File: _ieeg_locate.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (739 lines) | stat: -rw-r--r-- 31,292 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
# -*- coding: utf-8 -*-
"""Intracranial elecrode localization GUI for finding contact locations."""

# Authors: Alex Rockhill <aprockhill@mailbox.org>
#
# License: BSD (3-clause)

import numpy as np
import platform

from scipy.ndimage import maximum_filter

from qtpy import QtCore, QtGui
from qtpy.QtCore import Slot, Signal
from qtpy.QtWidgets import (QVBoxLayout, QHBoxLayout, QLabel,
                            QMessageBox, QWidget, QAbstractItemView,
                            QListView, QSlider, QPushButton,
                            QComboBox)

from matplotlib.colors import LinearSegmentedColormap

from ._core import SliceBrowser
from ..surface import _voxel_neighbors
from ..transforms import apply_trans, _get_trans, invert_transform
from ..utils import logger, _validate_type, verbose
from .. import pick_types

_CH_PLOT_SIZE = 1024
_RADIUS_SCALAR = 0.4
_TUBE_SCALAR = 0.1
_BOLT_SCALAR = 30  # mm
_CH_MENU_WIDTH = 30 if platform.system() == 'Windows' else 10

# 20 colors generated to be evenly spaced in a cube, worked better than
# matplotlib color cycle
_UNIQUE_COLORS = [(0.1, 0.42, 0.43), (0.9, 0.34, 0.62), (0.47, 0.51, 0.3),
                  (0.47, 0.55, 0.99), (0.79, 0.68, 0.06), (0.34, 0.74, 0.05),
                  (0.58, 0.87, 0.13), (0.86, 0.98, 0.4), (0.92, 0.91, 0.66),
                  (0.77, 0.38, 0.34), (0.9, 0.37, 0.1), (0.2, 0.62, 0.9),
                  (0.22, 0.65, 0.64), (0.14, 0.94, 0.8), (0.34, 0.31, 0.68),
                  (0.59, 0.28, 0.74), (0.46, 0.19, 0.94), (0.37, 0.93, 0.7),
                  (0.56, 0.86, 0.55), (0.67, 0.69, 0.44)]
_N_COLORS = len(_UNIQUE_COLORS)
_CMAP = LinearSegmentedColormap.from_list(
    'ch_colors', _UNIQUE_COLORS, N=_N_COLORS)


class ComboBox(QComboBox):
    """Dropdown menu that emits a click when popped up."""

    clicked = Signal()

    def showPopup(self):
        """Override show popup method to emit click."""
        self.clicked.emit()
        super(ComboBox, self).showPopup()


class IntracranialElectrodeLocator(SliceBrowser):
    """Locate electrode contacts using a coregistered MRI and CT."""

    def __init__(self, info, trans, aligned_ct, subject=None,
                 subjects_dir=None, groups=None, show=True, verbose=None):
        """GUI for locating intracranial electrodes.

        .. note:: Images will be displayed using orientation information
                  obtained from the image header. Images will be resampled to
                  dimensions [256, 256, 256] for display.
        """
        if not info.ch_names:
            raise ValueError('No channels found in `info` to locate')

        # store info for modification
        self._info = info
        self._seeg_idx = pick_types(self._info, meg=False, seeg=True)
        self._verbose = verbose

        # channel plotting default parameters
        self._ch_alpha = 0.5
        self._radius = int(_CH_PLOT_SIZE // 100)  # starting 1/100 of image

        # initialize channel data
        self._ch_index = 0
        # load data, apply trans
        self._head_mri_t = _get_trans(trans, 'head', 'mri')[0]
        self._mri_head_t = invert_transform(self._head_mri_t)
        # load channels, convert from m to mm
        self._chs = {name: apply_trans(self._head_mri_t, ch['loc'][:3]) * 1000
                     for name, ch in zip(info.ch_names, info['chs'])}
        self._ch_names = list(self._chs.keys())
        self._group_channels(groups)

        # Initialize GUI
        super(IntracranialElectrodeLocator, self).__init__(
            base_image=aligned_ct, subject=subject, subjects_dir=subjects_dir)

        # set current position as current contact location if exists
        if not np.isnan(self._chs[self._ch_names[self._ch_index]]).any():
            self._set_ras(self._chs[self._ch_names[self._ch_index]],
                          update_plots=False)

