File: test_ieeg_locate.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (207 lines) | stat: -rw-r--r-- 7,784 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# -*- coding: utf-8 -*-
# Authors: Alex Rockhill <aprockhill@mailbox.org>
#
# License: BSD-3-clause

import os.path as op
import numpy as np
from numpy.testing import assert_allclose

import pytest

import mne
from mne.datasets import testing
from mne.transforms import apply_trans
from mne.utils import requires_nibabel, requires_version, use_log_level
from mne.viz.utils import _fake_click

data_path = testing.data_path(download=False)
subject = 'sample'
subjects_dir = op.join(data_path, 'subjects')
sample_dir = op.join(data_path, 'MEG', subject)
raw_path = op.join(sample_dir, 'sample_audvis_trunc_raw.fif')
fname_trans = op.join(sample_dir, 'sample_audvis_trunc-trans.fif')


@requires_nibabel()
@pytest.fixture
def _fake_CT_coords(skull_size=5, contact_size=2):
    """Make somewhat realistic CT data with contacts."""
    import nibabel as nib
    brain = nib.load(
        op.join(subjects_dir, subject, 'mri', 'brain.mgz'))
    verts = mne.read_surface(
        op.join(subjects_dir, subject, 'bem', 'outer_skull.surf'))[0]
    verts = apply_trans(np.linalg.inv(brain.header.get_vox2ras_tkr()), verts)
    x, y, z = np.array(brain.shape).astype(int) // 2
    coords = [(x, y - 14, z), (x - 10, y - 15, z),
              (x - 20, y - 16, z + 1), (x - 30, y - 16, z + 1)]
    center = np.array(brain.shape) / 2
    # make image
    np.random.seed(99)
    ct_data = np.random.random(brain.shape).astype(np.float32) * 100
    # make skull
    for vert in verts:
        x, y, z = np.round(vert).astype(int)
        ct_data[slice(x - skull_size, x + skull_size + 1),
                slice(y - skull_size, y + skull_size + 1),
                slice(z - skull_size, z + skull_size + 1)] = 1000
    # add electrode with contacts
    for (x, y, z) in coords:
        # make sure not in skull
        assert np.linalg.norm(center - np.array((x, y, z))) < 50
        ct_data[slice(x - contact_size, x + contact_size + 1),
                slice(y - contact_size, y + contact_size + 1),
                slice(z - contact_size, z + contact_size + 1)] = \
            1000 - np.linalg.norm(np.array(np.meshgrid(
                *[range(-contact_size, contact_size + 1)] * 3)), axis=0)
    ct = nib.MGHImage(ct_data, brain.affine)
    coords = apply_trans(ct.header.get_vox2ras_tkr(), np.array(coords))
    return ct, coords


@pytest.fixture
def _locate_ieeg(renderer_interactive_pyvistaqt):
    # Use a fixture to create these classes so we can ensure that they
    # are closed at the end of the test
    guis = list()

    def fun(*args, **kwargs):
        guis.append(mne.gui.locate_ieeg(*args, **kwargs))
        return guis[-1]

    yield fun

    for gui in guis:
        try:
            gui.close()
        except Exception:
            pass


def test_ieeg_elec_locate_io(_locate_ieeg):
    """Test the input/output of the intracranial location GUI."""
    import nibabel as nib
    info = mne.create_info([], 1000)
    aligned_ct = nib.MGHImage(np.zeros((256, 256, 256), dtype=np.float32),
                              np.eye(4))
    trans = mne.transforms.Transform('head', 'mri')
    with pytest.raises(ValueError,
                       match='No channels found in `info` to locate'):
        _locate_ieeg(info, trans, aligned_ct, subject, subjects_dir)


@requires_version('sphinx_gallery')
@testing.requires_testing_data
def test_locate_scraper(_locate_ieeg, _fake_CT_coords, tmp_path):
    """Test sphinx-gallery scraping of the GUI."""
    raw = mne.io.read_raw_fif(raw_path)
    raw.pick_types(eeg=True)
    ch_dict = {'EEG 001': 'LAMY 1', 'EEG 002': 'LAMY 2',
               'EEG 003': 'LSTN 1', 'EEG 004': 'LSTN 2'}
    raw.pick_channels(list(ch_dict.keys()))
    raw.rename_channels(ch_dict)
    raw.set_montage(None)
    aligned_ct, _ = _fake_CT_coords
    trans = mne.read_trans(fname_trans)
    with pytest.warns(RuntimeWarning, match='`pial` surface not found'):
        gui = _locate_ieeg(raw.info, trans, aligned_ct,
                           subject=subject, subjects_dir=subjects_dir)
    (tmp_path / '_images').mkdir()
    image_path = str(tmp_path / '_images' / 'temp.png')
    gallery_conf = dict(builder_name='html', src_dir=str(tmp_path))
    block_vars = dict(
        example_globals=dict(gui=gui),
        image_path_iterator=iter([image_path]))
    assert not op.isfile(image_path)
    assert not getattr(gui, '_scraped', False)
    mne.gui._GUIScraper()(None, block_vars, gallery_conf)
    assert op.isfile(image_path)
    assert gui._scraped


