1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
|
# -*- coding: utf-8 -*-
"""Intracranial elecrode localization GUI for finding contact locations."""
# Authors: Alex Rockhill <aprockhill@mailbox.org>
#
# License: BSD (3-clause)
import numpy as np
import platform
from scipy.ndimage import maximum_filter
from qtpy import QtCore, QtGui
from qtpy.QtCore import Slot, Signal
from qtpy.QtWidgets import (QVBoxLayout, QHBoxLayout, QLabel,
QMessageBox, QWidget, QAbstractItemView,
QListView, QSlider, QPushButton,
QComboBox)
from matplotlib.colors import LinearSegmentedColormap
from ._core import SliceBrowser
from ..surface import _voxel_neighbors
from ..transforms import apply_trans, _get_trans, invert_transform
from ..utils import logger, _validate_type, verbose
from .. import pick_types
_CH_PLOT_SIZE = 1024
_RADIUS_SCALAR = 0.4
_TUBE_SCALAR = 0.1
_BOLT_SCALAR = 30 # mm
_CH_MENU_WIDTH = 30 if platform.system() == 'Windows' else 10
# 20 colors generated to be evenly spaced in a cube, worked better than
# matplotlib color cycle
_UNIQUE_COLORS = [(0.1, 0.42, 0.43), (0.9, 0.34, 0.62), (0.47, 0.51, 0.3),
(0.47, 0.55, 0.99), (0.79, 0.68, 0.06), (0.34, 0.74, 0.05),
(0.58, 0.87, 0.13), (0.86, 0.98, 0.4), (0.92, 0.91, 0.66),
(0.77, 0.38, 0.34), (0.9, 0.37, 0.1), (0.2, 0.62, 0.9),
(0.22, 0.65, 0.64), (0.14, 0.94, 0.8), (0.34, 0.31, 0.68),
(0.59, 0.28, 0.74), (0.46, 0.19, 0.94), (0.37, 0.93, 0.7),
(0.56, 0.86, 0.55), (0.67, 0.69, 0.44)]
_N_COLORS = len(_UNIQUE_COLORS)
_CMAP = LinearSegmentedColormap.from_list(
'ch_colors', _UNIQUE_COLORS, N=_N_COLORS)
class ComboBox(QComboBox):
"""Dropdown menu that emits a click when popped up."""
clicked = Signal()
def showPopup(self):
"""Override show popup method to emit click."""
self.clicked.emit()
super(ComboBox, self).showPopup()
class IntracranialElectrodeLocator(SliceBrowser):
"""Locate electrode contacts using a coregistered MRI and CT."""
def __init__(self, info, trans, aligned_ct, subject=None,
subjects_dir=None, groups=None, show=True, verbose=None):
"""GUI for locating intracranial electrodes.
.. note:: Images will be displayed using orientation information
obtained from the image header. Images will be resampled to
dimensions [256, 256, 256] for display.