        # add plots of contacts on top
        self._plot_ch_images()

        # Add lines
        self._lines = dict()
        self._lines_2D = dict()
        for group in set(self._groups.values()):
            self._update_lines(group)

        # ready for user
        self._move_cursors_to_pos()
        self._ch_list.setFocus()  # always focus on list

        if show:
            self.show()

    def _configure_ui(self):
        # data is loaded for an abstract base image, associate with ct
        self._ct_data = self._base_data
        self._images['ct'] = self._images['base']
        self._ct_maxima = None  # don't compute until turned on

        toolbar = self._configure_toolbar()
        slider_bar = self._configure_sliders()
        status_bar = self._configure_status_bar()
        self._ch_list = self._configure_channel_sidebar()  # need for updating

        plot_layout = QHBoxLayout()
        plot_layout.addLayout(self._plt_grid)
        plot_layout.addWidget(self._ch_list)

        main_vbox = QVBoxLayout()
        main_vbox.addLayout(toolbar)
        main_vbox.addLayout(slider_bar)
        main_vbox.addLayout(plot_layout)
        main_vbox.addLayout(status_bar)

        central_widget = QWidget()
        central_widget.setLayout(main_vbox)
        self.setCentralWidget(central_widget)

    def _configure_channel_sidebar(self):
        """Configure the sidebar to select channels/contacts."""
        ch_list = QListView()
        ch_list.setSelectionMode(QAbstractItemView.SingleSelection)
        max_ch_name_len = max([len(name) for name in self._chs])
        ch_list.setMinimumWidth(max_ch_name_len * _CH_MENU_WIDTH)
        ch_list.setMaximumWidth(max_ch_name_len * _CH_MENU_WIDTH)
        self._ch_list_model = QtGui.QStandardItemModel(ch_list)
        for name in self._ch_names:
            self._ch_list_model.appendRow(QtGui.QStandardItem(name))
            self._color_list_item(name=name)
        ch_list.setModel(self._ch_list_model)
        ch_list.clicked.connect(self._go_to_ch)
        ch_list.setCurrentIndex(
            self._ch_list_model.index(self._ch_index, 0))
        ch_list.keyPressEvent = self._key_press_event
        return ch_list

    def _make_ch_image(self, axis, proj=False):
        """Make a plot to display the channel locations."""
        # Make channel data higher resolution so it looks better.
        ch_image = np.zeros((_CH_PLOT_SIZE, _CH_PLOT_SIZE)) * np.nan
        vxyz = self._voxel_sizes

        def color_ch_radius(ch_image, xf, yf, group, radius):
            # Take the fraction across each dimension of the RAS
            # coordinates converted to xyz and put a circle in that
            # position in this larger resolution image
            ex, ey = np.round(np.array([xf, yf]) * _CH_PLOT_SIZE).astype(int)
            ii = np.arange(-radius, radius + 1)
            ii_sq = ii * ii
            idx = np.where(ii_sq + ii_sq[:, np.newaxis] < radius * radius)
            # negative y because y axis is inverted
            ch_image[-(ey + ii[idx[1]]), ex + ii[idx[0]]] = group
            return ch_image

        for name, ras in self._chs.items():
            # move from middle-centered (half coords positive, half negative)
            # to bottom-left corner centered (all coords positive).
            if np.isnan(ras).any():
                continue
            xyz = apply_trans(self._ras_vox_t, ras)
            # check if closest to that voxel
            dist = np.linalg.norm(xyz - self._current_slice)
            if proj or dist < self._radius:
                group = self._groups[name]
                r = self._radius if proj else \
                    self._radius - np.round(abs(dist)).astype(int)
                xf, yf = (xyz / vxyz)[list(self._xy_idx[axis])]
                ch_image = color_ch_radius(ch_image, xf, yf, group, r)
        return ch_image

