np.array(volume_info[key], dtype='>i4').tobytes())
        elif key in ('valid', 'filename'):
            val = volume_info[key]
            strings.append('{} = {}\n'.format(key, val).encode('utf-8'))
        elif key == 'volume':
            val = volume_info[key]
            strings.append('{} = {} {} {}\n'.format(
                key, val[0], val[1], val[2]).encode('utf-8'))
        else:
            val = volume_info[key]
            strings.append('{} = {:0.10g} {:0.10g} {:0.10g}\n'.format(
                key.ljust(6), val[0], val[1], val[2]).encode('utf-8'))
    return b''.join(strings)


##############################################################################
# adapted from scikit-learn


def is_classifier(estimator):
    """Returns True if the given estimator is (probably) a classifier.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a classifier and False otherwise.
    """
    return getattr(estimator, "_estimator_type", None) == "classifier"


def is_regressor(estimator):
    """Returns True if the given estimator is (probably) a regressor.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a regressor and False otherwise.
    """
    return getattr(estimator, "_estimator_type", None) == "regressor"


_DEFAULT_TAGS = {
    'non_deterministic': False,
    'requires_positive_X': False,
    'requires_positive_y': False,
    'X_types': ['2darray'],
    'poor_score': False,
    'no_validation': False,
    'multioutput': False,
    "allow_nan": False,
    'stateless': False,
    'multilabel': False,
    '_skip_test': False,
    '_xfail_checks': False,
    'multioutput_only': False,
    'binary_only': False,
    'requires_fit': True,
    'preserves_dtype': [np.float64],
    'requires_y': False,
    'pairwise': False,
}


class BaseEstimator(object):
    """Base class for all estimators in scikit-learn.

    Notes
    -----
    All estimators should specify all the parameters that can be set
    at the class level in their ``__init__`` as explicit keyword
    arguments (no ``*args`` or ``**kwargs``).
    """

    @classmethod
    def _get_param_names(cls):
        """Get parameter names for the estimator"""
        # fetch the constructor or the original constructor before
        # deprecation wrapping if any
        init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
        if init is object.__init__:
            # No explicit constructor to introspect
            return []

        # introspect the constructor arguments to find the model parameters
        # to represent
        init_signature = inspect.signature(init)
        # Consider the constructor parameters excluding 'self'
        parameters = [p for p in init_signature.parameters.values()
                      if p.name != 'self' and p.kind != p.VAR_KEYWORD]
        for p in parameters:
            if p.kind == p.VAR_POSITIONAL:
                raise RuntimeError("scikit-learn estimators should always "
                                   "specify their parameters in the signature"
                                   " of their __init__ (no varargs)."
                                   " %s with constructor %s doesn't "
                                   " follow this convention."
                                   % (cls, init_signature))
        # Extract and sort argument names excluding 'self'
        return sorted([p.name for p in parameters])

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Parameters
        ----------
        deep : bool, optional
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : dict
            Parameter names mapped to their values.
        """
        out = dict()
        for key in self._get_param_names():
            # We need deprecation warnings to always be on in order to
            # catch deprecated param values.
            # This is set in utils/__init__.py but it gets overwritten
            # when running under python3 somehow.
            warnings.simplefilter("always", DeprecationWarning)
            try:
                with warnings.catch_warnings(record=True) as w:
                    value = getattr(self, key, None)
                if len(w) and w[0].category == DeprecationWarning:
                    # if the parameter is deprecated, don't show it
                    continue
            finally:
                warnings.filters.pop(0)

            # XXX: should we rather test if instance of estimator?
            if deep and hasattr(value, 'get_params'):
                deep_items = value.get_params().items()
                out.update((key + '__' + k, val) for k, val in deep_items)
            out[key] = value
        return out

    def set_params(self, **params):
        """Set the parameters of this estimator.

        The method works on simple estimators as well as on nested objects
        (such as pipelines). The latter have parameters of the form
        ``<component>__<parameter>`` so that it's possible to update each
        component of a nested object.

        Parameters
        ----------
        **params : dict
            Parameters.

