File: _coreg.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (1896 lines) | stat: -rw-r--r-- 75,214 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
from contextlib import contextmanager
from functools import partial
import inspect
import os
import os.path as op
import platform
from pathlib import Path
import time
import queue
import threading
import re

import numpy as np
from traitlets import observe, HasTraits, Unicode, Bool, Float

from ..io.constants import FIFF
from ..defaults import DEFAULTS
from ..io import read_info, read_fiducials, write_fiducials, read_raw
from ..io.pick import pick_types
from ..io.open import fiff_open, dir_tree_find
from ..io.meas_info import _empty_info
from ..io._read_raw import supported as raw_supported_types
from ..bem import make_bem_solution, write_bem_solution
from ..coreg import (Coregistration, _is_mri_subject, scale_mri, bem_fname,
                     _mri_subject_has_bem, fid_fname, _map_fid_name_to_idx,
                     _find_head_bem)
from ..viz._3d import (_plot_head_surface, _plot_head_fiducials,
                       _plot_head_shape_points, _plot_mri_fiducials,
                       _plot_hpi_coils, _plot_sensors, _plot_helmet)
from ..viz.utils import safe_event
from ..transforms import (read_trans, write_trans, _ensure_trans, _get_trans,
                          rotation_angles, _get_transforms_to_coord_frame)
from ..utils import (get_subjects_dir, check_fname, _check_fname, fill_doc,
                     verbose, logger, _validate_type)
from ..surface import _DistanceQuery, _CheckInside
from ..channels import read_dig_fif


class _WorkerData():
    def __init__(self, name, params=None):
        self._name = name
        self._params = params


def _get_subjects(sdir):
    # XXX: would be nice to move this function to util
    is_dir = sdir and op.isdir(sdir)
    if is_dir:
        dir_content = os.listdir(sdir)
        subjects = [s for s in dir_content if _is_mri_subject(s, sdir)]
        if len(subjects) == 0:
            subjects.append('')
    else:
        subjects = ['']
    return sorted(subjects)


@fill_doc
class CoregistrationUI(HasTraits):
    """Class for coregistration assisted by graphical interface.

    Parameters
    ----------
    info_file : None | str
        The FIFF file with digitizer data for coregistration.
    %(subject)s
    %(subjects_dir)s
    %(fiducials)s
    head_resolution : bool
        If True, use a high-resolution head surface. Defaults to False.
    head_opacity : float
        The opacity of the head surface. Defaults to 0.8.
    hpi_coils : bool
        If True, display the HPI coils. Defaults to True.
    head_shape_points : bool
        If True, display the head shape points. Defaults to True.
    eeg_channels : bool
        If True, display the EEG channels. Defaults to True.
    orient_glyphs : bool
        If True, orient the sensors towards the head surface. Default to False.
    scale_by_distance : bool
        If True, scale the sensors based on their distance to the head surface.
        Defaults to True.
    mark_inside : bool
        If True, mark the head shape points that are inside the head surface
        with a different color. Defaults to True.
    sensor_opacity : float
        The opacity of the sensors between 0 and 1. Defaults to 1.0.
    trans : str
        The path to the Head<->MRI transform FIF file ("-trans.fif").
    size : tuple
        The dimensions (width, height) of the rendering view. The default is
        (800, 600).
    bgcolor : tuple | str
        The background color as a tuple (red, green, blue) of float
        values between 0 and 1 or a valid color name (i.e. 'white'
        or 'w'). Defaults to 'grey'.
    show : bool
        Display the window as soon as it is ready. Defaults to True.
    block : bool
        Whether to halt program execution until the GUI has been closed
        (``True``) or not (``False``, default).
    %(fullscreen)s
        The default is False.

        .. versionadded:: 1.1
    %(interaction_scene)s
        Defaults to ``'terrain'``.

        .. versionadded:: 1.0
    %(verbose)s

    Attributes
    ----------
    coreg : mne.coreg.Coregistration
        The coregistration instance used by the graphical interface.
    """

    _subject = Unicode()
    _subjects_dir = Unicode()
    _lock_fids = Bool()
    _current_fiducial = Unicode()
    _info_file = Unicode()
    _orient_glyphs = Bool()
    _scale_by_distance = Bool()
    _mark_inside = Bool()
    _hpi_coils = Bool()
    _head_shape_points = Bool()
    _eeg_channels = Bool()
    _head_resolution = Bool()
    _head_opacity = Float()
    _helmet = Bool()
    _grow_hair = Float()
    _subject_to = Unicode()
    _scale_mode = Unicode()
    _icp_fid_match = Unicode()

    @verbose
    def __init__(self, info_file, *, subject=None, subjects_dir=None,
                 fiducials='auto', head_resolution=None,
                 head_opacity=None, hpi_coils=None,
                 head_shape_points=None, eeg_channels=None, orient_glyphs=None,
                 scale_by_distance=None, mark_inside=None,
                 sensor_opacity=None, trans=None, size=None, bgcolor=None,
                 show=True, block=False, fullscreen=False,
                 interaction='terrain', verbose=None):
        from ..viz.backends.renderer import _get_renderer
        from ..viz.backends._utils import _qt_app_exec

        def _get_default(var, val):
            return var if var is not None else val
        self._actors = dict()
        self._surfaces = dict()
        self._widgets = dict()
        self._verbose = verbose
        self._plot_locked = False
        self._params_locked = False
        self._refresh_rate_ms = max(int(round(1000. / 60.)), 1)
        self._redraws_pending = set()
        self._parameter_mutex = threading.Lock()
        self._redraw_mutex = threading.Lock()
        self._job_queue = queue.Queue()
        self._parameter_queue = queue.Queue()
        self._head_geo = None
        self._check_inside = None
        self._nearest = None
        self._coord_frame = "mri"
        self._mouse_no_mvt = -1
        self._to_cf_t = None
        self._omit_hsp_distance = 0.0
        self._fiducials_file = None
        self._trans_modified = False
        self._mri_fids_modified = False
        self._mri_scale_modified = False
        self._accept_close_event = True
        self._fid_colors = tuple(
            DEFAULTS['coreg'][f'{key}_color'] for key in
            ('lpa', 'nasion', 'rpa'))
        self._defaults = dict(
            size=_get_default(size, (800, 600)),
            bgcolor=_get_default(bgcolor, "grey"),
            orient_glyphs=_get_default(orient_glyphs, True),
            scale_by_distance=_get_default(scale_by_distance, True),
            mark_inside=_get_default(mark_inside, True),
            hpi_coils=_get_default(hpi_coils, True),
            head_shape_points=_get_default(head_shape_points, True),
            eeg_channels=_get_default(eeg_channels, True),
            head_resolution=_get_default(head_resolution, True),
            head_opacity=_get_default(head_opacity, 0.8),
            helmet=False,
            sensor_opacity=_get_default(sensor_opacity, 1.0),
            fiducials=("LPA", "Nasion", "RPA"),
            fiducial="LPA",
            lock_fids=True,
            grow_hair=0.0,
            subject_to="",
            scale_modes=["None", "uniform", "3-axis"],
            scale_mode="None",
            icp_fid_matches=('nearest', 'matched'),
            icp_fid_match='matched',
            icp_n_iterations=20,
            omit_hsp_distance=10.0,
            lock_head_opacity=self._head_opacity < 1.0,
            weights=dict(
                lpa=1.0,
                nasion=10.0,
                rpa=1.0,
                hsp=1.0,
                eeg=1.0,
                hpi=1.0,
            ),
        )

        # process requirements
        info = None
        subjects_dir = get_subjects_dir(
            subjects_dir=subjects_dir, raise_error=True)
        subject = _get_default(subject, _get_subjects(subjects_dir)[0])

        # setup the window
        splash = 'Initializing coregistration GUI...' if show else False
        self._renderer = _get_renderer(
            size=self._defaults["size"],
            bgcolor=self._defaults["bgcolor"],
            splash=splash,
            fullscreen=fullscreen,
        )
        self._renderer._window_close_connect(self._clean)
        self._renderer._window_close_connect(self._close_callback, after=False)
        self._renderer.set_interaction(interaction)

        # coregistration model setup
        self._immediate_redraw = (self._renderer._kind != 'qt')
        self._info = info
        self._fiducials = fiducials
        self.coreg = Coregistration(
            info=self._info, subject=subject, subjects_dir=subjects_dir,
            fiducials=fiducials,
            on_defects='ignore'  # safe due to interactive visual inspection
        )
        fid_accurate = self.coreg._fid_accurate
        for fid in self._defaults["weights"].keys():
            setattr(self, f"_{fid}_weight", self._defaults["weights"][fid])

