File: test_mxne_inverse.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (435 lines) | stat: -rw-r--r-- 18,913 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
#
# License: Simplified BSD

import os.path as op

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_allclose,
                           assert_array_less, assert_array_equal)
import pytest

import mne
from mne.datasets import testing
from mne.label import read_label
from mne import (read_cov, read_forward_solution, read_evokeds,
                 convert_forward_solution)
from mne.inverse_sparse import mixed_norm, tf_mixed_norm
from mne.inverse_sparse.mxne_inverse import make_stc_from_dipoles, _split_gof
from mne.inverse_sparse.mxne_inverse import _compute_mxne_sure
from mne.inverse_sparse.mxne_optim import norm_l2inf
from mne.minimum_norm import apply_inverse, make_inverse_operator
from mne.minimum_norm.tests.test_inverse import \
    assert_var_exp_log, assert_stc_res
from mne.utils import assert_stcs_equal, catch_logging, _record_warnings
from mne.dipole import Dipole
from mne.source_estimate import VolSourceEstimate
from mne.simulation import simulate_sparse_stc, simulate_evoked


data_path = testing.data_path(download=False)
# NOTE: These use the ave and cov from sample dataset (no _trunc)
fname_data = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif')
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
label = 'Aud-rh'
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', '%s.label' % label)


@pytest.fixture(scope='module', params=[testing._pytest_param])
def forward():
    """Get a forward solution."""
    # module scope it for speed (but don't overwrite in use!)
    return read_forward_solution(fname_fwd)


@testing.requires_testing_data
@pytest.mark.timeout(150)  # ~30 sec on Travis Linux
@pytest.mark.slowtest
def test_mxne_inverse_standard(forward):
    """Test (TF-)MxNE inverse computation."""
    # Read noise covariance matrix
    cov = read_cov(fname_cov)

    # Handling average file
    loose = 0.0
    depth = 0.9

    evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
    evoked.crop(tmin=-0.05, tmax=0.2)

    evoked_l21 = evoked.copy()
    evoked_l21.crop(tmin=0.081, tmax=0.1)
    label = read_label(fname_label)
    assert label.hemi == 'rh'

    forward = convert_forward_solution(forward, surf_ori=True)

    # Reduce source space to make test computation faster
    inverse_operator = make_inverse_operator(evoked_l21.info, forward, cov,
                                             loose=loose, depth=depth,
                                             fixed=True, use_cps=True)
    stc_dspm = apply_inverse(evoked_l21, inverse_operator, lambda2=1. / 9.,
                             method='dSPM')
    stc_dspm.data[np.abs(stc_dspm.data) < 12] = 0.0
    stc_dspm.data[np.abs(stc_dspm.data) >= 12] = 1.
    weights_min = 0.5

    # MxNE tests
    alpha = 70  # spatial regularization parameter

    with _record_warnings():  # CD
        stc_cd = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
                            depth=depth, maxit=300, tol=1e-8,
                            active_set_size=10, weights=stc_dspm,
                            weights_min=weights_min, solver='cd')
    stc_bcd = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
                         depth=depth, maxit=300, tol=1e-8, active_set_size=10,
                         weights=stc_dspm, weights_min=weights_min,
                         solver='bcd')
    assert_array_almost_equal(stc_cd.times, evoked_l21.times, 5)
    assert_array_almost_equal(stc_bcd.times, evoked_l21.times, 5)
    assert_allclose(stc_cd.data, stc_bcd.data, rtol=1e-3, atol=0.0)
    assert stc_cd.vertices[1][0] in label.vertices
    assert stc_bcd.vertices[1][0] in label.vertices