        Returns
        -------
        inst : instance
            The object.
        """
        if not params:
            # Simple optimisation to gain speed (inspect is slow)
            return self
        valid_params = self.get_params(deep=True)
        for key, value in params.items():
            split = key.split('__', 1)
            if len(split) > 1:
                # nested objects case
                name, sub_name = split
                if name not in valid_params:
                    raise ValueError('Invalid parameter %s for estimator %s. '
                                     'Check the list of available parameters '
                                     'with `estimator.get_params().keys()`.' %
                                     (name, self))
                sub_object = valid_params[name]
                sub_object.set_params(**{sub_name: value})
            else:
                # simple objects case
                if key not in valid_params:
                    raise ValueError('Invalid parameter %s for estimator %s. '
                                     'Check the list of available parameters '
                                     'with `estimator.get_params().keys()`.' %
                                     (key, self.__class__.__name__))
                setattr(self, key, value)
        return self

    def __repr__(self):
        params = StringIO()
        pprint(self.get_params(deep=False), params)
        params.seek(0)
        class_name = self.__class__.__name__
        return '%s(%s)' % (class_name, params.read().strip())

    # __getstate__ and __setstate__ are omitted because they only contain
    # conditionals that are not satisfied by our objects (e.g.,
    # ``if type(self).__module__.startswith('sklearn.')``.

    def _more_tags(self):
        return _DEFAULT_TAGS

    def _get_tags(self):
        collected_tags = {}
        for base_class in reversed(inspect.getmro(self.__class__)):
            if hasattr(base_class, '_more_tags'):
                # need the if because mixins might not have _more_tags
                # but might do redundant work in estimators
                # (i.e. calling more tags on BaseEstimator multiple times)
                more_tags = base_class._more_tags(self)
                collected_tags.update(more_tags)
        return collected_tags


# newer sklearn deprecates importing from sklearn.metrics.scoring,
# but older sklearn does not expose check_scoring in sklearn.metrics.
def _get_check_scoring():
    try:
        from sklearn.metrics import check_scoring  # noqa
    except ImportError:
        from sklearn.metrics.scorer import check_scoring  # noqa
    return check_scoring


def _check_fit_params(X, fit_params, indices=None):
    """Check and validate the parameters passed during `fit`.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data array.

    fit_params : dict
        Dictionary containing the parameters passed at fit.

    indices : array-like of shape (n_samples,), default=None
        Indices to be selected if the parameter has the same size as
        `X`.

    Returns
    -------
    fit_params_validated : dict
        Validated parameters. We ensure that the values support
        indexing.
    """
    try:
        from sklearn.utils.validation import \
            _check_fit_params as _sklearn_check_fit_params
        return _sklearn_check_fit_params(X, fit_params, indices)
    except ImportError:
        from sklearn.model_selection import _validation

        fit_params_validated = \
            {k: _validation._index_param_value(X, v, indices)
             for k, v in fit_params.items()}
        return fit_params_validated


###############################################################################
# Copied from sklearn to simplify code paths

def empirical_covariance(X, assume_centered=False):
    """Computes the Maximum likelihood covariance estimator


    Parameters
    ----------
    X : ndarray, shape (n_samples, n_features)
        Data from which to compute the covariance estimate

    assume_centered : Boolean
        If True, data are not centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False, data are centered before computation.

    Returns
    -------
    covariance : 2D ndarray, shape (n_features, n_features)
        Empirical covariance (Maximum Likelihood Estimator).

    """
    X = np.asarray(X)
    if X.ndim == 1:
        X = np.reshape(X, (1, -1))

    if X.shape[0] == 1:
        warnings.warn("Only one sample available. "
                      "You may want to reshape your data array")

    if assume_centered:
        covariance = np.dot(X.T, X) / X.shape[0]
    else:
        covariance = np.cov(X.T, bias=1)

    if covariance.ndim == 0:
        covariance = np.array([[covariance]])
    return covariance


class EmpiricalCovariance(BaseEstimator):
    """Maximum likelihood covariance estimator

    Read more in the :ref:`User Guide <covariance>`.