"""
if not info.ch_names:
raise ValueError('No channels found in `info` to locate')
# store info for modification
self._info = info
self._seeg_idx = pick_types(self._info, meg=False, seeg=True)
self._verbose = verbose
# channel plotting default parameters
self._ch_alpha = 0.5
self._radius = int(_CH_PLOT_SIZE // 100) # starting 1/100 of image
# initialize channel data
self._ch_index = 0
# load data, apply trans
self._head_mri_t = _get_trans(trans, 'head', 'mri')[0]
self._mri_head_t = invert_transform(self._head_mri_t)
# load channels, convert from m to mm
self._chs = {name: apply_trans(self._head_mri_t, ch['loc'][:3]) * 1000
for name, ch in zip(info.ch_names, info['chs'])}
self._ch_names = list(self._chs.keys())
self._group_channels(groups)
# Initialize GUI
super(IntracranialElectrodeLocator, self).__init__(
base_image=aligned_ct, subject=subject, subjects_dir=subjects_dir)
# set current position as current contact location if exists
if not np.isnan(self._chs[self._ch_names[self._ch_index]]).any():
self._set_ras(self._chs[self._ch_names[self._ch_index]],
update_plots=False)
# add plots of contacts on top
self._plot_ch_images()
# Add lines
self._lines = dict()
self._lines_2D = dict()
for group in set(self._groups.values()):
self._update_lines(group)
# ready for user
self._move_cursors_to_pos()
self._ch_list.setFocus() # always focus on list
if show:
self.show()
def _configure_ui(self):
# data is loaded for an abstract base image, associate with ct
self._ct_data = self._base_data
self._images['ct'] = self._images['base']
self._ct_maxima = None # don't compute until turned on
toolbar = self._configure_toolbar()
slider_bar = self._configure_sliders()
status_bar = self._configure_status_bar()
self._ch_list = self._configure_channel_sidebar() # need for updating
plot_layout = QHBoxLayout()
plot_layout.addLayout(self._plt_grid)
plot_layout.addWidget(self._ch_list)
main_vbox = QVBoxLayout()
main_vbox.addLayout(toolbar)
main_vbox.addLayout(slider_bar)
main_vbox.addLayout(plot_layout)
main_vbox.addLayout(status_bar)
central_widget = QWidget()
central_widget.setLayout(main_vbox)
self.setCentralWidget(central_widget)
def _configure_channel_sidebar(self):
"""Configure the sidebar to select channels/contacts."""
ch_list = QListView()
ch_list.setSelectionMode(QAbstractItemView.SingleSelection)
max_ch_name_len = max([len(name) for name in self._chs])
ch_list.setMinimumWidth(max_ch_name_len * _CH_MENU_WIDTH)
ch_list.setMaximumWidth(max_ch_name_len * _CH_MENU_WIDTH)
self._ch_list_model = QtGui.QStandardItemModel(ch_list)
for name in self._ch_names:
self._ch_list_model.appendRow(QtGui.QStandardItem(name))
self._color_list_item(name=name)
ch_list.setModel(self._ch_list_model)
ch_list.clicked.connect(self._go_to_ch)
ch_list.setCurrentIndex(
self._ch_list_model.index(self._ch_index, 0))
ch_list.keyPressEvent = self._key_press_event
return ch_list
def _make_ch_image(self, axis, proj=False):
"""Make a plot to display the channel locations."""
# Make channel data higher resolution so it looks better.
ch_image = np.zeros((_CH_PLOT_SIZE, _CH_PLOT_SIZE)) * np.nan
vxyz = self._voxel_sizes
def color_ch_radius(ch_image, xf, yf, group, radius):
# Take the fraction across each dimension of the RAS
# coordinates converted to xyz and put a circle in that
# position in this larger resolution image
ex, ey = np.round(np.array([xf, yf]) * _CH_PLOT_SIZE).astype(int)
ii = np.arange(-radius, radius + 1)
ii_sq = ii * ii
idx = np.where(ii_sq + ii_sq[:, np.newaxis] < radius * radius)
# negative y because y axis is inverted
ch_image[-(ey + ii[idx[1]]), ex + ii[idx[0]]] = group
return ch_image
for name, ras in self._chs.items():
# move from middle-centered (half coords positive, half negative)
# to bottom-left corner centered (all coords positive).
if np.isnan(ras).any():
continue
xyz = apply_trans(self._ras_vox_t, ras)
# check if closest to that voxel
dist = np.linalg.norm(xyz - self._current_slice)
if proj or dist < self._radius:
group = self._groups[name]
r = self._radius if proj else \
self._radius - np.round(abs(dist)).astype(int)
xf, yf = (xyz / vxyz)[list(self._xy_idx[axis])]
ch_image = color_ch_radius(ch_image, xf, yf, group, r)
return ch_image
@verbose
def _save_ch_coords(self, info=None, verbose=None):
"""Save the location of the electrode contacts."""