        # set main traits
        self._set_head_opacity(self._defaults["head_opacity"])
        self._old_head_opacity = self._head_opacity
        self._set_subjects_dir(subjects_dir)
        self._set_subject(subject)
        self._set_info_file(info_file)
        self._set_orient_glyphs(self._defaults["orient_glyphs"])
        self._set_scale_by_distance(self._defaults["scale_by_distance"])
        self._set_mark_inside(self._defaults["mark_inside"])
        self._set_hpi_coils(self._defaults["hpi_coils"])
        self._set_head_shape_points(self._defaults["head_shape_points"])
        self._set_eeg_channels(self._defaults["eeg_channels"])
        self._set_head_resolution(self._defaults["head_resolution"])
        self._set_helmet(self._defaults["helmet"])
        self._set_grow_hair(self._defaults["grow_hair"])
        self._set_omit_hsp_distance(self._defaults["omit_hsp_distance"])
        self._set_icp_n_iterations(self._defaults["icp_n_iterations"])
        self._set_icp_fid_match(self._defaults["icp_fid_match"])

        # configure UI
        self._reset_fitting_parameters()
        self._configure_dialogs()
        self._configure_status_bar()
        self._configure_dock()
        self._configure_picking()
        self._configure_legend()

        # once the docks are initialized
        self._set_current_fiducial(self._defaults["fiducial"])
        self._set_scale_mode(self._defaults["scale_mode"])
        self._set_subject_to(self._defaults["subject_to"])
        if trans is not None:
            self._load_trans(trans)
        self._redraw()  # we need the elements to be present now

        if fid_accurate:
            assert self.coreg._fid_filename is not None
            # _set_fiducials_file() calls _update_fiducials_label()
            # internally
            self._set_fiducials_file(self.coreg._fid_filename)
        else:
            self._set_head_resolution('high')
            self._forward_widget_command('high_res_head', "set_value", True)
            self._set_lock_fids(True)  # hack to make the dig disappear
            self._update_fiducials_label()
            self._update_fiducials()

        self._set_lock_fids(fid_accurate)

        # configure worker
        self._configure_worker()

        # must be done last
        if show:
            self._renderer.show()
        # update the view once shown
        views = {True: dict(azimuth=90, elevation=90),  # front
                 False: dict(azimuth=180, elevation=90)}  # left
        self._renderer.set_camera(distance=None, **views[self._lock_fids])
        self._redraw()
        # XXX: internal plotter/renderer should not be exposed
        if not self._immediate_redraw:
            self._renderer.plotter.add_callback(
                self._redraw, self._refresh_rate_ms)
        self._renderer.plotter.show_axes()
        # initialization does not count as modification by the user
        self._trans_modified = False
        self._mri_fids_modified = False
        self._mri_scale_modified = False
        if block and self._renderer._kind != 'notebook':
            _qt_app_exec(self._renderer.figure.store["app"])

    def _set_subjects_dir(self, subjects_dir):
        if subjects_dir is None or not subjects_dir:
            return
        try:
            subjects_dir = _check_fname(
                subjects_dir, overwrite='read', must_exist=True, need_dir=True)
            subjects = _get_subjects(subjects_dir)
            low_res_path = _find_head_bem(
                subjects[0], subjects_dir, high_res=False)
            high_res_path = _find_head_bem(
                subjects[0], subjects_dir, high_res=True)
            valid = low_res_path is not None or high_res_path is not None
        except Exception:
            valid = False
        if valid:
            style = dict(border="initial")
            self._subjects_dir = subjects_dir
        else:
            style = dict(border="2px solid #ff0000")
        self._forward_widget_command("subjects_dir_field", "set_style", style)

    def _set_subject(self, subject):
        self._subject = subject

    def _set_lock_fids(self, state):
        self._lock_fids = bool(state)

    def _set_fiducials_file(self, fname):
        if fname is None:
            fids = 'auto'
        else:
            fname = _check_fname(
                fname, overwrite='read', must_exist=True, need_dir=False
            )
            fids, _ = read_fiducials(fname)

        self._fiducials_file = fname
        self.coreg._setup_fiducials(fids)
        self._update_distance_estimation()
        self._update_fiducials_label()
        self._update_fiducials()
        self._reset(keep_trans=True)

        if fname is None:
            self._set_lock_fids(False)
            self._forward_widget_command(
                'reload_mri_fids', 'set_enabled', False
            )
        else:
            self._set_lock_fids(True)
            self._forward_widget_command(
                'reload_mri_fids', 'set_enabled', True
            )
            self._display_message(
                f"Loading MRI fiducials from {fname}... Done!"
            )

    def _set_current_fiducial(self, fid):
        self._current_fiducial = fid.lower()

    def _set_info_file(self, fname):
        if fname is None:
            return

        # info file can be anything supported by read_raw
        try:
            check_fname(fname, 'info', tuple(raw_supported_types.keys()),
                        endings_err=tuple(raw_supported_types.keys()))
            fname = _check_fname(fname, overwrite='read')  # convert to str

            # ctf ds `files` are actually directories
            if fname.endswith(('.ds',)):
                info_file = _check_fname(
                    fname, overwrite='read', must_exist=True, need_dir=True)
            else:
                info_file = _check_fname(
                    fname, overwrite='read', must_exist=True, need_dir=False)
            valid = True
        except IOError:
            valid = False
        if valid:
            style = dict(border="initial")
            self._info_file = info_file
        else:
            style = dict(border="2px solid #ff0000")
        self._forward_widget_command("info_file_field", "set_style", style)

    def _set_omit_hsp_distance(self, distance):
        self._omit_hsp_distance = distance

    def _set_orient_glyphs(self, state):
        self._orient_glyphs = bool(state)

    def _set_scale_by_distance(self, state):
        self._scale_by_distance = bool(state)

    def _set_mark_inside(self, state):
        self._mark_inside = bool(state)

    def _set_hpi_coils(self, state):
        self._hpi_coils = bool(state)

    def _set_head_shape_points(self, state):
        self._head_shape_points = bool(state)

    def _set_eeg_channels(self, state):
        self._eeg_channels = bool(state)

    def _set_head_resolution(self, state):
        self._head_resolution = bool(state)

    def _set_head_opacity(self, value):
        self._head_opacity = value

    def _set_helmet(self, state):
        self._helmet = bool(state)

    def _set_grow_hair(self, value):
        self._grow_hair = value

    def _set_subject_to(self, value):
        self._subject_to = value
        self._forward_widget_command(
            "save_subject", "set_enabled", len(value) > 0)
        if self._check_subject_exists():
            style = dict(border="2px solid #ff0000")
        else:
            style = dict(border="initial")
        self._forward_widget_command(
            "subject_to", "set_style", style)

    def _set_scale_mode(self, mode):
        self._scale_mode = mode

    def _set_fiducial(self, value, coord):
        self._mri_fids_modified = True
        fid = self._current_fiducial
        fid_idx = _map_fid_name_to_idx(name=fid)

        coords = ["X", "Y", "Z"]
        coord_idx = coords.index(coord)

        self.coreg.fiducials.dig[fid_idx]['r'][coord_idx] = value / 1e3
        self._update_plot("mri_fids")

    def _set_parameter(self, value, mode_name, coord, plot_locked=False):
        if mode_name == "scale":
            self._mri_scale_modified = True
        else:
            self._trans_modified = True
        if self._params_locked:
            return
        if mode_name == "scale" and self._scale_mode == "uniform":
            with self._lock(params=True):
                self._forward_widget_command(
                    ["sY", "sZ"], "set_value", value)
        with self._parameter_mutex:
            self. _set_parameter_safe(value, mode_name, coord)
        if not plot_locked:
            self._update_plot("sensors")

    def _set_parameter_safe(self, value, mode_name, coord):
        params = dict(
            rotation=self.coreg._rotation,
            translation=self.coreg._translation,
            scale=self.coreg._scale,
        )
        idx = ["X", "Y", "Z"].index(coord)
        if mode_name == "rotation":
            params[mode_name][idx] = np.deg2rad(value)
        elif mode_name == "translation":
            params[mode_name][idx] = value / 1e3
        else:
            assert mode_name == "scale"
            if self._scale_mode == "uniform":
                params[mode_name][:] = value / 1e2
            else:
                params[mode_name][idx] = value / 1e2
            self._update_plot("head")
        self.coreg._update_params(
            rot=params["rotation"],
            tra=params["translation"],
            sca=params["scale"],
        )

    def _set_icp_n_iterations(self, n_iterations):
        self._icp_n_iterations = n_iterations

    def _set_icp_fid_match(self, method):
        self._icp_fid_match = method

    def _set_point_weight(self, weight, point):
        funcs = {
            'hpi': '_set_hpi_coils',
            'hsp': '_set_head_shape_points',
            'eeg': '_set_eeg_channels',
        }
        if point in funcs.keys():
            getattr(self, funcs[point])(weight > 0)
        setattr(self, f"_{point}_weight", weight)
        setattr(self.coreg, f"_{point}_weight", weight)
        self._update_distance_estimation()