    @verbose
    def _save_ch_coords(self, info=None, verbose=None):
        """Save the location of the electrode contacts."""
        logger.info('Saving channel positions to `info`')
        if info is None:
            info = self._info
        with info._unlock():
            for name, ch in zip(info.ch_names, info['chs']):
                loc = ch['loc'].copy()
                loc[:3] = apply_trans(
                    self._mri_head_t, self._chs[name] / 1000)  # mm->m
                ch['loc'] = loc

    def _plot_ch_images(self):
        img_delta = 0.5
        ch_deltas = list(img_delta * (self._voxel_sizes[ii] / _CH_PLOT_SIZE)
                         for ii in range(3))
        self._ch_extents = list(
            [-ch_delta, self._voxel_sizes[idx[0]] - ch_delta,
             -ch_delta, self._voxel_sizes[idx[1]] - ch_delta]
            for idx, ch_delta in zip(self._xy_idx, ch_deltas))
        self._images['chs'] = list()
        for axis in range(3):
            fig = self._figs[axis]
            ax = fig.axes[0]
            self._images['chs'].append(ax.imshow(
                self._make_ch_image(axis), aspect='auto',
                extent=self._ch_extents[axis], zorder=3,
                cmap=_CMAP, alpha=self._ch_alpha, vmin=0, vmax=_N_COLORS))
        self._3d_chs = dict()
        for name in self._chs:
            self._plot_3d_ch(name)

    def _plot_3d_ch(self, name, render=False):
        """Plot a single 3D channel."""
        if name in self._3d_chs:
            self._renderer.plotter.remove_actor(
                self._3d_chs.pop(name), render=False)
        if not any(np.isnan(self._chs[name])):
            self._3d_chs[name] = self._renderer.sphere(
                tuple(self._chs[name]), scale=1,
                color=_CMAP(self._groups[name])[:3], opacity=self._ch_alpha)[0]
            # The actor scale is managed differently than the glyph scale
            # in order not to recreate objects, we use the actor scale
            self._3d_chs[name].SetOrigin(self._chs[name])
            self._3d_chs[name].SetScale(self._radius * _RADIUS_SCALAR)
        if render:
            self._renderer._update()

    def _configure_toolbar(self):
        """Make a bar with buttons for user interactions."""
        hbox = QHBoxLayout()

        help_button = QPushButton('Help')
        help_button.released.connect(self._show_help)
        hbox.addWidget(help_button)

        hbox.addStretch(8)

        hbox.addWidget(QLabel('Snap to Center'))
        self._snap_button = QPushButton('Off')
        self._snap_button.setMaximumWidth(25)  # not too big
        hbox.addWidget(self._snap_button)
        self._snap_button.released.connect(self._toggle_snap)
        self._toggle_snap()  # turn on to start

        hbox.addStretch(1)

        self._toggle_brain_button = QPushButton('Show Brain')
        self._toggle_brain_button.released.connect(self._toggle_show_brain)
        hbox.addWidget(self._toggle_brain_button)

        hbox.addStretch(1)

        mark_button = QPushButton('Mark')
        hbox.addWidget(mark_button)
        mark_button.released.connect(self._mark_ch)

        remove_button = QPushButton('Remove')
        hbox.addWidget(remove_button)
        remove_button.released.connect(self._remove_ch)

        self._group_selector = ComboBox()
        group_model = self._group_selector.model()

        for i in range(_N_COLORS):
            self._group_selector.addItem(' ')
            color = QtGui.QColor()
            color.setRgb(*(255 * np.array(_CMAP(i))).round().astype(int))
            brush = QtGui.QBrush(color)
            brush.setStyle(QtCore.Qt.SolidPattern)
            group_model.setData(group_model.index(i, 0),
                                brush, QtCore.Qt.BackgroundRole)
        self._group_selector.clicked.connect(self._select_group)
        self._group_selector.currentIndexChanged.connect(
            self._select_group)
        hbox.addWidget(self._group_selector)

        # update background color for current selection
        self._update_group()

        return hbox

    def _configure_sliders(self):
        """Make a bar with sliders on it."""

        def make_label(name):
            label = QLabel(name)
            label.setAlignment(QtCore.Qt.AlignCenter)
            return label

        def make_slider(smin, smax, sval, sfun=None):
            slider = QSlider(QtCore.Qt.Horizontal)
            slider.setMinimum(int(round(smin)))
            slider.setMaximum(int(round(smax)))
            slider.setValue(int(round(sval)))
            slider.setTracking(False)  # only update on release
            if sfun is not None:
                slider.valueChanged.connect(sfun)
            slider.keyPressEvent = self._key_press_event
            return slider

        slider_hbox = QHBoxLayout()

        ch_vbox = QVBoxLayout()
        ch_vbox.addWidget(make_label('ch alpha'))
        ch_vbox.addWidget(make_label('ch radius'))
        slider_hbox.addLayout(ch_vbox)

