1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
# -*- coding: utf-8 -*-
# Authors: Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Eric Larson <larson.eric.d@gmail.com>
# The computations in this code were primarily derived from Matti Hämäläinen's
# C code.
from copy import deepcopy
import numpy as np
from ..bem import _check_origin
from ..cov import make_ad_hoc_cov
from ..io.constants import FIFF
from ..io.pick import pick_types, pick_info
from ..io.meas_info import _simplify_info
from ..io.proj import _has_eeg_average_ref_proj, make_projector
from ..surface import get_head_surf, get_meg_helmet_surf
from ..transforms import transform_surface_to, _find_trans, _get_trans
from ._make_forward import _create_meg_coils, _create_eeg_els, _read_coil_defs
from ._lead_dots import (_do_self_dots, _do_surface_dots, _get_legen_table,
_do_cross_dots)
from ..utils import logger, verbose, _check_option, _reg_pinv, _pl
from ..epochs import EpochsArray, BaseEpochs
from ..evoked import Evoked, EvokedArray
def _setup_dots(mode, info, coils, ch_type):
"""Set up dot products."""
from scipy.interpolate import interp1d
int_rad = 0.06
noise = make_ad_hoc_cov(info, dict(mag=20e-15, grad=5e-13, eeg=1e-6))
n_coeff, interp = (50, 'nearest') if mode == 'fast' else (100, 'linear')
lut, n_fact = _get_legen_table(ch_type, False, n_coeff, verbose=False)
lut_fun = interp1d(np.linspace(-1, 1, lut.shape[0]), lut, interp, axis=0)
return int_rad, noise, lut_fun, n_fact
def _compute_mapping_matrix(fmd, info):
"""Do the hairy computations."""
logger.info(' Preparing the mapping matrix...')
# assemble a projector and apply it to the data
ch_names = fmd['ch_names']
projs = info.get('projs', list())
proj_op = make_projector(projs, ch_names)[0]
proj_dots = np.dot(proj_op.T, np.dot(fmd['self_dots'], proj_op))
noise_cov = fmd['noise']
# Whiten
if not noise_cov['diag']:
raise NotImplementedError # this shouldn't happen
whitener = np.diag(1.0 / np.sqrt(noise_cov['data'].ravel()))
whitened_dots = np.dot(whitener.T, np.dot(proj_dots, whitener))
# SVD is numerically better than the eigenvalue composition even if
# mat is supposed to be symmetric and positive definite
if fmd.get('pinv_method', 'tsvd') == 'tsvd':
inv, fmd['nest'] = _pinv_trunc(whitened_dots, fmd['miss'])
else:
assert fmd['pinv_method'] == 'tikhonov', fmd['pinv_method']
inv, fmd['nest'] = _pinv_tikhonov(whitened_dots, fmd['miss'])
# Sandwich with the whitener
inv_whitened = np.dot(whitener.T, np.dot(inv, whitener))
# Take into account that the lead fields used to compute
# d->surface_dots were unprojected
inv_whitened_proj = proj_op.T @ inv_whitened
# Finally sandwich in the selection matrix
# This one picks up the correct lead field projection
mapping_mat = np.dot(fmd['surface_dots'], inv_whitened_proj)
# Optionally apply the average electrode reference to the final field map
if fmd['kind'] == 'eeg' and _has_eeg_average_ref_proj(info):
logger.info(
' The map has an average electrode reference '
f'({mapping_mat.shape[0]} channels)')
mapping_mat -= np.mean(mapping_mat, axis=0)
return mapping_mat
def _pinv_trunc(x, miss):
"""Compute pseudoinverse, truncating at most "miss" fraction of varexp."""
from scipy import linalg
u, s, v = linalg.svd(x, full_matrices=False)
# Eigenvalue truncation
varexp = np.cumsum(s)
varexp /= varexp[-1]
n = np.where(varexp >= (1.0 - miss))[0][0] + 1
logger.info(' Truncating at %d/%d components to omit less than %g '
'(%0.2g)' % (n, len(s), miss, 1. - varexp[n - 1]))
s = 1. / s[:n]
inv = ((u[:, :n] * s) @ v[:n]).T
return inv, n
def _pinv_tikhonov(x, reg):
# _reg_pinv requires square Hermitian, which we have here
inv, _, n = _reg_pinv(x, reg=reg, rank=None)
logger.info(f' Truncating at {n}/{len(x)} components and regularizing '
f'with α={reg:0.1e}')
return inv, n
def _map_meg_or_eeg_channels(info_from, info_to, mode, origin, miss=None):
"""Find mapping from one set of channels to another.