    @observe("_subjects_dir")
    def _subjects_dir_changed(self, change=None):
        # XXX: add coreg.set_subjects_dir
        self.coreg._subjects_dir = self._subjects_dir
        subjects = _get_subjects(self._subjects_dir)

        if self._subject not in subjects:  # Just pick the first available one
            self._subject = subjects[0]

        self._reset()

    @observe("_subject")
    def _subject_changed(self, change=None):
        # XXX: add coreg.set_subject()
        self.coreg._subject = self._subject
        self.coreg._setup_bem()
        self.coreg._setup_fiducials(self._fiducials)
        self._reset()

        default_fid_fname = fid_fname.format(
            subjects_dir=self._subjects_dir, subject=self._subject
        )
        if Path(default_fid_fname).exists():
            fname = default_fid_fname
        else:
            fname = None

        self._set_fiducials_file(fname)
        self._reset_fiducials()

    @observe("_lock_fids")
    def _lock_fids_changed(self, change=None):
        locked_widgets = [
            # MRI fiducials
            "save_mri_fids",
            # View options
            "helmet", "head_opacity", "high_res_head",
            # Digitization source
            "info_file", "grow_hair", "omit_distance", "omit", "reset_omit",
            # Scaling
            "scaling_mode", "sX", "sY", "sZ",
            # Transformation
            "tX", "tY", "tZ",
            "rX", "rY", "rZ",
            # Fitting buttons
            "fit_fiducials", "fit_icp",
            # Transformation I/O
            "save_trans", "load_trans",
            "reset_trans",
            # ICP
            "icp_n_iterations", "icp_fid_match", "reset_fitting_options",
            # Weights
            "hsp_weight", "eeg_weight", "hpi_weight",
            "lpa_weight", "nasion_weight", "rpa_weight",
        ]
        fits_widgets = ["fits_fiducials", "fits_icp"]
        fid_widgets = ["fid_X", "fid_Y", "fid_Z", "fids_file", "fids"]
        if self._lock_fids:
            self._forward_widget_command(locked_widgets, "set_enabled", True)
            self._forward_widget_command(
                'head_opacity', 'set_value', self._old_head_opacity
            )
            self._scale_mode_changed()
            self._display_message()
            self._update_distance_estimation()
        else:
            self._old_head_opacity = self._head_opacity
            self._forward_widget_command(
                'head_opacity', 'set_value', 1.0
            )
            self._forward_widget_command(locked_widgets, "set_enabled", False)
            self._forward_widget_command(fits_widgets, "set_enabled", False)
            self._display_message("Placing MRI fiducials - "
                                  f"{self._current_fiducial.upper()}")

        self._set_sensors_visibility(self._lock_fids)
        self._forward_widget_command("lock_fids", "set_value", self._lock_fids)
        self._forward_widget_command(fid_widgets, "set_enabled",
                                     not self._lock_fids)

    @observe("_current_fiducial")
    def _current_fiducial_changed(self, change=None):
        self._update_fiducials()
        self._follow_fiducial_view()
        if not self._lock_fids:
            self._display_message("Placing MRI fiducials - "
                                  f"{self._current_fiducial.upper()}")

    @observe("_info_file")
    def _info_file_changed(self, change=None):
        if not self._info_file:
            return
        elif self._info_file.endswith(('.fif', '.fif.gz')):
            fid, tree, _ = fiff_open(self._info_file)
            fid.close()
            if len(dir_tree_find(tree, FIFF.FIFFB_MEAS_INFO)) > 0:
                self._info = read_info(self._info_file, verbose=False)
            elif len(dir_tree_find(tree, FIFF.FIFFB_ISOTRAK)) > 0:
                self._info = _empty_info(1)
                self._info['dig'] = read_dig_fif(fname=self._info_file).dig
                self._info._unlocked = False
        else:
            self._info = read_raw(self._info_file).info
        # XXX: add coreg.set_info()
        self.coreg._info = self._info
        self.coreg._setup_digs()
        self._reset()

    @observe("_orient_glyphs")
    def _orient_glyphs_changed(self, change=None):
        self._update_plot(["hpi", "hsp", "eeg"])

    @observe("_scale_by_distance")
    def _scale_by_distance_changed(self, change=None):
        self._update_plot(["hpi", "hsp", "eeg"])

    @observe("_mark_inside")
    def _mark_inside_changed(self, change=None):
        self._update_plot("hsp")

    @observe("_hpi_coils")
    def _hpi_coils_changed(self, change=None):
        self._update_plot("hpi")

    @observe("_head_shape_points")
    def _head_shape_point_changed(self, change=None):
        self._update_plot("hsp")

    @observe("_eeg_channels")
    def _eeg_channels_changed(self, change=None):
        self._update_plot("eeg")

    @observe("_head_resolution")
    def _head_resolution_changed(self, change=None):
        self._update_plot(["head", "hsp"])

    @observe("_head_opacity")
    def _head_opacity_changed(self, change=None):
        if "head" in self._actors:
            self._actors["head"].GetProperty().SetOpacity(self._head_opacity)
            self._renderer._update()

    @observe("_helmet")
    def _helmet_changed(self, change=None):
        self._update_plot("helmet")

    @observe("_grow_hair")
    def _grow_hair_changed(self, change=None):
        self.coreg.set_grow_hair(self._grow_hair)
        self._update_plot("head")
        self._update_plot("hsp")  # inside/outside could change

    @observe("_scale_mode")
    def _scale_mode_changed(self, change=None):
        locked_widgets = ["sX", "sY", "sZ", "fits_icp", "subject_to"]
        mode = None if self._scale_mode == "None" else self._scale_mode
        self.coreg.set_scale_mode(mode)
        if self._lock_fids:
            self._forward_widget_command(locked_widgets, "set_enabled",
                                         mode is not None)
            self._forward_widget_command("fits_fiducials", "set_enabled",
                                         mode not in (None, "3-axis"))
        if self._scale_mode == "uniform":
            self._forward_widget_command(["sY", "sZ"], "set_enabled", False)

    @observe("_icp_fid_match")
    def _icp_fid_match_changed(self, change=None):
        self.coreg.set_fid_match(self._icp_fid_match)

    def _run_worker(self, queue, jobs):
        while True:
            data = queue.get()
            func = jobs[data._name]
            if data._params is not None:
                func(**data._params)
            else:
                func()
            queue.task_done()

    def _configure_dialogs(self):
        from ..viz.backends.renderer import MNE_3D_BACKEND_TESTING
        for name, buttons in zip(
                ["overwrite_subject", "overwrite_subject_exit"],
                [["Yes", "No"], ["Yes", "Discard", "Cancel"]]):
            self._widgets[name] = self._renderer._dialog_create(
                title="CoregistrationUI",
                text="The name of the output subject used to "
                     "save the scaled anatomy already exists.",
                info_text="Do you want to overwrite?",
                callback=self._overwrite_subject_callback,
                buttons=buttons,
                modal=not MNE_3D_BACKEND_TESTING,
            )

    def _configure_worker(self):
        work_plan = {
            "_job_queue": dict(save_subject=self._save_subject),
            "_parameter_queue": dict(set_parameter=self._set_parameter),
        }
        for queue_name, jobs in work_plan.items():
            t = threading.Thread(target=partial(
                self._run_worker,
                queue=getattr(self, queue_name),
                jobs=jobs,
            ))
            t.daemon = True
            t.start()

    def _configure_picking(self):
        self._renderer._update_picking_callback(
            self._on_mouse_move,
            self._on_button_press,
            self._on_button_release,
            self._on_pick
        )

    def _configure_legend(self):
        colors = \
            [np.array(DEFAULTS['coreg'][f"{fid.lower()}_color"]).astype(float)
             for fid in self._defaults['fiducials']]
        labels = list(zip(self._defaults['fiducials'], colors))
        mri_fids_legend_actor = self._renderer.legend(labels=labels)
        self._update_actor("mri_fids_legend", mri_fids_legend_actor)