logger.info('Saving channel positions to `info`')
if info is None:
info = self._info
with info._unlock():
for name, ch in zip(info.ch_names, info['chs']):
loc = ch['loc'].copy()
loc[:3] = apply_trans(
self._mri_head_t, self._chs[name] / 1000) # mm->m
ch['loc'] = loc
def _plot_ch_images(self):
img_delta = 0.5
ch_deltas = list(img_delta * (self._voxel_sizes[ii] / _CH_PLOT_SIZE)
for ii in range(3))
self._ch_extents = list(
[-ch_delta, self._voxel_sizes[idx[0]] - ch_delta,
-ch_delta, self._voxel_sizes[idx[1]] - ch_delta]
for idx, ch_delta in zip(self._xy_idx, ch_deltas))
self._images['chs'] = list()
for axis in range(3):
fig = self._figs[axis]
ax = fig.axes[0]
self._images['chs'].append(ax.imshow(
self._make_ch_image(axis), aspect='auto',
extent=self._ch_extents[axis], zorder=3,
cmap=_CMAP, alpha=self._ch_alpha, vmin=0, vmax=_N_COLORS))
self._3d_chs = dict()
for name in self._chs:
self._plot_3d_ch(name)
def _plot_3d_ch(self, name, render=False):
"""Plot a single 3D channel."""
if name in self._3d_chs:
self._renderer.plotter.remove_actor(
self._3d_chs.pop(name), render=False)
if not any(np.isnan(self._chs[name])):
self._3d_chs[name] = self._renderer.sphere(
tuple(self._chs[name]), scale=1,
color=_CMAP(self._groups[name])[:3], opacity=self._ch_alpha)[0]
# The actor scale is managed differently than the glyph scale
# in order not to recreate objects, we use the actor scale
self._3d_chs[name].SetOrigin(self._chs[name])
self._3d_chs[name].SetScale(self._radius * _RADIUS_SCALAR)
if render:
self._renderer._update()
def _configure_toolbar(self):
"""Make a bar with buttons for user interactions."""
hbox = QHBoxLayout()
help_button = QPushButton('Help')
help_button.released.connect(self._show_help)
hbox.addWidget(help_button)
hbox.addStretch(8)
hbox.addWidget(QLabel('Snap to Center'))
self._snap_button = QPushButton('Off')
self._snap_button.setMaximumWidth(25) # not too big
hbox.addWidget(self._snap_button)
self._snap_button.released.connect(self._toggle_snap)
self._toggle_snap() # turn on to start
hbox.addStretch(1)
self._toggle_brain_button = QPushButton('Show Brain')
self._toggle_brain_button.released.connect(self._toggle_show_brain)
hbox.addWidget(self._toggle_brain_button)
hbox.addStretch(1)
mark_button = QPushButton('Mark')
hbox.addWidget(mark_button)
mark_button.released.connect(self._mark_ch)
remove_button = QPushButton('Remove')
hbox.addWidget(remove_button)
remove_button.released.connect(self._remove_ch)
self._group_selector = ComboBox()
group_model = self._group_selector.model()
for i in range(_N_COLORS):
self._group_selector.addItem(' ')
color = QtGui.QColor()
color.setRgb(*(255 * np.array(_CMAP(i))).round().astype(int))
brush = QtGui.QBrush(color)
brush.setStyle(QtCore.Qt.SolidPattern)
group_model.setData(group_model.index(i, 0),
brush, QtCore.Qt.BackgroundRole)
self._group_selector.clicked.connect(self._select_group)
self._group_selector.currentIndexChanged.connect(
self._select_group)
hbox.addWidget(self._group_selector)
# update background color for current selection
self._update_group()
return hbox
def _configure_sliders(self):
"""Make a bar with sliders on it."""