    Parameters
    ----------
    store_precision : bool
        Specifies if the estimated precision is stored.

    assume_centered : bool
        If True, data are not centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False (default), data are centered before computation.

    Attributes
    ----------
    covariance_ : 2D ndarray, shape (n_features, n_features)
        Estimated covariance matrix

    precision_ : 2D ndarray, shape (n_features, n_features)
        Estimated pseudo-inverse matrix.
        (stored only if store_precision is True)

    """
    def __init__(self, store_precision=True, assume_centered=False):
        self.store_precision = store_precision
        self.assume_centered = assume_centered

    def _set_covariance(self, covariance):
        """Saves the covariance and precision estimates

        Storage is done accordingly to `self.store_precision`.
        Precision stored only if invertible.

        Parameters
        ----------
        covariance : 2D ndarray, shape (n_features, n_features)
            Estimated covariance matrix to be stored, and from which precision
            is computed.

        """
        from scipy import linalg
        # covariance = check_array(covariance)
        # set covariance
        self.covariance_ = covariance
        # set precision
        if self.store_precision:
            self.precision_ = linalg.pinvh(covariance)
        else:
            self.precision_ = None

    def get_precision(self):
        """Getter for the precision matrix.

        Returns
        -------
        precision_ : array-like,
            The precision matrix associated to the current covariance object.

        """
        from scipy import linalg
        if self.store_precision:
            precision = self.precision_
        else:
            precision = linalg.pinvh(self.covariance_)
        return precision

    def fit(self, X, y=None):
        """Fit the Maximum Likelihood Estimator covariance model.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
          Training data, where n_samples is the number of samples and
          n_features is the number of features.
        y : ndarray | None
            Not used, present for API consistency.

        Returns
        -------
        self : object
            Returns self.
        """  # noqa: E501
        # X = check_array(X)
        if self.assume_centered:
            self.location_ = np.zeros(X.shape[1])
        else:
            self.location_ = X.mean(0)
        covariance = empirical_covariance(
            X, assume_centered=self.assume_centered)
        self._set_covariance(covariance)

        return self

    def score(self, X_test, y=None):
        """Compute the log-likelihood of a Gaussian dataset.

        Uses ``self.covariance_`` as an estimator of its covariance matrix.

        Parameters
        ----------
        X_test : array-like, shape = [n_samples, n_features]
            Test data of which we compute the likelihood, where n_samples is
            the number of samples and n_features is the number of features.
            X_test is assumed to be drawn from the same distribution than
            the data used in fit (including centering).
        y : ndarray | None
            Not used, present for API consistency.

        Returns
        -------
        res : float
            The likelihood of the data set with `self.covariance_` as an
            estimator of its covariance matrix.
        """
        # compute empirical covariance of the test set
        test_cov = empirical_covariance(
            X_test - self.location_, assume_centered=True)
        # compute log likelihood
        res = log_likelihood(test_cov, self.get_precision())

        return res

    def error_norm(self, comp_cov, norm='frobenius', scaling=True,
                   squared=True):
        """Computes the Mean Squared Error between two covariance estimators.

        Parameters
        ----------
        comp_cov : array-like, shape = [n_features, n_features]
            The covariance to compare with.
        norm : str
            The type of norm used to compute the error. Available error types:
            - 'frobenius' (default): sqrt(tr(A^t.A))
            - 'spectral': sqrt(max(eigenvalues(A^t.A))
            where A is the error ``(comp_cov - self.covariance_)``.
        scaling : bool
            If True (default), the squared error norm is divided by n_features.
            If False, the squared error norm is not rescaled.
        squared : bool
            Whether to compute the squared error norm or the error norm.
            If True (default), the squared error norm is returned.
            If False, the error norm is returned.