        ch_slider_vbox = QVBoxLayout()
        self._alpha_slider = make_slider(0, 100, self._ch_alpha * 100,
                                         self._update_ch_alpha)
        ch_plot_max = _CH_PLOT_SIZE // 50  # max 1 / 50 of plot size
        ch_slider_vbox.addWidget(self._alpha_slider)
        self._radius_slider = make_slider(0, ch_plot_max, self._radius,
                                          self._update_radius)
        ch_slider_vbox.addWidget(self._radius_slider)
        slider_hbox.addLayout(ch_slider_vbox)

        ct_vbox = QVBoxLayout()
        ct_vbox.addWidget(make_label('CT min'))
        ct_vbox.addWidget(make_label('CT max'))
        slider_hbox.addLayout(ct_vbox)

        ct_slider_vbox = QVBoxLayout()
        ct_min = int(round(np.nanmin(self._ct_data)))
        ct_max = int(round(np.nanmax(self._ct_data)))
        self._ct_min_slider = make_slider(
            ct_min, ct_max, ct_min, self._update_ct_scale)
        ct_slider_vbox.addWidget(self._ct_min_slider)
        self._ct_max_slider = make_slider(
            ct_min, ct_max, ct_max, self._update_ct_scale)
        ct_slider_vbox.addWidget(self._ct_max_slider)
        slider_hbox.addLayout(ct_slider_vbox)
        return slider_hbox

    def _configure_status_bar(self, hbox=None):
        hbox = QHBoxLayout() if hbox is None else hbox

        hbox.addStretch(3)

        self._toggle_show_mip_button = QPushButton('Show Max Intensity Proj')
        self._toggle_show_mip_button.released.connect(
            self._toggle_show_mip)
        hbox.addWidget(self._toggle_show_mip_button)

        self._toggle_show_max_button = QPushButton('Show Maxima')
        self._toggle_show_max_button.released.connect(
            self._toggle_show_max)
        hbox.addWidget(self._toggle_show_max_button)

        self._intensity_label = QLabel('')  # update later
        hbox.addWidget(self._intensity_label)

        # add SliceBrowser navigation items
        super(IntracranialElectrodeLocator, self)._configure_status_bar(
            hbox=hbox)
        return hbox

    def _move_cursors_to_pos(self):
        super(IntracranialElectrodeLocator, self)._move_cursors_to_pos()
        self._ch_list.setFocus()  # remove focus from text edit

    def _group_channels(self, groups):
        """Automatically find a group based on the name of the channel."""
        if groups is not None:
            for name in self._ch_names:
                if name not in groups:
                    raise ValueError(f'{name} not found in ``groups``')
                _validate_type(groups[name], (float, int), f'groups[{name}]')
            self.groups = groups
        else:
            i = 0
            self._groups = dict()
            base_names = dict()
            for name in self._ch_names:
                # strip all numbers from the name
                base_name = ''.join([letter for letter in name if
                                     not letter.isdigit() and letter != ' '])
                if base_name in base_names:
                    # look up group number by base name
                    self._groups[name] = base_names[base_name]
                else:
                    self._groups[name] = i
                    base_names[base_name] = i
                    i += 1