def make_label(name):
label = QLabel(name)
label.setAlignment(QtCore.Qt.AlignCenter)
return label
def make_slider(smin, smax, sval, sfun=None):
slider = QSlider(QtCore.Qt.Horizontal)
slider.setMinimum(int(round(smin)))
slider.setMaximum(int(round(smax)))
slider.setValue(int(round(sval)))
slider.setTracking(False) # only update on release
if sfun is not None:
slider.valueChanged.connect(sfun)
slider.keyPressEvent = self._key_press_event
return slider
slider_hbox = QHBoxLayout()
ch_vbox = QVBoxLayout()
ch_vbox.addWidget(make_label('ch alpha'))
ch_vbox.addWidget(make_label('ch radius'))
slider_hbox.addLayout(ch_vbox)
ch_slider_vbox = QVBoxLayout()
self._alpha_slider = make_slider(0, 100, self._ch_alpha * 100,
self._update_ch_alpha)
ch_plot_max = _CH_PLOT_SIZE // 50 # max 1 / 50 of plot size
ch_slider_vbox.addWidget(self._alpha_slider)
self._radius_slider = make_slider(0, ch_plot_max, self._radius,
self._update_radius)
ch_slider_vbox.addWidget(self._radius_slider)
slider_hbox.addLayout(ch_slider_vbox)
ct_vbox = QVBoxLayout()
ct_vbox.addWidget(make_label('CT min'))
ct_vbox.addWidget(make_label('CT max'))
slider_hbox.addLayout(ct_vbox)
ct_slider_vbox = QVBoxLayout()
ct_min = int(round(np.nanmin(self._ct_data)))
ct_max = int(round(np.nanmax(self._ct_data)))
self._ct_min_slider = make_slider(
ct_min, ct_max, ct_min, self._update_ct_scale)
ct_slider_vbox.addWidget(self._ct_min_slider)
self._ct_max_slider = make_slider(
ct_min, ct_max, ct_max, self._update_ct_scale)
ct_slider_vbox.addWidget(self._ct_max_slider)
slider_hbox.addLayout(ct_slider_vbox)
return slider_hbox
def _configure_status_bar(self, hbox=None):
hbox = QHBoxLayout() if hbox is None else hbox
hbox.addStretch(3)
self._toggle_show_mip_button = QPushButton('Show Max Intensity Proj')
self._toggle_show_mip_button.released.connect(
self._toggle_show_mip)
hbox.addWidget(self._toggle_show_mip_button)
self._toggle_show_max_button = QPushButton('Show Maxima')
self._toggle_show_max_button.released.connect(
self._toggle_show_max)
hbox.addWidget(self._toggle_show_max_button)
self._intensity_label = QLabel('') # update later
hbox.addWidget(self._intensity_label)
# add SliceBrowser navigation items
super(IntracranialElectrodeLocator, self)._configure_status_bar(
hbox=hbox)
return hbox
def _move_cursors_to_pos(self):
super(IntracranialElectrodeLocator, self)._move_cursors_to_pos()
self._ch_list.setFocus() # remove focus from text edit
def _group_channels(self, groups):
"""Automatically find a group based on the name of the channel."""
if groups is not None:
for name in self._ch_names:
if name not in groups:
raise ValueError(f'{name} not found in ``groups``')
_validate_type(groups[name], (float, int), f'groups[{name}]')
self.groups = groups
else:
i = 0
self._groups = dict()
base_names = dict()
for name in self._ch_names:
# strip all numbers from the name
base_name = ''.join([letter for letter in name if
not letter.isdigit() and letter != ' '])
if base_name in base_names:
# look up group number by base name
self._groups[name] = base_names[base_name]
else:
self._groups[name] = i
base_names[base_name] = i
i += 1
def _update_lines(self, group, only_2D=False):
"""Draw lines that connect the points in a group."""