@testing.requires_testing_data
def test_ieeg_elec_locate_display(_locate_ieeg, _fake_CT_coords):
    """Test that the intracranial location GUI displays properly."""
    raw = mne.io.read_raw_fif(raw_path, preload=True)
    raw.pick_types(eeg=True)
    ch_dict = {'EEG 001': 'LAMY 1', 'EEG 002': 'LAMY 2',
               'EEG 003': 'LSTN 1', 'EEG 004': 'LSTN 2'}
    raw.pick_channels(list(ch_dict.keys()))
    raw.rename_channels(ch_dict)
    raw.set_eeg_reference('average')
    raw.set_channel_types({name: 'seeg' for name in raw.ch_names})
    raw.set_montage(None)
    aligned_ct, coords = _fake_CT_coords
    trans = mne.read_trans(fname_trans)

    with pytest.warns(RuntimeWarning, match='`pial` surface not found'):
        gui = _locate_ieeg(raw.info, trans, aligned_ct,
                           subject=subject, subjects_dir=subjects_dir,
                           verbose=True)

    with pytest.raises(ValueError, match='read-only'):
        gui._ras[:] = coords[0]  # start in the right position
    gui._set_ras(coords[0])
    gui._mark_ch()
    assert not gui._lines and not gui._lines_2D  # no lines for one contact
    for ci, coord in enumerate(coords[1:], 1):
        coord_vox = apply_trans(gui._ras_vox_t, coord)
        with use_log_level('debug'):
            _fake_click(gui._figs[2], gui._figs[2].axes[0],
                        coord_vox[:-1], xform='data', kind='release')
        assert_allclose(coord[:2], gui._ras[:2], atol=0.1,
                        err_msg=f'coords[{ci}][:2]')
        assert_allclose(coord[2], gui._ras[2], atol=2,
                        err_msg=f'coords[{ci}][2]')
        gui._mark_ch()

    # ensure a 3D line was made for each group
    assert len(gui._lines) == 2

    # test snap to center
    gui._ch_index = 0
    gui._set_ras(coords[0])  # move to first position
    gui._mark_ch()
    assert_allclose(coords[0], gui._chs['LAMY 1'], atol=0.2)
    gui._snap_button.click()
    assert gui._snap_button.text() == 'Off'
    # now make sure no snap happens
    gui._ch_index = 0
    gui._set_ras(coords[1] + 1)
    gui._mark_ch()
    assert_allclose(coords[1] + 1, gui._chs['LAMY 1'], atol=0.01)
    # check that it turns back on
    gui._snap_button.click()
    assert gui._snap_button.text() == 'On'

    # test remove
    gui._ch_index = 1
    gui._update_ch_selection()
    gui._remove_ch()
    assert np.isnan(gui._chs['LAMY 2']).all()

    # check that raw object saved
    assert not np.isnan(raw.info['chs'][0]['loc'][:3]).any()  # LAMY 1
    assert np.isnan(raw.info['chs'][1]['loc'][:3]).all()  # LAMY 2 (removed)

    # move sliders
    gui._alpha_slider.setValue(75)
    assert gui._ch_alpha == 0.75
    gui._radius_slider.setValue(5)
    assert gui._radius == 5
    ct_sum_before = np.nansum(gui._images['ct'][0].get_array().data)
    gui._ct_min_slider.setValue(500)
    assert np.nansum(gui._images['ct'][0].get_array().data) < ct_sum_before

    # test buttons
    gui._toggle_show_brain()
    assert 'mri' in gui._images
    assert 'local_max' not in gui._images
    gui._toggle_show_max()
    assert 'local_max' in gui._images
    assert 'mip' not in gui._images
    gui._toggle_show_mip()
    assert 'mip' in gui._images
    assert 'mip_chs' in gui._images
    assert len(gui._lines_2D) == 1  # LAMY only has one contact