    def _update_lines(self, group, only_2D=False):
        """Draw lines that connect the points in a group."""
        if group in self._lines_2D:  # remove existing 2D lines first
            for line in self._lines_2D[group]:
                line.remove()
            self._lines_2D.pop(group)
        if only_2D:  # if not in projection, don't add 2D lines
            if self._toggle_show_mip_button.text() == \
                    'Show Max Intensity Proj':
                return
        elif group in self._lines:  # if updating 3D, remove first
            self._renderer.plotter.remove_actor(
                self._lines[group], render=False)
        pos = np.array([
            self._chs[ch] for i, ch in enumerate(self._ch_names)
            if self._groups[ch] == group and i in self._seeg_idx and
            not np.isnan(self._chs[ch]).any()])
        if len(pos) < 2:  # not enough points for line
            return
        # first, the insertion will be the point farthest from the origin
        # brains are a longer posterior-anterior, scale for this (80%)
        insert_idx = np.argmax(np.linalg.norm(pos * np.array([1, 0.8, 1]),
                                              axis=1))
        # second, find the farthest point from the insertion
        target_idx = np.argmax(np.linalg.norm(pos[insert_idx] - pos, axis=1))
        # third, make a unit vector and to add to the insertion for the bolt
        elec_v = pos[insert_idx] - pos[target_idx]
        elec_v /= np.linalg.norm(elec_v)
        if not only_2D:
            self._lines[group] = self._renderer.tube(
                [pos[target_idx]], [pos[insert_idx] + elec_v * _BOLT_SCALAR],
                radius=self._radius * _TUBE_SCALAR, color=_CMAP(group)[:3])[0]
        if self._toggle_show_mip_button.text() == 'Hide Max Intensity Proj':
            # add 2D lines on each slice plot if in max intensity projection
            target_vox = apply_trans(self._ras_vox_t, pos[target_idx])
            insert_vox = apply_trans(self._ras_vox_t,
                                     pos[insert_idx] + elec_v * _BOLT_SCALAR)
            lines_2D = list()
            for axis in range(3):
                x, y = self._xy_idx[axis]
                lines_2D.append(self._figs[axis].axes[0].plot(
                    [target_vox[x], insert_vox[x]],
                    [target_vox[y], insert_vox[y]],
                    color=_CMAP(group), linewidth=0.25, zorder=7)[0])
            self._lines_2D[group] = lines_2D

    def _select_group(self):
        """Change the group label to the selection."""
        group = self._group_selector.currentIndex()
        self._groups[self._ch_names[self._ch_index]] = group
        # color differently if found already
        self._color_list_item(self._ch_names[self._ch_index])
        self._update_group()

    def _update_group(self):
        """Set background for closed group menu."""
        group = self._group_selector.currentIndex()
        rgb = (255 * np.array(_CMAP(group))).round().astype(int)
        self._group_selector.setStyleSheet(
            'background-color: rgb({:d},{:d},{:d})'.format(*rgb))
        self._group_selector.update()

    def _update_ch_selection(self):
        """Update which channel is selected."""
        name = self._ch_names[self._ch_index]
        self._ch_list.setCurrentIndex(
            self._ch_list_model.index(self._ch_index, 0))
        self._group_selector.setCurrentIndex(self._groups[name])
        self._update_group()
        if not np.isnan(self._chs[name]).any():
            self._set_ras(self._chs[name])
            self._update_camera(render=True)
            self._draw()

    def _go_to_ch(self, index):
        """Change current channel to the item selected."""
        self._ch_index = index.row()
        self._update_ch_selection()

    @Slot()
    def _next_ch(self):
        """Increment the current channel selection index."""
        self._ch_index = (self._ch_index + 1) % len(self._ch_names)
        self._update_ch_selection()

    def _color_list_item(self, name=None):
        """Color the item in the view list for easy id of marked channels."""
        name = self._ch_names[self._ch_index] if name is None else name
        color = QtGui.QColor('white')
        if not np.isnan(self._chs[name]).any():
            group = self._groups[name]
            color.setRgb(*[int(c * 255) for c in _CMAP(group)])
        brush = QtGui.QBrush(color)
        brush.setStyle(QtCore.Qt.SolidPattern)
        self._ch_list_model.setData(
            self._ch_list_model.index(self._ch_names.index(name), 0),
            brush, QtCore.Qt.BackgroundRole)
        # color text black
        color = QtGui.QColor('black')
        brush = QtGui.QBrush(color)
        brush.setStyle(QtCore.Qt.SolidPattern)
        self._ch_list_model.setData(
            self._ch_list_model.index(self._ch_names.index(name), 0),
            brush, QtCore.Qt.ForegroundRole)

    @Slot()
    def _toggle_snap(self):
        """Toggle snapping the contact location to the center of mass."""
        if self._snap_button.text() == 'Off':
            self._snap_button.setText('On')
            self._snap_button.setStyleSheet("background-color: green")
        else:  # text == 'On', turn off
            self._snap_button.setText('Off')
            self._snap_button.setStyleSheet("background-color: red")