if group in self._lines_2D: # remove existing 2D lines first
for line in self._lines_2D[group]:
line.remove()
self._lines_2D.pop(group)
if only_2D: # if not in projection, don't add 2D lines
if self._toggle_show_mip_button.text() == \
'Show Max Intensity Proj':
return
elif group in self._lines: # if updating 3D, remove first
self._renderer.plotter.remove_actor(
self._lines[group], render=False)
pos = np.array([
self._chs[ch] for i, ch in enumerate(self._ch_names)
if self._groups[ch] == group and i in self._seeg_idx and
not np.isnan(self._chs[ch]).any()])
if len(pos) < 2: # not enough points for line
return
# first, the insertion will be the point farthest from the origin
# brains are a longer posterior-anterior, scale for this (80%)
insert_idx = np.argmax(np.linalg.norm(pos * np.array([1, 0.8, 1]),
axis=1))
# second, find the farthest point from the insertion
target_idx = np.argmax(np.linalg.norm(pos[insert_idx] - pos, axis=1))
# third, make a unit vector and to add to the insertion for the bolt
elec_v = pos[insert_idx] - pos[target_idx]
elec_v /= np.linalg.norm(elec_v)
if not only_2D:
self._lines[group] = self._renderer.tube(
[pos[target_idx]], [pos[insert_idx] + elec_v * _BOLT_SCALAR],
radius=self._radius * _TUBE_SCALAR, color=_CMAP(group)[:3])[0]
if self._toggle_show_mip_button.text() == 'Hide Max Intensity Proj':
# add 2D lines on each slice plot if in max intensity projection
target_vox = apply_trans(self._ras_vox_t, pos[target_idx])
insert_vox = apply_trans(self._ras_vox_t,
pos[insert_idx] + elec_v * _BOLT_SCALAR)
lines_2D = list()
for axis in range(3):
x, y = self._xy_idx[axis]
lines_2D.append(self._figs[axis].axes[0].plot(
[target_vox[x], insert_vox[x]],
[target_vox[y], insert_vox[y]],
color=_CMAP(group), linewidth=0.25, zorder=7)[0])
self._lines_2D[group] = lines_2D
def _select_group(self):
"""Change the group label to the selection."""
group = self._group_selector.currentIndex()
self._groups[self._ch_names[self._ch_index]] = group
# color differently if found already
self._color_list_item(self._ch_names[self._ch_index])
self._update_group()
def _update_group(self):
"""Set background for closed group menu."""
group = self._group_selector.currentIndex()
rgb = (255 * np.array(_CMAP(group))).round().astype(int)
self._group_selector.setStyleSheet(
'background-color: rgb({:d},{:d},{:d})'.format(*rgb))
self._group_selector.update()
def _update_ch_selection(self):
"""Update which channel is selected."""
name = self._ch_names[self._ch_index]
self._ch_list.setCurrentIndex(
self._ch_list_model.index(self._ch_index, 0))
self._group_selector.setCurrentIndex(self._groups[name])
self._update_group()
if not np.isnan(self._chs[name]).any():
self._set_ras(self._chs[name])
self._update_camera(render=True)
self._draw()
def _go_to_ch(self, index):
"""Change current channel to the item selected."""
self._ch_index = index.row()
self._update_ch_selection()
@Slot()
def _next_ch(self):
"""Increment the current channel selection index."""
self._ch_index = (self._ch_index + 1) % len(self._ch_names)
self._update_ch_selection()
def _color_list_item(self, name=None):
"""Color the item in the view list for easy id of marked channels."""
name = self._ch_names[self._ch_index] if name is None else name
color = QtGui.QColor('white')
if not np.isnan(self._chs[name]).any():
group = self._groups[name]
color.setRgb(*[int(c * 255) for c in _CMAP(group)])
brush = QtGui.QBrush(color)
brush.setStyle(QtCore.Qt.SolidPattern)
self._ch_list_model.setData(
self._ch_list_model.index(self._ch_names.index(name), 0),
brush, QtCore.Qt.BackgroundRole)
# color text black
color = QtGui.QColor('black')
brush = QtGui.QBrush(color)
brush.setStyle(QtCore.Qt.SolidPattern)
self._ch_list_model.setData(
self._ch_list_model.index(self._ch_names.index(name), 0),
brush, QtCore.Qt.ForegroundRole)
@Slot()
def _toggle_snap(self):
"""Toggle snapping the contact location to the center of mass."""
if self._snap_button.text() == 'Off':
self._snap_button.setText('On')
self._snap_button.setStyleSheet("background-color: green")
else: # text == 'On', turn off
self._snap_button.setText('Off')
self._snap_button.setStyleSheet("background-color: red")
@Slot()
def _mark_ch(self):
"""Mark the current channel as being located at the crosshair."""