    @verbose
    def _redraw(self, *, verbose=None):
        if not self._redraws_pending:
            return
        draw_map = dict(
            head=self._add_head_surface,
            mri_fids=self._add_mri_fiducials,
            hsp=self._add_head_shape_points,
            hpi=self._add_hpi_coils,
            eeg=self._add_eeg_channels,
            head_fids=self._add_head_fiducials,
            helmet=self._add_helmet,
        )
        with self._redraw_mutex:
            # We need at least "head" before "hsp", because the grow_hair param
            # for head sets the rr that are used for inside/outside hsp
            redraws_ordered = sorted(
                self._redraws_pending,
                key=lambda key: list(draw_map).index(key))
            logger.debug(f'Redrawing {redraws_ordered}')
            for ki, key in enumerate(redraws_ordered):
                logger.debug(f'{ki}. Drawing {repr(key)}')
                draw_map[key]()
            self._redraws_pending.clear()
            self._renderer._update()
            # necessary for MacOS
            if platform.system() == 'Darwin':
                self._renderer._process_events()

    def _on_mouse_move(self, vtk_picker, event):
        if self._mouse_no_mvt:
            self._mouse_no_mvt -= 1

    def _on_button_press(self, vtk_picker, event):
        self._mouse_no_mvt = 2

    def _on_button_release(self, vtk_picker, event):
        if self._mouse_no_mvt > 0:
            x, y = vtk_picker.GetEventPosition()
            # XXX: internal plotter/renderer should not be exposed
            plotter = self._renderer.figure.plotter
            picked_renderer = self._renderer.figure.plotter.renderer
            # trigger the pick
            plotter.picker.Pick(x, y, 0, picked_renderer)
        self._mouse_no_mvt = 0

    def _on_pick(self, vtk_picker, event):
        if self._lock_fids:
            return
        # XXX: taken from Brain, can be refactored
        cell_id = vtk_picker.GetCellId()
        mesh = vtk_picker.GetDataSet()
        if mesh is None or cell_id == -1 or not self._mouse_no_mvt:
            return
        if not getattr(mesh, "_picking_target", False):
            return
        pos = np.array(vtk_picker.GetPickPosition())
        vtk_cell = mesh.GetCell(cell_id)
        cell = [vtk_cell.GetPointId(point_id) for point_id
                in range(vtk_cell.GetNumberOfPoints())]
        vertices = mesh.points[cell]
        idx = np.argmin(abs(vertices - pos), axis=0)
        vertex_id = cell[idx[0]]

        fiducials = [s.lower() for s in self._defaults["fiducials"]]
        idx = fiducials.index(self._current_fiducial.lower())
        # XXX: add coreg.set_fids
        self.coreg._fid_points[idx] = self._surfaces["head"].points[vertex_id]
        self.coreg._reset_fiducials()
        self._update_fiducials()
        self._update_plot("mri_fids")

    def _reset_fitting_parameters(self):
        self._forward_widget_command("icp_n_iterations", "set_value",
                                     self._defaults["icp_n_iterations"])
        self._forward_widget_command("icp_fid_match", "set_value",
                                     self._defaults["icp_fid_match"])
        weights_widgets = [f"{w}_weight"
                           for w in self._defaults["weights"].keys()]
        self._forward_widget_command(weights_widgets, "set_value",
                                     list(self._defaults["weights"].values()))

    def _reset_fiducials(self):
        self._set_current_fiducial(self._defaults["fiducial"])

    def _omit_hsp(self):
        self.coreg.omit_head_shape_points(self._omit_hsp_distance / 1e3)
        n_omitted = np.sum(~self.coreg._extra_points_filter)
        n_remaining = len(self.coreg._dig_dict['hsp']) - n_omitted
        self._update_plot("hsp")
        self._update_distance_estimation()
        self._display_message(
            f"{n_omitted} head shape points omitted, "
            f"{n_remaining} remaining.")

    def _reset_omit_hsp_filter(self):
        self.coreg._extra_points_filter = None
        self.coreg._update_params(force_update=True)
        self._update_plot("hsp")
        self._update_distance_estimation()
        n_total = len(self.coreg._dig_dict['hsp'])
        self._display_message(
            f"No head shape point is omitted, the total is {n_total}.")

    @verbose
    def _update_plot(self, changes="all", verbose=None):
        # Update list of things that need to be updated/plotted (and maybe
        # draw them immediately)
        try:
            fun_name = inspect.currentframe().f_back.f_back.f_code.co_name
        except Exception:  # just in case one of these attrs is missing
            fun_name = 'unknown'
        logger.debug(
            f'Updating plots based on {fun_name}: {repr(changes)}')
        if self._plot_locked:
            return
        if self._info is None:
            changes = ["head", "mri_fids"]
            self._to_cf_t = dict(mri=dict(trans=np.eye(4)), head=None)
        else:
            self._to_cf_t = _get_transforms_to_coord_frame(
                self._info, self.coreg.trans, coord_frame=self._coord_frame)
        all_keys = (
            'head', 'mri_fids',  # MRI first
            'hsp', 'hpi', 'eeg', 'head_fids',  # then dig
            'helmet',
        )
        if changes == 'all':
            changes = list(all_keys)
        elif changes == 'sensors':
            changes = all_keys[2:]  # omit MRI ones
        elif isinstance(changes, str):
            changes = [changes]
        changes = set(changes)
        # ideally we would maybe have this in:
        # with self._redraw_mutex:
        # it would reduce "jerkiness" of the updates, but this should at least
        # work okay
        bad = changes.difference(set(all_keys))
        assert len(bad) == 0, f'Unknown changes: {bad}'
        self._redraws_pending.update(changes)
        if self._immediate_redraw:
            self._redraw()

    @contextmanager
    def _lock(self, plot=False, params=False, scale_mode=False, fitting=False):
        """Which part of the UI to temporarily disable."""
        if plot:
            old_plot_locked = self._plot_locked
            self._plot_locked = True
        if params:
            old_params_locked = self._params_locked
            self._params_locked = True
        if scale_mode:
            old_scale_mode = self.coreg._scale_mode
            self.coreg._scale_mode = None
        if fitting:
            widgets = [
                "sX", "sY", "sZ",
                "tX", "tY", "tZ",
                "rX", "rY", "rZ",
                "fit_icp", "fit_fiducials", "fits_icp", "fits_fiducials"
            ]
            states = [
                self._forward_widget_command(
                    w, "is_enabled", None,
                    input_value=False, output_value=True)
                for w in widgets
            ]
            self._forward_widget_command(widgets, "set_enabled", False)
        try:
            yield
        finally:
            if plot:
                self._plot_locked = old_plot_locked
            if params:
                self._params_locked = old_params_locked
            if scale_mode:
                self.coreg._scale_mode = old_scale_mode
            if fitting:
                for idx, w in enumerate(widgets):
                    self._forward_widget_command(w, "set_enabled", states[idx])

    def _display_message(self, msg=""):
        self._forward_widget_command('status_message', 'set_value', msg)
        self._forward_widget_command(
            'status_message', 'show', None, input_value=False
        )
        self._forward_widget_command(
            'status_message', 'update', None, input_value=False
        )
        if msg:
            logger.info(msg)

    def _follow_fiducial_view(self):
        fid = self._current_fiducial.lower()
        view = dict(lpa='left', rpa='right', nasion='front')
        kwargs = dict(front=(90., 90.), left=(180, 90), right=(0., 90))
        kwargs = dict(zip(('azimuth', 'elevation'), kwargs[view[fid]]))
        if not self._lock_fids:
            self._renderer.set_camera(distance=None, **kwargs)

    def _update_fiducials(self):
        fid = self._current_fiducial
        if not fid:
            return

        idx = _map_fid_name_to_idx(name=fid)
        val = self.coreg.fiducials.dig[idx]['r'] * 1e3

        with self._lock(plot=True):
            self._forward_widget_command(
                ["fid_X", "fid_Y", "fid_Z"], "set_value", val)

    def _update_distance_estimation(self):
        value = self.coreg._get_fiducials_distance_str() + '\n' + \
            self.coreg._get_point_distance_str()
        dists = self.coreg.compute_dig_mri_distances() * 1e3
        if self._hsp_weight > 0:
            value += "\nHSP <-> MRI (mean/min/max): "\
                f"{np.mean(dists):.2f} "\
                f"/ {np.min(dists):.2f} / {np.max(dists):.2f} mm"
        self._forward_widget_command("fit_label", "set_value", value)

    def _update_parameters(self):
        with self._lock(plot=True, params=True):
            # rotation
            deg = np.rad2deg(self.coreg._rotation)
            logger.debug(f'  Rotation:    {deg}')
            self._forward_widget_command(["rX", "rY", "rZ"], "set_value", deg)
            # translation
            mm = self.coreg._translation * 1e3
            logger.debug(f'  Translation: {mm}')
            self._forward_widget_command(["tX", "tY", "tZ"], "set_value", mm)
            # scale
            sc = self.coreg._scale * 1e2
            logger.debug(f'  Scale:       {sc}')
            self._forward_widget_command(["sX", "sY", "sZ"], "set_value", sc)

    def _reset(self, keep_trans=False):
        """Refresh the scene, and optionally reset transformation & scaling.