        Returns
        -------
        The Mean Squared Error (in the sense of the Frobenius norm) between
        `self` and `comp_cov` covariance estimators.
        """
        from scipy import linalg
        # compute the error
        error = comp_cov - self.covariance_
        # compute the error norm
        if norm == "frobenius":
            squared_norm = np.sum(error ** 2)
        elif norm == "spectral":
            squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
        else:
            raise NotImplementedError(
                "Only spectral and frobenius norms are implemented")
        # optionally scale the error norm
        if scaling:
            squared_norm = squared_norm / error.shape[0]
        # finally get either the squared norm or the norm
        if squared:
            result = squared_norm
        else:
            result = np.sqrt(squared_norm)

        return result

    def mahalanobis(self, observations):
        """Computes the squared Mahalanobis distances of given observations.

        Parameters
        ----------
        observations : array-like, shape = [n_observations, n_features]
            The observations, the Mahalanobis distances of the which we
            compute. Observations are assumed to be drawn from the same
            distribution than the data used in fit.

        Returns
        -------
        mahalanobis_distance : array, shape = [n_observations,]
            Squared Mahalanobis distances of the observations.

        """
        precision = self.get_precision()
        # compute mahalanobis distances
        centered_obs = observations - self.location_
        mahalanobis_dist = np.sum(
            np.dot(centered_obs, precision) * centered_obs, 1)

        return mahalanobis_dist


def log_likelihood(emp_cov, precision):
    """Computes the sample mean of the log_likelihood under a covariance model

    computes the empirical expected log-likelihood (accounting for the
    normalization terms and scaling), allowing for universal comparison (beyond
    this software package)

    Parameters
    ----------
    emp_cov : 2D ndarray (n_features, n_features)
        Maximum Likelihood Estimator of covariance

    precision : 2D ndarray (n_features, n_features)
        The precision matrix of the covariance model to be tested

    Returns
    -------
    sample mean of the log-likelihood
    """
    p = precision.shape[0]
    log_likelihood_ = - np.sum(emp_cov * precision) + _logdet(precision)
    log_likelihood_ -= p * np.log(2 * np.pi)
    log_likelihood_ /= 2.
    return log_likelihood_


# sklearn uses np.linalg for this, but ours is more robust to zero eigenvalues

def _logdet(A):
    """Compute the log det of a positive semidefinite matrix."""
    from scipy import linalg
    vals = linalg.eigvalsh(A)
    # avoid negative (numerical errors) or zero (semi-definite matrix) values
    tol = vals.max() * vals.size * np.finfo(np.float64).eps
    vals = np.where(vals > tol, vals, tol)
    return np.sum(np.log(vals))


def _infer_dimension_(spectrum, n_samples, n_features):
    """Infers the dimension of a dataset of shape (n_samples, n_features)
    The dataset is described by its spectrum `spectrum`.
    """
    n_spectrum = len(spectrum)
    ll = np.empty(n_spectrum)
    for rank in range(n_spectrum):
        ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features)
    return ll.argmax()


def _assess_dimension_(spectrum, rank, n_samples, n_features):
    from scipy.special import gammaln
    if rank > len(spectrum):
        raise ValueError("The tested rank cannot exceed the rank of the"
                         " dataset")

    pu = -rank * log(2.)
    for i in range(rank):
        pu += (gammaln((n_features - i) / 2.) -
               log(np.pi) * (n_features - i) / 2.)

    pl = np.sum(np.log(spectrum[:rank]))
    pl = -pl * n_samples / 2.

    if rank == n_features:
        pv = 0
        v = 1
    else:
        v = np.sum(spectrum[rank:]) / (n_features - rank)
        pv = -np.log(v) * n_samples * (n_features - rank) / 2.

    m = n_features * rank - rank * (rank + 1.) / 2.
    pp = log(2. * np.pi) * (m + rank + 1.) / 2.

    pa = 0.
    spectrum_ = spectrum.copy()
    spectrum_[rank:n_features] = v
    for i in range(rank):
        for j in range(i + 1, len(spectrum)):
            pa += log((spectrum[i] - spectrum[j]) *
                      (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples)

    ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2.