    @Slot()
    def _mark_ch(self):
        """Mark the current channel as being located at the crosshair."""
        name = self._ch_names[self._ch_index]
        if self._snap_button.text() == 'Off':
            self._chs[name][:] = self._ras
        else:
            shape = np.mean(self._mri_data.shape)  # Freesurfer shape (256)
            voxels_max = int(
                4 / 3 * np.pi * (shape * self._radius / _CH_PLOT_SIZE)**3)
            neighbors = _voxel_neighbors(
                self._vox, self._ct_data, thresh=0.5,
                voxels_max=voxels_max, use_relative=True)
            self._chs[name][:] = apply_trans(  # to surface RAS
                self._vox_ras_t, np.array(list(neighbors)).mean(axis=0))
        self._color_list_item()
        self._update_lines(self._groups[name])
        self._update_ch_images(draw=True)
        self._plot_3d_ch(name, render=True)
        self._save_ch_coords()
        self._next_ch()
        self._ch_list.setFocus()

    @Slot()
    def _remove_ch(self):
        """Remove the location data for the current channel."""
        name = self._ch_names[self._ch_index]
        self._chs[name] *= np.nan
        self._color_list_item()
        self._save_ch_coords()
        self._update_lines(self._groups[name])
        self._update_ch_images(draw=True)
        self._plot_3d_ch(name, render=True)
        self._next_ch()
        self._ch_list.setFocus()

    def _update_ch_images(self, axis=None, draw=False):
        """Update the channel image(s)."""
        for axis in range(3) if axis is None else [axis]:
            self._images['chs'][axis].set_data(
                self._make_ch_image(axis))
            if self._toggle_show_mip_button.text() == \
                    'Hide Max Intensity Proj':
                self._images['mip_chs'][axis].set_data(
                    self._make_ch_image(axis, proj=True))
            if draw:
                self._draw(axis)

    def _update_ct_images(self, axis=None, draw=False):
        """Update the CT image(s)."""
        for axis in range(3) if axis is None else [axis]:
            ct_data = np.take(self._ct_data, self._current_slice[axis],
                              axis=axis).T
            # Threshold the CT so only bright objects (electrodes) are visible
            ct_data[ct_data < self._ct_min_slider.value()] = np.nan
            ct_data[ct_data > self._ct_max_slider.value()] = np.nan
            self._images['ct'][axis].set_data(ct_data)
            if 'local_max' in self._images:
                ct_max_data = np.take(
                    self._ct_maxima, self._current_slice[axis], axis=axis).T
                self._images['local_max'][axis].set_data(ct_max_data)
            if draw:
                self._draw(axis)

    def _update_mri_images(self, axis=None, draw=False):
        """Update the CT image(s)."""
        if 'mri' in self._images:
            for axis in range(3) if axis is None else [axis]:
                self._images['mri'][axis].set_data(
                    np.take(self._mri_data, self._current_slice[axis],
                            axis=axis).T)
                if draw:
                    self._draw(axis)

    def _update_images(self, axis=None, draw=True):
        """Update CT and channel images when general changes happen."""
        self._update_ch_images(axis=axis)
        self._update_mri_images(axis=axis)
        super()._update_images()

    def _update_ct_scale(self):
        """Update CT min slider value."""
        new_min = self._ct_min_slider.value()
        new_max = self._ct_max_slider.value()
        # handle inversions
        self._ct_min_slider.setValue(min([new_min, new_max]))
        self._ct_max_slider.setValue(max([new_min, new_max]))
        self._update_ct_images(draw=True)

    def _update_radius(self):
        """Update channel plot radius."""
        self._radius = np.round(self._radius_slider.value()).astype(int)
        if self._toggle_show_max_button.text() == 'Hide Maxima':
            self._update_ct_maxima()
            self._update_ct_images()
        else:
            self._ct_maxima = None  # signals ct max is out-of-date
        self._update_ch_images(draw=True)
        for name, actor in self._3d_chs.items():
            if not np.isnan(self._chs[name]).any():
                actor.SetOrigin(self._chs[name])
                actor.SetScale(self._radius * _RADIUS_SCALAR)
        self._renderer._update()
        self._ch_list.setFocus()  # remove focus from 3d plotter

    def _update_ch_alpha(self):
        """Update channel plot alpha."""
        self._ch_alpha = self._alpha_slider.value() / 100
        for axis in range(3):
            self._images['chs'][axis].set_alpha(self._ch_alpha)
        self._draw()
        for actor in self._3d_chs.values():
            actor.GetProperty().SetOpacity(self._ch_alpha)
        self._renderer._update()
        self._ch_list.setFocus()  # remove focus from 3d plotter