        Parameters
        ----------
        keep_trans : bool
            Whether to retain translation, rotation, and scaling; or reset them
            to their default values (no translation, no rotation, no scaling).
        """
        if not keep_trans:
            self.coreg.set_scale(self.coreg._default_parameters[6:9])
            self.coreg.set_rotation(self.coreg._default_parameters[:3])
            self.coreg.set_translation(self.coreg._default_parameters[3:6])
        self._update_plot()
        self._update_parameters()
        self._update_distance_estimation()

    def _forward_widget_command(self, names, command, value,
                                input_value=True, output_value=False):
        """Invoke a method of one or more widgets if the widgets exist.

        Parameters
        ----------
        names : str | array-like of str
            The widget names to operate on.
        command : str
            The method to invoke.
        value : object | array-like
            The value(s) to pass to the method.
        input_value : bool
            Whether the ``command`` accepts a ``value``. If ``False``, no
            ``value`` will be passed to ``command``.
        output_value : bool
            Whether to return the return value of ``command``.

        Returns
        -------
        ret : object | None
            ``None`` if ``output_value`` is ``False``, and the return value of
            ``command`` otherwise.
        """
        _validate_type(
            item=names,
            types=(str, list),
            item_name='names'
        )
        if isinstance(names, str):
            names = [names]

        if not isinstance(value, (str, float, int, dict, type(None))):
            value = list(value)
            assert len(names) == len(value)

        for idx, name in enumerate(names):
            val = value[idx] if isinstance(value, list) else value
            if name in self._widgets and self._widgets[name] is not None:
                if input_value:
                    ret = getattr(self._widgets[name], command)(val)
                else:
                    ret = getattr(self._widgets[name], command)()
                if output_value:
                    return ret

    def _set_sensors_visibility(self, state):
        sensors = ["head_fiducials", "hpi_coils", "head_shape_points",
                   "eeg_channels"]
        for sensor in sensors:
            if sensor in self._actors and self._actors[sensor] is not None:
                actors = self._actors[sensor]
                actors = actors if isinstance(actors, list) else [actors]
                for actor in actors:
                    actor.SetVisibility(state)
        self._renderer._update()

    def _update_actor(self, actor_name, actor):
        # XXX: internal plotter/renderer should not be exposed
        self._renderer.plotter.remove_actor(self._actors.get(actor_name),
                                            render=False)
        self._actors[actor_name] = actor

    def _add_mri_fiducials(self):
        mri_fids_actors = _plot_mri_fiducials(
            self._renderer, self.coreg._fid_points, self._subjects_dir,
            self._subject, self._to_cf_t, self._fid_colors)
        # disable picking on the markers
        for actor in mri_fids_actors:
            actor.SetPickable(False)
        self._update_actor("mri_fiducials", mri_fids_actors)

    def _add_head_fiducials(self):
        head_fids_actors = _plot_head_fiducials(
            self._renderer, self._info, self._to_cf_t, self._fid_colors)
        self._update_actor("head_fiducials", head_fids_actors)

    def _add_hpi_coils(self):
        if self._hpi_coils:
            hpi_actors = _plot_hpi_coils(
                self._renderer, self._info, self._to_cf_t,
                opacity=self._defaults["sensor_opacity"],
                scale=DEFAULTS["coreg"]["extra_scale"],
                orient_glyphs=self._orient_glyphs,
                scale_by_distance=self._scale_by_distance,
                surf=self._head_geo, check_inside=self._check_inside,
                nearest=self._nearest)
        else:
            hpi_actors = None
        self._update_actor("hpi_coils", hpi_actors)

    def _add_head_shape_points(self):
        if self._head_shape_points:
            hsp_actors = _plot_head_shape_points(
                self._renderer, self._info, self._to_cf_t,
                opacity=self._defaults["sensor_opacity"],
                orient_glyphs=self._orient_glyphs,
                scale_by_distance=self._scale_by_distance,
                mark_inside=self._mark_inside, surf=self._head_geo,
                mask=self.coreg._extra_points_filter,
                check_inside=self._check_inside, nearest=self._nearest)
        else:
            hsp_actors = None
        self._update_actor("head_shape_points", hsp_actors)

    def _add_eeg_channels(self):
        if self._eeg_channels:
            eeg = ["original"]
            picks = pick_types(self._info, eeg=(len(eeg) > 0), fnirs=True)
            if len(picks) > 0:
                actors = _plot_sensors(
                    self._renderer, self._info, self._to_cf_t, picks,
                    meg=False, eeg=eeg, fnirs=["sources", "detectors"],
                    warn_meg=False, head_surf=self._head_geo, units='m',
                    sensor_opacity=self._defaults["sensor_opacity"],
                    orient_glyphs=self._orient_glyphs,
                    scale_by_distance=self._scale_by_distance,
                    surf=self._head_geo, check_inside=self._check_inside,
                    nearest=self._nearest)
                sens_actors = actors["eeg"]
                sens_actors.extend(actors["fnirs"])
            else:
                sens_actors = None
        else:
            sens_actors = None
        self._update_actor("eeg_channels", sens_actors)

    def _add_head_surface(self):
        bem = None
        if self._head_resolution:
            surface = 'head-dense'
            key = 'high'
        else:
            surface = 'head'
            key = 'low'
        try:
            head_actor, head_surf, _ = _plot_head_surface(
                self._renderer, surface, self._subject,
                self._subjects_dir, bem, self._coord_frame, self._to_cf_t,
                alpha=self._head_opacity)
        except IOError:
            head_actor, head_surf, _ = _plot_head_surface(
                self._renderer, "head", self._subject, self._subjects_dir,
                bem, self._coord_frame, self._to_cf_t,
                alpha=self._head_opacity)
            key = 'low'
        self._update_actor("head", head_actor)
        # mark head surface mesh to restrict picking
        head_surf._picking_target = True
        # We need to use _get_processed_mri_points to incorporate grow_hair
        rr = self.coreg._get_processed_mri_points(key) * self.coreg._scale.T
        head_surf.points = rr
        head_surf.compute_normals()
        self._surfaces["head"] = head_surf
        tris = self._surfaces["head"].faces.reshape(-1, 4)[:, 1:]
        assert tris.ndim == 2 and tris.shape[1] == 3, tris.shape
        nn = self._surfaces["head"].point_normals
        assert nn.shape == (len(rr), 3), nn.shape
        self._head_geo = dict(rr=rr, tris=tris, nn=nn)
        self._check_inside = _CheckInside(head_surf, mode='pyvista')
        self._nearest = _DistanceQuery(rr)

    def _add_helmet(self):
        if self._helmet:
            logger.debug('Drawing helmet')
            head_mri_t = _get_trans(self.coreg.trans, 'head', 'mri')[0]
            helmet_actor, _, _ = _plot_helmet(
                self._renderer, self._info, self._to_cf_t, head_mri_t,
                self._coord_frame)
        else:
            helmet_actor = None
        self._update_actor("helmet", helmet_actor)

    def _fit_fiducials(self):
        with self._lock(scale_mode=True):
            self._fits_fiducials()

    def _fits_fiducials(self):
        with self._lock(params=True, fitting=True):
            start = time.time()
            self.coreg.fit_fiducials(
                lpa_weight=self._lpa_weight,
                nasion_weight=self._nasion_weight,
                rpa_weight=self._rpa_weight,
                verbose=self._verbose,
            )
            end = time.time()
            self._display_message(
                f"Fitting fiducials finished in {end - start:.2f} seconds.")
            self._update_plot("sensors")
            self._update_parameters()
            self._update_distance_estimation()