name = self._ch_names[self._ch_index]
if self._snap_button.text() == 'Off':
self._chs[name][:] = self._ras
else:
shape = np.mean(self._mri_data.shape) # Freesurfer shape (256)
voxels_max = int(
4 / 3 * np.pi * (shape * self._radius / _CH_PLOT_SIZE)**3)
neighbors = _voxel_neighbors(
self._vox, self._ct_data, thresh=0.5,
voxels_max=voxels_max, use_relative=True)
self._chs[name][:] = apply_trans( # to surface RAS
self._vox_ras_t, np.array(list(neighbors)).mean(axis=0))
self._color_list_item()
self._update_lines(self._groups[name])
self._update_ch_images(draw=True)
self._plot_3d_ch(name, render=True)
self._save_ch_coords()
self._next_ch()
self._ch_list.setFocus()
@Slot()
def _remove_ch(self):
"""Remove the location data for the current channel."""
name = self._ch_names[self._ch_index]
self._chs[name] *= np.nan
self._color_list_item()
self._save_ch_coords()
self._update_lines(self._groups[name])
self._update_ch_images(draw=True)
self._plot_3d_ch(name, render=True)
self._next_ch()
self._ch_list.setFocus()
def _update_ch_images(self, axis=None, draw=False):
"""Update the channel image(s)."""
for axis in range(3) if axis is None else [axis]:
self._images['chs'][axis].set_data(
self._make_ch_image(axis))
if self._toggle_show_mip_button.text() == \
'Hide Max Intensity Proj':
self._images['mip_chs'][axis].set_data(
self._make_ch_image(axis, proj=True))
if draw:
self._draw(axis)
def _update_ct_images(self, axis=None, draw=False):
"""Update the CT image(s)."""
for axis in range(3) if axis is None else [axis]:
ct_data = np.take(self._ct_data, self._current_slice[axis],
axis=axis).T
# Threshold the CT so only bright objects (electrodes) are visible
ct_data[ct_data < self._ct_min_slider.value()] = np.nan
ct_data[ct_data > self._ct_max_slider.value()] = np.nan
self._images['ct'][axis].set_data(ct_data)
if 'local_max' in self._images:
ct_max_data = np.take(
self._ct_maxima, self._current_slice[axis], axis=axis).T
self._images['local_max'][axis].set_data(ct_max_data)
if draw:
self._draw(axis)
def _update_mri_images(self, axis=None, draw=False):
"""Update the CT image(s)."""
if 'mri' in self._images:
for axis in range(3) if axis is None else [axis]:
self._images['mri'][axis].set_data(
np.take(self._mri_data, self._current_slice[axis],
axis=axis).T)
if draw:
self._draw(axis)
def _update_images(self, axis=None, draw=True):
"""Update CT and channel images when general changes happen."""
self._update_ch_images(axis=axis)
self._update_mri_images(axis=axis)
super()._update_images()
def _update_ct_scale(self):
"""Update CT min slider value."""
new_min = self._ct_min_slider.value()
new_max = self._ct_max_slider.value()
# handle inversions
self._ct_min_slider.setValue(min([new_min, new_max]))
self._ct_max_slider.setValue(max([new_min, new_max]))
self._update_ct_images(draw=True)
def _update_radius(self):
"""Update channel plot radius."""
self._radius = np.round(self._radius_slider.value()).astype(int)
if self._toggle_show_max_button.text() == 'Hide Maxima':
self._update_ct_maxima()
self._update_ct_images()
else:
self._ct_maxima = None # signals ct max is out-of-date
self._update_ch_images(draw=True)
for name, actor in self._3d_chs.items():
if not np.isnan(self._chs[name]).any():
actor.SetOrigin(self._chs[name])
actor.SetScale(self._radius * _RADIUS_SCALAR)
self._renderer._update()
self._ch_list.setFocus() # remove focus from 3d plotter
def _update_ch_alpha(self):
"""Update channel plot alpha."""
self._ch_alpha = self._alpha_slider.value() / 100
for axis in range(3):
self._images['chs'][axis].set_alpha(self._ch_alpha)
self._draw()
for actor in self._3d_chs.values():
actor.GetProperty().SetOpacity(self._ch_alpha)
self._renderer._update()
self._ch_list.setFocus() # remove focus from 3d plotter
def _show_help(self):
"""Show the help menu."""