Parameters
----------
info_from : instance of Info
The measurement data to interpolate from.
info_to : instance of Info
The measurement info to interpolate to.
mode : str
Either `'accurate'` or `'fast'`, determines the quality of the
Legendre polynomial expansion used. `'fast'` should be sufficient
for most applications.
origin : array-like, shape (3,) | str
Origin of the sphere in the head coordinate frame and in meters.
Can be ``'auto'``, which means a head-digitization-based origin
fit. Default is ``(0., 0., 0.04)``.
Returns
-------
mapping : array, shape (n_to, n_from)
A mapping matrix.
"""
# no need to apply trans because both from and to coils are in device
# coordinates
info_kinds = set(ch['kind'] for ch in info_to['chs'])
info_kinds |= set(ch['kind'] for ch in info_from['chs'])
if FIFF.FIFFV_REF_MEG_CH in info_kinds: # refs same as MEG
info_kinds |= set([FIFF.FIFFV_MEG_CH])
info_kinds -= set([FIFF.FIFFV_REF_MEG_CH])
info_kinds = sorted(info_kinds)
# This should be guaranteed by the callers
assert (len(info_kinds) == 1 and info_kinds[0] in (
FIFF.FIFFV_MEG_CH, FIFF.FIFFV_EEG_CH))
kind = 'eeg' if info_kinds[0] == FIFF.FIFFV_EEG_CH else 'meg'
#
# Step 1. Prepare the coil definitions
#
if kind == 'meg':
templates = _read_coil_defs(verbose=False)
coils_from = _create_meg_coils(info_from['chs'], 'normal',
info_from['dev_head_t'], templates)
coils_to = _create_meg_coils(info_to['chs'], 'normal',
info_to['dev_head_t'], templates)
pinv_method = 'tsvd'
miss = 1e-4
else:
coils_from = _create_eeg_els(info_from['chs'])
coils_to = _create_eeg_els(info_to['chs'])
pinv_method = 'tikhonov'
miss = 1e-1
if _has_eeg_average_ref_proj(info_from) and \
not _has_eeg_average_ref_proj(info_to):
raise RuntimeError(
'info_to must have an average EEG reference projector if '
'info_from has one')
origin = _check_origin(origin, info_from)
#
# Step 2. Calculate the dot products
#
int_rad, noise, lut_fun, n_fact = _setup_dots(
mode, info_from, coils_from, kind)
logger.info(f' Computing dot products for {len(coils_from)} '
f'{kind.upper()} channel{_pl(coils_from)}...')
self_dots = _do_self_dots(int_rad, False, coils_from, origin, kind,
lut_fun, n_fact, n_jobs=None)
logger.info(f' Computing cross products for {len(coils_from)} → '
f'{len(coils_to)} {kind.upper()} channel{_pl(coils_to)}...')
cross_dots = _do_cross_dots(int_rad, False, coils_from, coils_to,
origin, kind, lut_fun, n_fact).T
ch_names = [c['ch_name'] for c in info_from['chs']]
fmd = dict(kind=kind, ch_names=ch_names,
origin=origin, noise=noise, self_dots=self_dots,
surface_dots=cross_dots, int_rad=int_rad, miss=miss,
pinv_method=pinv_method)
#
# Step 3. Compute the mapping matrix
#
mapping = _compute_mapping_matrix(fmd, info_from)
return mapping
def _as_meg_type_inst(inst, ch_type='grad', mode='fast'):
"""Compute virtual evoked using interpolated fields in mag/grad channels.
Parameters
----------
inst : instance of mne.Evoked or mne.Epochs
The evoked or epochs object.
ch_type : str
The destination channel type. It can be 'mag' or 'grad'.
mode : str
Either `'accurate'` or `'fast'`, determines the quality of the
Legendre polynomial expansion used. `'fast'` should be sufficient
for most applications.
Returns
-------
inst : instance of mne.EvokedArray or mne.EpochsArray
The transformed evoked object containing only virtual channels.