    def _show_help(self):
        """Show the help menu."""
        QMessageBox.information(
            self, 'Help',
            "Help:\n'm': mark channel location\n"
            "'r': remove channel location\n"
            "'b': toggle viewing of brain in T1\n"
            "'+'/'-': zoom\nleft/right arrow: left/right\n"
            "up/down arrow: superior/inferior\n"
            "left angle bracket/right angle bracket: anterior/posterior")

    def _update_ct_maxima(self):
        """Compute the maximum voxels based on the current radius."""
        self._ct_maxima = maximum_filter(
            self._ct_data, (self._radius,) * 3) == self._ct_data
        self._ct_maxima[self._ct_data <= np.median(self._ct_data)] = \
            False
        self._ct_maxima = np.where(self._ct_maxima, 1, np.nan)  # transparent

    def _toggle_show_mip(self):
        """Toggle whether the maximum-intensity projection is shown."""
        if self._toggle_show_mip_button.text() == 'Show Max Intensity Proj':
            self._toggle_show_mip_button.setText('Hide Max Intensity Proj')
            self._images['mip'] = list()
            self._images['mip_chs'] = list()
            ct_min, ct_max = np.nanmin(self._ct_data), np.nanmax(self._ct_data)
            for axis in range(3):
                ct_mip_data = np.max(self._ct_data, axis=axis).T
                self._images['mip'].append(
                    self._figs[axis].axes[0].imshow(
                        ct_mip_data, cmap='gray', aspect='auto',
                        vmin=ct_min, vmax=ct_max, zorder=5))
                # add circles for each channel
                xs, ys, colors = list(), list(), list()
                for name, ras in self._chs.items():
                    xyz = self._vox
                    xs.append(xyz[self._xy_idx[axis][0]])
                    ys.append(xyz[self._xy_idx[axis][1]])
                    colors.append(_CMAP(self._groups[name]))
                self._images['mip_chs'].append(
                    self._figs[axis].axes[0].imshow(
                        self._make_ch_image(axis, proj=True), aspect='auto',
                        extent=self._ch_extents[axis], zorder=6,
                        cmap=_CMAP, alpha=1, vmin=0, vmax=_N_COLORS))
            for group in set(self._groups.values()):
                self._update_lines(group, only_2D=True)
        else:
            for img in self._images['mip'] + self._images['mip_chs']:
                img.remove()
            self._images.pop('mip')
            self._images.pop('mip_chs')
            self._toggle_show_mip_button.setText('Show Max Intensity Proj')
            for group in set(self._groups.values()):  # remove lines
                self._update_lines(group, only_2D=True)
        self._draw()

    def _toggle_show_max(self):
        """Toggle whether to color local maxima differently."""
        if self._toggle_show_max_button.text() == 'Show Maxima':
            self._toggle_show_max_button.setText('Hide Maxima')
            # happens on initiation or if the radius is changed with it off
            if self._ct_maxima is None:  # otherwise don't recompute
                self._update_ct_maxima()
            self._images['local_max'] = list()
            for axis in range(3):
                ct_max_data = np.take(self._ct_maxima,
                                      self._current_slice[axis], axis=axis).T
                self._images['local_max'].append(
                    self._figs[axis].axes[0].imshow(
                        ct_max_data, cmap='autumn', aspect='auto',
                        vmin=0, vmax=1, zorder=4))
        else:
            for img in self._images['local_max']:
                img.remove()
            self._images.pop('local_max')
            self._toggle_show_max_button.setText('Show Maxima')
        self._draw()

    def _toggle_show_brain(self):
        """Toggle whether the brain/MRI is being shown."""
        if 'mri' in self._images:
            for img in self._images['mri']:
                img.remove()
            self._images.pop('mri')
            self._toggle_brain_button.setText('Show Brain')
        else:
            self._images['mri'] = list()
            for axis in range(3):
                mri_data = np.take(self._mri_data,
                                   self._current_slice[axis], axis=axis).T
                self._images['mri'].append(self._figs[axis].axes[0].imshow(
                    mri_data, cmap='hot', aspect='auto', alpha=0.25, zorder=2))
            self._toggle_brain_button.setText('Hide Brain')
        self._draw()

    def _key_press_event(self, event):
        """Execute functions when the user presses a key."""
        super(IntracranialElectrodeLocator, self)._key_press_event(event)

        if event.text() == 'm':
            self._mark_ch()

        if event.text() == 'r':
            self._remove_ch()

        if event.text() == 'b':
            self._toggle_show_brain()