QMessageBox.information(
self, 'Help',
"Help:\n'm': mark channel location\n"
"'r': remove channel location\n"
"'b': toggle viewing of brain in T1\n"
"'+'/'-': zoom\nleft/right arrow: left/right\n"
"up/down arrow: superior/inferior\n"
"left angle bracket/right angle bracket: anterior/posterior")
def _update_ct_maxima(self):
"""Compute the maximum voxels based on the current radius."""
self._ct_maxima = maximum_filter(
self._ct_data, (self._radius,) * 3) == self._ct_data
self._ct_maxima[self._ct_data <= np.median(self._ct_data)] = \
False
self._ct_maxima = np.where(self._ct_maxima, 1, np.nan) # transparent
def _toggle_show_mip(self):
"""Toggle whether the maximum-intensity projection is shown."""
if self._toggle_show_mip_button.text() == 'Show Max Intensity Proj':
self._toggle_show_mip_button.setText('Hide Max Intensity Proj')
self._images['mip'] = list()
self._images['mip_chs'] = list()
ct_min, ct_max = np.nanmin(self._ct_data), np.nanmax(self._ct_data)
for axis in range(3):
ct_mip_data = np.max(self._ct_data, axis=axis).T
self._images['mip'].append(
self._figs[axis].axes[0].imshow(
ct_mip_data, cmap='gray', aspect='auto',
vmin=ct_min, vmax=ct_max, zorder=5))
# add circles for each channel
xs, ys, colors = list(), list(), list()
for name, ras in self._chs.items():
xyz = self._vox
xs.append(xyz[self._xy_idx[axis][0]])
ys.append(xyz[self._xy_idx[axis][1]])
colors.append(_CMAP(self._groups[name]))
self._images['mip_chs'].append(
self._figs[axis].axes[0].imshow(
self._make_ch_image(axis, proj=True), aspect='auto',
extent=self._ch_extents[axis], zorder=6,
cmap=_CMAP, alpha=1, vmin=0, vmax=_N_COLORS))
for group in set(self._groups.values()):
self._update_lines(group, only_2D=True)
else:
for img in self._images['mip'] + self._images['mip_chs']:
img.remove()
self._images.pop('mip')
self._images.pop('mip_chs')
self._toggle_show_mip_button.setText('Show Max Intensity Proj')
for group in set(self._groups.values()): # remove lines
self._update_lines(group, only_2D=True)
self._draw()
def _toggle_show_max(self):
"""Toggle whether to color local maxima differently."""
if self._toggle_show_max_button.text() == 'Show Maxima':
self._toggle_show_max_button.setText('Hide Maxima')
# happens on initiation or if the radius is changed with it off
if self._ct_maxima is None: # otherwise don't recompute
self._update_ct_maxima()
self._images['local_max'] = list()
for axis in range(3):
ct_max_data = np.take(self._ct_maxima,
self._current_slice[axis], axis=axis).T
self._images['local_max'].append(
self._figs[axis].axes[0].imshow(
ct_max_data, cmap='autumn', aspect='auto',
vmin=0, vmax=1, zorder=4))
else:
for img in self._images['local_max']:
img.remove()
self._images.pop('local_max')
self._toggle_show_max_button.setText('Show Maxima')
self._draw()
def _toggle_show_brain(self):
"""Toggle whether the brain/MRI is being shown."""
if 'mri' in self._images:
for img in self._images['mri']:
img.remove()
self._images.pop('mri')
self._toggle_brain_button.setText('Show Brain')
else:
self._images['mri'] = list()
for axis in range(3):
mri_data = np.take(self._mri_data,
self._current_slice[axis], axis=axis).T
self._images['mri'].append(self._figs[axis].axes[0].imshow(
mri_data, cmap='hot', aspect='auto', alpha=0.25, zorder=2))
self._toggle_brain_button.setText('Hide Brain')
self._draw()
def _key_press_event(self, event):
"""Execute functions when the user presses a key."""
super(IntracranialElectrodeLocator, self)._key_press_event(event)
if event.text() == 'm':
self._mark_ch()
if event.text() == 'r':
self._remove_ch()
if event.text() == 'b':
self._toggle_show_brain()
|