    return ll


def svd_flip(u, v, u_based_decision=True):
    if u_based_decision:
        # columns of u, rows of v
        max_abs_cols = np.argmax(np.abs(u), axis=0)
        signs = np.sign(u[max_abs_cols, np.arange(u.shape[1])])
        u *= signs
        v *= signs[:, np.newaxis]
    else:
        # rows of v, columns of u
        max_abs_rows = np.argmax(np.abs(v), axis=1)
        signs = np.sign(v[np.arange(v.shape[0]), max_abs_rows])
        u *= signs
        v *= signs[:, np.newaxis]
    return u, v


def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08):
    """Use high precision for cumsum and check that final value matches sum

    Parameters
    ----------
    arr : array-like
        To be cumulatively summed as flat
    axis : int, optional
        Axis along which the cumulative sum is computed.
        The default (None) is to compute the cumsum over the flattened array.
    rtol : float
        Relative tolerance, see ``np.allclose``
    atol : float
        Absolute tolerance, see ``np.allclose``
    """
    out = np.cumsum(arr, axis=axis, dtype=np.float64)
    expected = np.sum(arr, axis=axis, dtype=np.float64)
    if not np.all(np.isclose(out.take(-1, axis=axis), expected, rtol=rtol,
                             atol=atol, equal_nan=True)):
        warnings.warn('cumsum was found to be unstable: '
                      'its last element does not correspond to sum',
                      RuntimeWarning)
    return out


# This shim can be removed once NumPy 1.19.0+ is required (1.18.4 has sign bug)
def svd(a, hermitian=False):
    if hermitian:  # faster
        s, u = np.linalg.eigh(a)
        sgn = np.sign(s)
        s = np.abs(s)
        sidx = np.argsort(s)[..., ::-1]
        sgn = np.take_along_axis(sgn, sidx, axis=-1)
        s = np.take_along_axis(s, sidx, axis=-1)
        u = np.take_along_axis(u, sidx[..., None, :], axis=-1)
        # singular values are unsigned, move the sign into v
        vt = (u * sgn[..., np.newaxis, :]).swapaxes(-2, -1).conj()
        np.abs(s, out=s)
        return u, s, vt
    else:
        return np.linalg.svd(a)


###############################################################################
# From nilearn


def _crop_colorbar(cbar, cbar_vmin, cbar_vmax):
    """
    crop a colorbar to show from cbar_vmin to cbar_vmax
    Used when symmetric_cbar=False is used.
    """
    import matplotlib
    if (cbar_vmin is None) and (cbar_vmax is None):
        return
    cbar_tick_locs = cbar.locator.locs
    if cbar_vmax is None:
        cbar_vmax = cbar_tick_locs.max()
    if cbar_vmin is None:
        cbar_vmin = cbar_tick_locs.min()
    new_tick_locs = np.linspace(cbar_vmin, cbar_vmax,
                                len(cbar_tick_locs))

    # matplotlib >= 3.2.0 no longer normalizes axes between 0 and 1
    # See https://matplotlib.org/3.2.1/api/prev_api_changes/api_changes_3.2.0.html
    # _outline was removed in
    # https://github.com/matplotlib/matplotlib/commit/03a542e875eba091a027046d5ec652daa8be6863
    # so we use the code from there
    if _compare_version(matplotlib.__version__, '>=', '3.2.0'):
        cbar.ax.set_ylim(cbar_vmin, cbar_vmax)
        X = cbar._mesh()[0]
        X = np.array([X[0], X[-1]])
        Y = np.array([[cbar_vmin, cbar_vmin], [cbar_vmax, cbar_vmax]])
        N = X.shape[0]
        ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0]
        x = X.T.reshape(-1)[ii]
        y = Y.T.reshape(-1)[ii]
        xy = (np.column_stack([y, x])
              if cbar.orientation == 'horizontal' else
              np.column_stack([x, y]))
        cbar.outline.set_xy(xy)
    else:
        cbar.ax.set_ylim(cbar.norm(cbar_vmin), cbar.norm(cbar_vmax))
        outline = cbar.outline.get_xy()
        outline[:2, 1] += cbar.norm(cbar_vmin)
        outline[2:6, 1] -= (1. - cbar.norm(cbar_vmax))
        outline[6:, 1] += cbar.norm(cbar_vmin)
        cbar.outline.set_xy(outline)

    cbar.set_ticks(new_tick_locs)
    cbar.update_ticks()