    # vector
    with _record_warnings():  # no convergence
        stc = mixed_norm(evoked_l21, forward, cov, alpha, loose=1, maxit=2)
    with _record_warnings():  # no convergence
        stc_vec = mixed_norm(evoked_l21, forward, cov, alpha, loose=1, maxit=2,
                             pick_ori='vector')
    assert_stcs_equal(stc_vec.magnitude(), stc)
    with _record_warnings(), \
            pytest.raises(ValueError, match='pick_ori='):
        mixed_norm(evoked_l21, forward, cov, alpha, loose=0, maxit=2,
                   pick_ori='vector')

    with _record_warnings(), catch_logging() as log:  # CD
        dips = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
                          depth=depth, maxit=300, tol=1e-8, active_set_size=10,
                          weights=stc_dspm, weights_min=weights_min,
                          solver='cd', return_as_dipoles=True, verbose=True)
    stc_dip = make_stc_from_dipoles(dips, forward['src'])
    assert isinstance(dips[0], Dipole)
    assert stc_dip.subject == "sample"
    assert_stcs_equal(stc_cd, stc_dip)
    assert_var_exp_log(log.getvalue(), 51, 53)  # 51.8

    # Single time point things should match
    with _record_warnings(), catch_logging() as log:
        dips = mixed_norm(evoked_l21.copy().crop(0.081, 0.081),
                          forward, cov, alpha, loose=loose,
                          depth=depth, maxit=300, tol=1e-8, active_set_size=10,
                          weights=stc_dspm, weights_min=weights_min,
                          solver='cd', return_as_dipoles=True, verbose=True)
    assert_var_exp_log(log.getvalue(), 37.8, 38.0)  # 37.9
    gof = sum(dip.gof[0] for dip in dips)  # these are now partial exp vars
    assert_allclose(gof, 37.9, atol=0.1)

    with _record_warnings(), catch_logging() as log:
        stc, res = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
                              depth=depth, maxit=300, tol=1e-8,
                              weights=stc_dspm,  # gh-6382
                              active_set_size=10, return_residual=True,
                              solver='cd', verbose=True)
    assert_array_almost_equal(stc.times, evoked_l21.times, 5)
    assert stc.vertices[1][0] in label.vertices
    assert_var_exp_log(log.getvalue(), 51, 53)  # 51.8
    assert stc.data.min() < -1e-9  # signed
    assert_stc_res(evoked_l21, stc, forward, res)

    # irMxNE tests
    with _record_warnings(), catch_logging() as log:  # CD
        stc, residual = mixed_norm(
            evoked_l21, forward, cov, alpha, n_mxne_iter=5, loose=0.0001,
            depth=depth, maxit=300, tol=1e-8, active_set_size=10,
            solver='cd', return_residual=True, pick_ori='vector', verbose=True)
    assert_array_almost_equal(stc.times, evoked_l21.times, 5)
    assert stc.vertices[1][0] in label.vertices
    assert stc.vertices == [[63152], [79017]]
    assert_var_exp_log(log.getvalue(), 51, 53)  # 51.8
    assert_stc_res(evoked_l21, stc, forward, residual)

    # Do with TF-MxNE for test memory savings
    alpha = 60.  # overall regularization parameter
    l1_ratio = 0.01  # temporal regularization proportion

    stc, _ = tf_mixed_norm(evoked, forward, cov,
                           loose=loose, depth=depth, maxit=100, tol=1e-4,
                           tstep=4, wsize=16, window=0.1, weights=stc_dspm,
                           weights_min=weights_min, return_residual=True,
                           alpha=alpha, l1_ratio=l1_ratio)
    assert_array_almost_equal(stc.times, evoked.times, 5)
    assert stc.vertices[1][0] in label.vertices