    def _fit_icp(self):
        with self._lock(scale_mode=True):
            self._fit_icp_real(update_head=False)

    def _fits_icp(self):
        self._fit_icp_real(update_head=True)

    def _fit_icp_real(self, *, update_head):
        with self._lock(params=True, fitting=True):
            self._current_icp_iterations = 0
            updates = ['hsp', 'hpi', 'eeg', 'head_fids', 'helmet']
            if update_head:
                updates.insert(0, 'head')

            def callback(iteration, n_iterations):
                self._display_message(
                    f"Fitting ICP - iteration {iteration + 1}")
                self._update_plot(updates)
                self._current_icp_iterations += 1
                self._update_distance_estimation()
                self._update_parameters()
                self._renderer._process_events()  # allow a draw or cancel

            start = time.time()
            self.coreg.fit_icp(
                n_iterations=self._icp_n_iterations,
                lpa_weight=self._lpa_weight,
                nasion_weight=self._nasion_weight,
                rpa_weight=self._rpa_weight,
                callback=callback,
                verbose=self._verbose,
            )
            end = time.time()
            self._display_message()
            self._display_message(
                f"Fitting ICP finished in {end - start:.2f} seconds and "
                f"{self._current_icp_iterations} iterations.")
            del self._current_icp_iterations

    def _task_save_subject(self):
        from ..viz.backends.renderer import MNE_3D_BACKEND_TESTING
        if MNE_3D_BACKEND_TESTING:
            self._save_subject()
        else:
            self._job_queue.put(_WorkerData("save_subject", None))

    def _task_set_parameter(self, value, mode_name, coord):
        from ..viz.backends.renderer import MNE_3D_BACKEND_TESTING
        if MNE_3D_BACKEND_TESTING:
            self._set_parameter(value, mode_name, coord, self._plot_locked)
        else:
            self._parameter_queue.put(_WorkerData("set_parameter", dict(
                value=value, mode_name=mode_name, coord=coord,
                plot_locked=self._plot_locked)))

    def _overwrite_subject_callback(self, button_name):
        if button_name == "Yes":
            self._save_subject_callback(overwrite=True)
        elif button_name == "Cancel":
            self._accept_close_event = False
        else:
            assert button_name == "No" or button_name == "Discard"

    def _check_subject_exists(self):
        if not self._subject_to:
            return False
        subject_dirname = os.path.join('{subjects_dir}', '{subject}')
        dest = subject_dirname.format(subject=self._subject_to,
                                      subjects_dir=self._subjects_dir)
        return os.path.exists(dest)

    def _save_subject(self, exit_mode=False):
        dialog = "overwrite_subject_exit" if exit_mode else "overwrite_subject"
        if self._check_subject_exists():
            self._forward_widget_command(dialog, "show", True)
        else:
            self._save_subject_callback()

    def _save_subject_callback(self, overwrite=False):
        self._display_message(f"Saving {self._subject_to}...")
        default_cursor = self._renderer._window_get_cursor()
        self._renderer._window_set_cursor(
            self._renderer._window_new_cursor("WaitCursor"))

        # prepare bem
        bem_names = []
        if self._scale_mode != "None":
            can_prepare_bem = _mri_subject_has_bem(
                self._subject, self._subjects_dir)
        else:
            can_prepare_bem = False
        if can_prepare_bem:
            pattern = bem_fname.format(subjects_dir=self._subjects_dir,
                                       subject=self._subject,
                                       name='(.+-bem)')
            bem_dir, pattern = os.path.split(pattern)
            for filename in os.listdir(bem_dir):
                match = re.match(pattern, filename)
                if match:
                    bem_names.append(match.group(1))

        # save the scaled MRI
        try:
            self._display_message(f"Scaling {self._subject_to}...")
            scale_mri(
                subject_from=self._subject, subject_to=self._subject_to,
                scale=self.coreg._scale, overwrite=overwrite,
                subjects_dir=self._subjects_dir, skip_fiducials=True,
                labels=True, annot=True, on_defects='ignore'
            )
        except Exception:
            logger.error(f"Error scaling {self._subject_to}")
            bem_names = []
        else:
            self._display_message(f"Scaling {self._subject_to}... Done!")

        # Precompute BEM solutions
        for bem_name in bem_names:
            try:
                self._display_message(f"Computing {bem_name} solution...")
                bem_file = bem_fname.format(subjects_dir=self._subjects_dir,
                                            subject=self._subject_to,
                                            name=bem_name)
                bemsol = make_bem_solution(bem_file)
                write_bem_solution(bem_file[:-4] + '-sol.fif', bemsol)
            except Exception:
                logger.error(f"Error computing {bem_name} solution")
            else:
                self._display_message(f"Computing {bem_name} solution..."
                                      " Done!")
        self._display_message(f"Saving {self._subject_to}... Done!")
        self._renderer._window_set_cursor(default_cursor)
        self._mri_scale_modified = False

    def _save_mri_fiducials(self, fname):
        self._display_message(f"Saving {fname}...")
        dig_montage = self.coreg.fiducials
        write_fiducials(
            fname=fname, pts=dig_montage.dig, coord_frame='mri', overwrite=True
        )
        self._set_fiducials_file(fname)
        self._display_message(f"Saving {fname}... Done!")
        self._mri_fids_modified = False

    def _save_trans(self, fname):
        write_trans(fname, self.coreg.trans, overwrite=True)
        self._display_message(
            f"{fname} transform file is saved.")
        self._trans_modified = False

    def _load_trans(self, fname):
        mri_head_t = _ensure_trans(read_trans(fname, return_all=True),
                                   'mri', 'head')['trans']
        rot_x, rot_y, rot_z = rotation_angles(mri_head_t)
        x, y, z = mri_head_t[:3, 3]
        self.coreg._update_params(
            rot=np.array([rot_x, rot_y, rot_z]),
            tra=np.array([x, y, z]),
        )
        self._update_parameters()
        self._update_distance_estimation()
        self._update_plot()
        self._display_message(
            f"{fname} transform file is loaded.")

    def _update_fiducials_label(self):
        if self._fiducials_file is None:
            text = (
                '<p><strong>No custom MRI fiducials loaded!</strong></p>'
                '<p>MRI fiducials could not be found in the standard '
                'location. The displayed initial MRI fiducial locations '
                '(diamonds) were derived from fsaverage. Place, lock, and '
                'save fiducials to discard this message.</p>'
            )
        else:
            assert self._fiducials_file == fid_fname.format(
                subjects_dir=self._subjects_dir, subject=self._subject
            )
            assert self.coreg._fid_accurate is True
            text = (
                f'<p><strong>MRI fiducials (diamonds) loaded from '
                f'standard location:</strong></p>'
                f'<p>{self._fiducials_file}</p>'
            )

        self._forward_widget_command(
            'mri_fiducials_label', 'set_value', text
        )

    def _configure_dock(self):
        if self._renderer._kind == 'notebook':
            collapse = True  # collapsible and collapsed
        else:
            collapse = None  # not collapsible
        self._renderer._dock_initialize(
            name="Input", area="left", max_width="350px"
        )
        mri_subject_layout = self._renderer._dock_add_group_box(
            name="MRI Subject",
            collapse=collapse,
        )
        subjects_dir_layout = self._renderer._dock_add_layout(
            vertical=False
        )
        self._widgets["subjects_dir_field"] = self._renderer._dock_add_text(
            name="subjects_dir_field",
            value=self._subjects_dir,
            placeholder="Subjects Directory",
            callback=self._set_subjects_dir,
            layout=subjects_dir_layout,
        )
        self._widgets["subjects_dir"] = self._renderer._dock_add_file_button(
            name="subjects_dir",
            desc="Load",
            func=self._set_subjects_dir,
            is_directory=True,
            icon=True,
            tooltip="Load the path to the directory containing the "
                    "FreeSurfer subjects",
            layout=subjects_dir_layout,
        )
        self._renderer._layout_add_widget(
            layout=mri_subject_layout,
            widget=subjects_dir_layout,
        )
        self._widgets["subject"] = self._renderer._dock_add_combo_box(
            name="Subject",
            value=self._subject,
            rng=_get_subjects(self._subjects_dir),
            callback=self._set_subject,
            compact=True,
            tooltip="Select the FreeSurfer subject name",
            layout=mri_subject_layout,
        )