###############################################################################
# Numba (optional requirement)

# Here we choose different defaults to speed things up by default
try:
    import numba
    if _compare_version(numba.__version__, '<', '0.48'):
        raise ImportError
    prange = numba.prange
    def jit(nopython=True, nogil=True, fastmath=True, cache=True,
            **kwargs):  # noqa
        return numba.jit(nopython=nopython, nogil=nogil, fastmath=fastmath,
                         cache=cache, **kwargs)
except Exception:  # could be ImportError, SystemError, etc.
    has_numba = False
else:
    has_numba = (os.getenv('MNE_USE_NUMBA', 'true').lower() == 'true')


if not has_numba:
    def jit(**kwargs):  # noqa
        def _jit(func):
            return func
        return _jit
    prange = range
    bincount = np.bincount
    mean = np.mean

else:
    @jit()
    def bincount(x, weights, minlength):  # noqa: D103
        out = np.zeros(minlength)
        for idx, w in zip(x, weights):
            out[idx] += w
        return out

    # fix because Numba does not support axis kwarg for mean
    @jit()
    def _np_apply_along_axis(func1d, axis, arr):
        assert arr.ndim == 2
        assert axis in [0, 1]
        if axis == 0:
            result = np.empty(arr.shape[1])
            for i in range(len(result)):
                result[i] = func1d(arr[:, i])
        else:
            result = np.empty(arr.shape[0])
            for i in range(len(result)):
                result[i] = func1d(arr[i, :])
        return result

    @jit()
    def mean(array, axis):
        return _np_apply_along_axis(np.mean, axis, array)


###############################################################################
# Matplotlib

# workaround: plt.close() doesn't spawn close_event on Agg backend
# https://github.com/matplotlib/matplotlib/issues/18609
# scheduled to be fixed by MPL 3.6
def _close_event(fig):
    """Force calling of the MPL figure close event."""
    from .utils import logger
    from matplotlib import backend_bases
    try:
        fig.canvas.callbacks.process(
            'close_event', backend_bases.CloseEvent(
                name='close_event', canvas=fig.canvas))
        logger.debug(f'Called {fig!r}.canvas.close_event()')
    except ValueError:  # old mpl with Qt
        logger.debug(f'Calling {fig!r}.canvas.close_event() failed')
        pass  # pragma: no cover


def _is_last_row(ax):
    try:
        return ax.get_subplotspec().is_last_row()  # 3.4+
    except AttributeError:
        return ax.is_last_row()
    return ax.get_subplotspec().is_last_row()


def _sharex(ax1, ax2):
    if hasattr(ax1.axes, 'sharex'):
        ax1.axes.sharex(ax2)
    else:
        ax1.get_shared_x_axes().join(ax1, ax2)


###############################################################################
# SciPy deprecation of pinv + pinvh rcond (never worked properly anyway) in 1.7

def pinvh(a, rtol=None):
    """Compute a pseudo-inverse of a Hermitian matrix."""
    s, u = np.linalg.eigh(a)
    del a
    if rtol is None:
        rtol = s.size * np.finfo(s.dtype).eps
    maxS = np.max(np.abs(s))
    above_cutoff = (abs(s) > maxS * rtol)
    psigma_diag = 1.0 / s[above_cutoff]
    u = u[:, above_cutoff]
    return (u * psigma_diag) @ u.conj().T


def pinv(a, rtol=None):
    """Compute a pseudo-inverse of a matrix."""
    u, s, vh = np.linalg.svd(a, full_matrices=False)
    del a
    maxS = np.max(s)
    if rtol is None:
        rtol = max(vh.shape + u.shape) * np.finfo(u.dtype).eps
    rank = np.sum(s > maxS * rtol)
    u = u[:, :rank]
    u /= s[:rank]
    return (u @ vh[:rank]).conj().T