"""
_check_option('ch_type', ch_type, ['mag', 'grad'])
# pick the original and destination channels
pick_from = pick_types(inst.info, meg=True, eeg=False,
ref_meg=False)
pick_to = pick_types(inst.info, meg=ch_type, eeg=False,
ref_meg=False)
if len(pick_to) == 0:
raise ValueError('No channels matching the destination channel type'
' found in info. Please pass an evoked containing'
'both the original and destination channels. Only the'
' locations of the destination channels will be used'
' for interpolation.')
info_from = pick_info(inst.info, pick_from)
info_to = pick_info(inst.info, pick_to)
# XXX someday we should probably expose the origin
mapping = _map_meg_or_eeg_channels(
info_from, info_to, origin=(0., 0., 0.04), mode=mode)
# compute data by multiplying by the 'gain matrix' from
# original sensors to virtual sensors
if hasattr(inst, 'get_data'):
data = inst.get_data()
else:
data = inst.data
ndim = data.ndim
if ndim == 2:
data = data[np.newaxis, :, :]
data_ = np.empty((data.shape[0], len(mapping), data.shape[2]),
dtype=data.dtype)
for d, d_ in zip(data, data_):
d_[:] = np.dot(mapping, d[pick_from])
# keep only the destination channel types
info = pick_info(inst.info, sel=pick_to, copy=True)
# change channel names to emphasize they contain interpolated data
for ch in info['chs']:
ch['ch_name'] += '_v'
info._update_redundant()
info._check_consistency()
if isinstance(inst, Evoked):
assert ndim == 2
data_ = data_[0] # undo new axis
inst_ = EvokedArray(data_, info, tmin=inst.times[0],
comment=inst.comment, nave=inst.nave)
else:
assert isinstance(inst, BaseEpochs)
inst_ = EpochsArray(data_, info, tmin=inst.tmin,
events=inst.events,
event_id=inst.event_id,
metadata=inst.metadata)
return inst_
@verbose
def _make_surface_mapping(info, surf, ch_type='meg', trans=None, mode='fast',
n_jobs=None, origin=(0., 0., 0.04), verbose=None):
"""Re-map M/EEG data to a surface.
Parameters
----------
%(info_not_none)s
surf : dict
The surface to map the data to. The required fields are `'rr'`,
`'nn'`, and `'coord_frame'`. Must be in head coordinates.
ch_type : str
Must be either `'meg'` or `'eeg'`, determines the type of field.
trans : None | dict
If None, no transformation applied. Should be a Head<->MRI
transformation.
mode : str
Either `'accurate'` or `'fast'`, determines the quality of the
Legendre polynomial expansion used. `'fast'` should be sufficient
for most applications.
%(n_jobs)s
origin : array-like, shape (3,) | str
Origin of the sphere in the head coordinate frame and in meters.
The default is ``'auto'``, which means a head-digitization-based
origin fit.
%(verbose)s
Returns
-------
mapping : array
A n_vertices x n_sensors array that remaps the MEG or EEG data,
as `new_data = np.dot(mapping, data)`.
"""
if not all(key in surf for key in ['rr', 'nn']):
raise KeyError('surf must have both "rr" and "nn"')
if 'coord_frame' not in surf:
raise KeyError('The surface coordinate frame must be specified '
'in surf["coord_frame"]')
_check_option('mode', mode, ['accurate', 'fast'])
# deal with coordinate frames here -- always go to "head" (easiest)
orig_surf = surf
surf = transform_surface_to(deepcopy(surf), 'head', trans)
origin = _check_origin(origin, info)
#
# Step 1. Prepare the coil definitions
# Do the dot products, assume surf in head coords
#
_check_option('ch_type', ch_type, ['meg', 'eeg'])
if ch_type == 'meg':
picks = pick_types(info, meg=True, eeg=False, ref_meg=False)
logger.info('Prepare MEG mapping...')
else:
picks = pick_types(info, meg=False, eeg=True, ref_meg=False)
logger.info('Prepare EEG mapping...')
if len(picks) == 0:
raise RuntimeError('cannot map, no channels found')
# XXX this code does not do any checking for compensation channels,
# but it seems like this must be intentional from the ref_meg=False
# (presumably from the C code)
dev_head_t = info['dev_head_t']
info = pick_info(_simplify_info(info), picks)
info['dev_head_t'] = dev_head_t
# create coil defs in head coordinates
if ch_type == 'meg':
# Put them in head coordinates
coils = _create_meg_coils(info['chs'], 'normal', info['dev_head_t'])
type_str = 'coils'
miss = 1e-4 # Smoothing criterion for MEG
else: # EEG
coils = _create_eeg_els(info['chs'])
type_str = 'electrodes'
miss = 1e-3 # Smoothing criterion for EEG
#
# Step 2. Calculate the dot products
#
int_rad, noise, lut_fun, n_fact = _setup_dots(mode, info, coils, ch_type)
logger.info('Computing dot products for %i %s...' % (len(coils), type_str))
self_dots = _do_self_dots(int_rad, False, coils, origin, ch_type,
lut_fun, n_fact, n_jobs)
sel = np.arange(len(surf['rr'])) # eventually we should do sub-selection
logger.info('Computing dot products for %i surface locations...'