        mri_fiducials_layout = self._renderer._dock_add_group_box(
            name="MRI Fiducials",
            collapse=collapse,
        )
        # Add MRI fiducials I/O widgets
        self._widgets['mri_fiducials_label'] = self._renderer._dock_add_label(
            value='',  # Will be filled via _update_fiducials_label()
            layout=mri_fiducials_layout,
            selectable=True
        )
        # Reload & Save buttons go into their own layout widget
        mri_fiducials_button_layout = self._renderer._dock_add_layout(
            vertical=False
        )
        self._renderer._layout_add_widget(
            layout=mri_fiducials_layout,
            widget=mri_fiducials_button_layout
        )
        self._widgets["reload_mri_fids"] = self._renderer._dock_add_button(
            name='Reload MRI Fid.',
            callback=lambda: self._set_fiducials_file(self._fiducials_file),
            tooltip="Reload MRI fiducials from the standard location",
            layout=mri_fiducials_button_layout,
        )
        # Disable reload button until we've actually loaded a fiducial file
        # (happens in _set_fiducials_file method)
        self._forward_widget_command('reload_mri_fids', 'set_enabled', False)

        self._widgets["save_mri_fids"] = self._renderer._dock_add_button(
            name="Save MRI Fid.",
            callback=lambda: self._save_mri_fiducials(
                fid_fname.format(
                    subjects_dir=self._subjects_dir, subject=self._subject
                )
            ),
            tooltip="Save MRI fiducials to the standard location. Fiducials "
                    "must be locked first!",
            layout=mri_fiducials_button_layout,
        )
        self._widgets["lock_fids"] = self._renderer._dock_add_check_box(
            name="Lock fiducials",
            value=self._lock_fids,
            callback=self._set_lock_fids,
            tooltip="Lock/Unlock interactive fiducial editing",
            layout=mri_fiducials_layout,
        )
        self._widgets["fids"] = self._renderer._dock_add_radio_buttons(
            value=self._defaults["fiducial"],
            rng=self._defaults["fiducials"],
            callback=self._set_current_fiducial,
            vertical=False,
            layout=mri_fiducials_layout,
        )
        fiducial_coords_layout = self._renderer._dock_add_layout()
        for coord in ("X", "Y", "Z"):
            name = f"fid_{coord}"
            self._widgets[name] = self._renderer._dock_add_spin_box(
                name=coord,
                value=0.,
                rng=[-1e3, 1e3],
                callback=partial(
                    self._set_fiducial,
                    coord=coord,
                ),
                compact=True,
                double=True,
                step=1,
                tooltip=f"Set the {coord} fiducial coordinate",
                layout=fiducial_coords_layout,
            )
        self._renderer._layout_add_widget(
            mri_fiducials_layout, fiducial_coords_layout)

        dig_source_layout = self._renderer._dock_add_group_box(
            name="Info source with digitization",
            collapse=collapse,
        )
        info_file_layout = self._renderer._dock_add_layout(
            vertical=False
        )
        self._widgets["info_file_field"] = self._renderer._dock_add_text(
            name="info_file_field",
            value=self._info_file,
            placeholder="Path to info",
            callback=self._set_info_file,
            layout=info_file_layout,
        )
        self._widgets["info_file"] = self._renderer._dock_add_file_button(
            name="info_file",
            desc="Load",
            func=self._set_info_file,
            icon=True,
            tooltip="Load the FIFF file with digitization data for "
                    "coregistration",
            layout=info_file_layout,
        )
        self._renderer._layout_add_widget(
            layout=dig_source_layout,
            widget=info_file_layout,
        )
        self._widgets["grow_hair"] = self._renderer._dock_add_spin_box(
            name="Grow Hair (mm)",
            value=self._grow_hair,
            rng=[0.0, 10.0],
            callback=self._set_grow_hair,
            tooltip="Compensate for hair on the digitizer head shape",
            layout=dig_source_layout,
        )
        omit_hsp_layout_1 = self._renderer._dock_add_layout(vertical=False)
        omit_hsp_layout_2 = self._renderer._dock_add_layout(vertical=False)
        self._widgets["omit_distance"] = self._renderer._dock_add_spin_box(
            name="Omit Distance (mm)",
            value=self._omit_hsp_distance,
            rng=[0.0, 100.0],
            callback=self._set_omit_hsp_distance,
            tooltip="Set the head shape points exclusion distance",
            layout=omit_hsp_layout_1,
        )
        self._widgets["omit"] = self._renderer._dock_add_button(
            name="Omit",
            callback=self._omit_hsp,
            tooltip="Exclude the head shape points that are far away from "
                    "the MRI head",
            layout=omit_hsp_layout_2,
        )
        self._widgets["reset_omit"] = self._renderer._dock_add_button(
            name="Reset",
            callback=self._reset_omit_hsp_filter,
            tooltip="Reset all excluded head shape points",
            layout=omit_hsp_layout_2,
        )
        self._renderer._layout_add_widget(dig_source_layout, omit_hsp_layout_1)
        self._renderer._layout_add_widget(dig_source_layout, omit_hsp_layout_2)

        view_options_layout = self._renderer._dock_add_group_box(
            name="View Options",
            collapse=collapse,
        )
        self._widgets["helmet"] = self._renderer._dock_add_check_box(
            name="Show MEG helmet",
            value=self._helmet,
            callback=self._set_helmet,
            tooltip="Enable/Disable MEG helmet",
            layout=view_options_layout,
        )
        self._widgets["high_res_head"] = self._renderer._dock_add_check_box(
            name="Show high-resolution head",
            value=self._head_resolution,
            callback=self._set_head_resolution,
            tooltip="Enable/Disable high resolution head surface",
            layout=view_options_layout,
        )
        self._widgets["head_opacity"] = self._renderer._dock_add_slider(
            name="Head opacity",
            value=self._head_opacity,
            rng=[0.25, 1.0],
            callback=self._set_head_opacity,
            compact=True,
            double=True,
            layout=view_options_layout,
        )
        self._renderer._dock_add_stretch()

        self._renderer._dock_initialize(
            name="Parameters", area="right", max_width="350px"
        )
        mri_scaling_layout = self._renderer._dock_add_group_box(
            name="MRI Scaling",
            collapse=collapse,
        )
        self._widgets["scaling_mode"] = self._renderer._dock_add_combo_box(
            name="Scaling Mode",
            value=self._defaults["scale_mode"],
            rng=self._defaults["scale_modes"],
            callback=self._set_scale_mode,
            tooltip="Select the scaling mode",
            compact=True,
            layout=mri_scaling_layout,
        )
        scale_params_layout = self._renderer._dock_add_group_box(
            name="Scaling Parameters",
            layout=mri_scaling_layout,
        )
        coords = ["X", "Y", "Z"]
        for coord in coords:
            name = f"s{coord}"
            attr = getattr(self.coreg, "_scale")
            self._widgets[name] = self._renderer._dock_add_spin_box(
                name=name,
                value=attr[coords.index(coord)] * 1e2,
                rng=[1., 10000.],  # percent
                callback=partial(
                    self._set_parameter,
                    mode_name="scale",
                    coord=coord,
                ),
                compact=True,
                double=True,
                step=1,
                tooltip=f"Set the {coord} scaling parameter (in %)",
                layout=scale_params_layout,
            )