% len(sel))
surface_dots = _do_surface_dots(int_rad, False, coils, surf, sel,
origin, ch_type, lut_fun, n_fact,
n_jobs)
#
# Step 4. Return the result
#
fmd = dict(kind=ch_type, surf=surf, ch_names=info['ch_names'], coils=coils,
origin=origin, noise=noise, self_dots=self_dots,
surface_dots=surface_dots, int_rad=int_rad, miss=miss)
logger.info('Field mapping data ready')
fmd['data'] = _compute_mapping_matrix(fmd, info)
# bring the original back, whatever coord frame it was in
fmd['surf'] = orig_surf
# Remove some unnecessary fields
del fmd['self_dots']
del fmd['surface_dots']
del fmd['int_rad']
del fmd['miss']
return fmd
@verbose
def make_field_map(evoked, trans='auto', subject=None, subjects_dir=None,
ch_type=None, mode='fast', meg_surf='helmet',
origin=(0., 0., 0.04), n_jobs=None, *,
head_source=('bem', 'head'), verbose=None):
"""Compute surface maps used for field display in 3D.
Parameters
----------
evoked : Evoked | Epochs | Raw
The measurement file. Need to have info attribute.
%(trans)s "auto" (default) will load trans from the FreeSurfer directory
specified by ``subject`` and ``subjects_dir`` parameters.
.. versionchanged:: 0.19
Support for 'fsaverage' argument.
subject : str | None
The subject name corresponding to FreeSurfer environment
variable SUBJECT. If None, map for EEG data will not be available.
subjects_dir : str
The path to the freesurfer subjects reconstructions.
It corresponds to Freesurfer environment variable SUBJECTS_DIR.
ch_type : None | 'eeg' | 'meg'
If None, a map for each available channel type will be returned.
Else only the specified type will be used.
mode : 'accurate' | 'fast'
Either ``'accurate'`` or ``'fast'``, determines the quality of the
Legendre polynomial expansion used. ``'fast'`` should be sufficient
for most applications.
meg_surf : 'helmet' | 'head'
Should be ``'helmet'`` or ``'head'`` to specify in which surface
to compute the MEG field map. The default value is ``'helmet'``.
origin : array-like, shape (3,) | 'auto'
Origin of the sphere in the head coordinate frame and in meters.
Can be ``'auto'``, which means a head-digitization-based origin
fit. Default is ``(0., 0., 0.04)``.
.. versionadded:: 0.11
%(n_jobs)s
%(head_source)s
.. versionadded:: 1.1
%(verbose)s
Returns
-------
surf_maps : list
The surface maps to be used for field plots. The list contains
separate ones for MEG and EEG (if both MEG and EEG are present).
"""
info = evoked.info
if ch_type is None:
types = [t for t in ['eeg', 'meg'] if t in evoked]
else:
_check_option('ch_type', ch_type, ['eeg', 'meg'])
types = [ch_type]
if isinstance(trans, str) and trans == 'auto':
# let's try to do this in MRI coordinates so they're easy to plot
trans = _find_trans(subject, subjects_dir)
trans, trans_type = _get_trans(trans, fro='head', to='mri')
if 'eeg' in types and trans_type == 'identity':
logger.info('No trans file available. EEG data ignored.')
types.remove('eeg')
if len(types) == 0:
raise RuntimeError('No data available for mapping.')
_check_option('meg_surf', meg_surf, ['helmet', 'head'])
surfs = []
for this_type in types:
if this_type == 'meg' and meg_surf == 'helmet':
surf = get_meg_helmet_surf(info, trans)
else:
surf = get_head_surf(
subject, source=head_source, subjects_dir=subjects_dir)
surfs.append(surf)
surf_maps = list()
for this_type, this_surf in zip(types, surfs):
this_map = _make_surface_mapping(evoked.info, this_surf, this_type,
trans, n_jobs=n_jobs, origin=origin,
mode=mode)
surf_maps.append(this_map)
return surf_maps
|