        fit_scale_layout = self._renderer._dock_add_layout(vertical=False)
        self._widgets["fits_fiducials"] = self._renderer._dock_add_button(
            name="Fit fiducials with scaling",
            callback=self._fits_fiducials,
            tooltip="Find MRI scaling, rotation, and translation to fit all "
                    "3 fiducials",
            layout=fit_scale_layout,
        )
        self._widgets["fits_icp"] = self._renderer._dock_add_button(
            name="Fit ICP with scaling",
            callback=self._fits_icp,
            tooltip="Find MRI scaling, rotation, and translation to match the "
                    "head shape points",
            layout=fit_scale_layout,
        )
        self._renderer._layout_add_widget(
            scale_params_layout, fit_scale_layout)
        subject_to_layout = self._renderer._dock_add_layout(vertical=False)
        self._widgets["subject_to"] = self._renderer._dock_add_text(
            name="subject-to",
            value=self._subject_to,
            placeholder="subject name",
            callback=self._set_subject_to,
            layout=subject_to_layout,
        )
        self._widgets["save_subject"] = self._renderer._dock_add_button(
            name="Save scaled anatomy",
            callback=self._task_save_subject,
            tooltip="Save scaled anatomy",
            layout=subject_to_layout,
        )
        self._renderer._layout_add_widget(
            mri_scaling_layout, subject_to_layout)
        param_layout = self._renderer._dock_add_group_box(
            name="Translation (t) and Rotation (r)",
            collapse=collapse,
        )
        for coord in coords:
            coord_layout = self._renderer._dock_add_layout(vertical=False)
            for mode, mode_name in (("t", "Translation"), ("r", "Rotation")):
                name = f"{mode}{coord}"
                attr = getattr(self.coreg, f"_{mode_name.lower()}")
                rng = [-360, 360] if mode_name == "Rotation" else [-100, 100]
                unit = "°" if mode_name == "Rotation" else "mm"
                self._widgets[name] = self._renderer._dock_add_spin_box(
                    name=name,
                    value=attr[coords.index(coord)] * 1e3,
                    rng=np.array(rng),
                    callback=partial(
                        self._task_set_parameter,
                        mode_name=mode_name.lower(),
                        coord=coord,
                    ),
                    compact=True,
                    double=True,
                    step=1,
                    tooltip=f"Set the {coord} {mode_name.lower()}"
                            f" parameter (in {unit})",
                    layout=coord_layout
                )
            self._renderer._layout_add_widget(param_layout, coord_layout)

        fit_layout = self._renderer._dock_add_layout(vertical=False)
        self._widgets["fit_fiducials"] = self._renderer._dock_add_button(
            name="Fit fiducials",
            callback=self._fit_fiducials,
            tooltip="Find rotation and translation to fit all 3 fiducials",
            layout=fit_layout,
        )
        self._widgets["fit_icp"] = self._renderer._dock_add_button(
            name="Fit ICP",
            callback=self._fit_icp,
            tooltip="Find rotation and translation to match the "
                    "head shape points",
            layout=fit_layout,
        )
        self._renderer._layout_add_widget(param_layout, fit_layout)
        trans_layout = self._renderer._dock_add_group_box(
            name="HEAD <> MRI Transform",
            collapse=collapse,
        )
        save_trans_layout = self._renderer._dock_add_layout(vertical=False)
        self._widgets["save_trans"] = self._renderer._dock_add_file_button(
            name="save_trans",
            desc="Save...",
            save=True,
            func=self._save_trans,
            tooltip="Save the transform file to disk",
            layout=save_trans_layout,
            filter='Head->MRI transformation (*-trans.fif *_trans.fif)',
            initial_directory=str(Path(self._info_file).parent),
        )
        self._widgets["load_trans"] = self._renderer._dock_add_file_button(
            name="load_trans",
            desc="Load...",
            func=self._load_trans,
            tooltip="Load the transform file from disk",
            layout=save_trans_layout,
            filter='Head->MRI transformation (*-trans.fif *_trans.fif)',
            initial_directory=str(Path(self._info_file).parent),
        )
        self._renderer._layout_add_widget(trans_layout, save_trans_layout)
        self._widgets["reset_trans"] = self._renderer._dock_add_button(
            name="Reset Parameters",
            callback=self._reset,
            tooltip="Reset all the parameters affecting the coregistration",
            layout=trans_layout,
        )

        fitting_options_layout = self._renderer._dock_add_group_box(
            name="Fitting Options",
            collapse=collapse,
        )
        self._widgets["fit_label"] = self._renderer._dock_add_label(
            value="",
            layout=fitting_options_layout,
        )
        self._widgets["icp_n_iterations"] = self._renderer._dock_add_spin_box(
            name="Number Of ICP Iterations",
            value=self._defaults["icp_n_iterations"],
            rng=[1, 100],
            callback=self._set_icp_n_iterations,
            compact=True,
            double=False,
            tooltip="Set the number of ICP iterations",
            layout=fitting_options_layout,
        )
        self._widgets["icp_fid_match"] = self._renderer._dock_add_combo_box(
            name="Fiducial point matching",
            value=self._defaults["icp_fid_match"],
            rng=self._defaults["icp_fid_matches"],
            callback=self._set_icp_fid_match,
            compact=True,
            tooltip="Select the fiducial point matching method",
            layout=fitting_options_layout,
        )
        weights_layout = self._renderer._dock_add_group_box(
            name="Weights",
            layout=fitting_options_layout,
        )
        for point, fid in zip(("HSP", "EEG", "HPI"),
                              self._defaults["fiducials"]):
            weight_layout = self._renderer._dock_add_layout(vertical=False)
            point_lower = point.lower()
            name = f"{point_lower}_weight"
            self._widgets[name] = self._renderer._dock_add_spin_box(
                name=point,
                value=getattr(self, f"_{point_lower}_weight"),
                rng=[0., 100.],
                callback=partial(self._set_point_weight, point=point_lower),
                compact=True,
                double=True,
                tooltip=f"Set the {point} weight",
                layout=weight_layout,
            )

            fid_lower = fid.lower()
            name = f"{fid_lower}_weight"
            self._widgets[name] = self._renderer._dock_add_spin_box(
                name=fid,
                value=getattr(self, f"_{fid_lower}_weight"),
                rng=[0., 100.],
                callback=partial(self._set_point_weight, point=fid_lower),
                compact=True,
                double=True,
                tooltip=f"Set the {fid} weight",
                layout=weight_layout,
            )
            self._renderer._layout_add_widget(weights_layout, weight_layout)
        self._widgets['reset_fitting_options'] = (
            self._renderer._dock_add_button(
                name="Reset Fitting Options",
                callback=self._reset_fitting_parameters,
                tooltip="Reset all the fitting parameters to default value",
                layout=fitting_options_layout,
            )
        )
        self._renderer._dock_add_stretch()

    def _configure_status_bar(self):
        self._renderer._status_bar_initialize()
        self._widgets['status_message'] = self._renderer._status_bar_add_label(
            "", stretch=1
        )
        self._forward_widget_command(
            'status_message', 'hide', value=None, input_value=False
        )

    def _clean(self):
        if not self._accept_close_event:
            return
        self._renderer = None
        self._widgets.clear()
        self._actors.clear()
        self._surfaces.clear()
        self._defaults.clear()
        self._head_geo = None
        self._check_inside = None
        self._nearest = None
        self._redraw = None

    @safe_event
    def close(self):
        """Close interface and cleanup data structure."""
        if self._renderer is not None:
            self._renderer.close()

    def _close_dialog_callback(self, button_name):
        from ..viz.backends.renderer import MNE_3D_BACKEND_TESTING
        self._accept_close_event = True
        if button_name == "Save":
            if self._trans_modified:
                self._forward_widget_command(
                    "save_trans", "set_value", None)
                # cancel means _save_trans is not called
                if self._trans_modified:
                    self._accept_close_event = False
            if self._mri_fids_modified:
                self._forward_widget_command(
                    "save_mri_fids", "set_value", None)
            if self._mri_scale_modified:
                if self._subject_to:
                    self._save_subject(exit_mode=True)
                else:
                    dialog = self._renderer._dialog_create(
                        title="CoregistrationUI",
                        text="The name of the output subject used to "
                             "save the scaled anatomy is not set.",
                        info_text="Please set a subject name",
                        callback=lambda x: None,
                        buttons=["Ok"],
                        modal=not MNE_3D_BACKEND_TESTING,
                    )
                    dialog.show()
                    self._accept_close_event = False
        elif button_name == "Cancel":
            self._accept_close_event = False
        else:
            assert button_name == "Discard"

    def _close_callback(self):
        if self._trans_modified or self._mri_fids_modified or \
                self._mri_scale_modified:
            from ..viz.backends.renderer import MNE_3D_BACKEND_TESTING
            # prepare the dialog's text
            text = "The following is/are not saved:"
            text += "<ul>"
            if self._trans_modified:
                text += "<li>Head&lt;&gt;MRI transform</li>"
            if self._mri_fids_modified:
                text += "<li>MRI fiducials</li>"
            if self._mri_scale_modified:
                text += "<li>scaled subject MRI</li>"
            text += "</ul>"
            self._widgets["close_dialog"] = self._renderer._dialog_create(
                title="CoregistrationUI",
                text=text,
                info_text="Do you want to save?",
                callback=self._close_dialog_callback,
                buttons=["Save", "Discard", "Cancel"],
                # modal=True means that the dialog blocks the application
                # when show() is called, until one of the buttons is clicked
                modal=not MNE_3D_BACKEND_TESTING,
            )
            self._widgets["close_dialog"].show()
        return self._accept_close_event