    # vector
    stc_nrm = tf_mixed_norm(
        evoked, forward, cov, loose=1, depth=depth, maxit=2, tol=1e-4,
        tstep=4, wsize=16, window=0.1, weights=stc_dspm,
        weights_min=weights_min, alpha=alpha, l1_ratio=l1_ratio)
    stc_vec, residual = tf_mixed_norm(
        evoked, forward, cov, loose=1, depth=depth, maxit=2, tol=1e-4,
        tstep=4, wsize=16, window=0.1, weights=stc_dspm,
        weights_min=weights_min, alpha=alpha, l1_ratio=l1_ratio,
        pick_ori='vector', return_residual=True)
    assert_stcs_equal(stc_vec.magnitude(), stc_nrm)

    pytest.raises(ValueError, tf_mixed_norm, evoked, forward, cov,
                  alpha=101, l1_ratio=0.03)
    pytest.raises(ValueError, tf_mixed_norm, evoked, forward, cov,
                  alpha=50., l1_ratio=1.01)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_mxne_vol_sphere():
    """Test (TF-)MxNE with a sphere forward and volumic source space."""
    evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
    evoked.crop(tmin=-0.05, tmax=0.2)
    cov = read_cov(fname_cov)

    evoked_l21 = evoked.copy()
    evoked_l21.crop(tmin=0.081, tmax=0.1)

    info = evoked.info
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=15., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 0.08),
                                        bem=None, mindist=5.0,
                                        exclude=2.0, sphere_units='m')
    fwd = mne.make_forward_solution(info, trans=None, src=src,
                                    bem=sphere, eeg=False, meg=True)

    alpha = 80.

    # Computing inverse with restricted orientations should also work, since
    # we have a discrete source space.
    stc = mixed_norm(evoked_l21, fwd, cov, alpha, loose=0.2,
                     return_residual=False, maxit=3, tol=1e-8,
                     active_set_size=10)
    assert_array_almost_equal(stc.times, evoked_l21.times, 5)

    # irMxNE tests
    with catch_logging() as log:
        stc = mixed_norm(evoked_l21, fwd, cov, alpha,
                         n_mxne_iter=1, maxit=30, tol=1e-8,
                         active_set_size=10, verbose=True)
    assert isinstance(stc, VolSourceEstimate)
    assert_array_almost_equal(stc.times, evoked_l21.times, 5)
    assert_var_exp_log(log.getvalue(), 9, 11)  # 10.2

    # Compare orientation obtained using fit_dipole and gamma_map
    # for a simulated evoked containing a single dipole
    stc = mne.VolSourceEstimate(50e-9 * np.random.RandomState(42).randn(1, 4),
                                vertices=[stc.vertices[0][:1]],
                                tmin=stc.tmin,
                                tstep=stc.tstep)
    evoked_dip = mne.simulation.simulate_evoked(fwd, stc, info, cov, nave=1e9,
                                                use_cps=True)

    dip_mxne = mixed_norm(evoked_dip, fwd, cov, alpha=80,
                          n_mxne_iter=1, maxit=30, tol=1e-8,
                          active_set_size=10, return_as_dipoles=True)

    amp_max = [np.max(d.amplitude) for d in dip_mxne]
    dip_mxne = dip_mxne[np.argmax(amp_max)]
    assert dip_mxne.pos[0] in src[0]['rr'][stc.vertices[0]]

    dip_fit = mne.fit_dipole(evoked_dip, cov, sphere)[0]
    assert np.abs(np.dot(dip_fit.ori[0], dip_mxne.ori[0])) > 0.99
    dist = 1000 * np.linalg.norm(dip_fit.pos[0] - dip_mxne.pos[0])
    assert dist < 4.  # within 4 mm

    # Do with TF-MxNE for test memory savings
    alpha = 60.  # overall regularization parameter
    l1_ratio = 0.01  # temporal regularization proportion

    stc, _ = tf_mixed_norm(evoked, fwd, cov, maxit=3, tol=1e-4,
                           tstep=16, wsize=32, window=0.1, alpha=alpha,
                           l1_ratio=l1_ratio, return_residual=True)
    assert isinstance(stc, VolSourceEstimate)
    assert_array_almost_equal(stc.times, evoked.times, 5)


@pytest.mark.parametrize('mod', (
    None, 'mult', 'augment', 'sign', 'zero', 'less'))
def test_split_gof_basic(mod):
    """Test splitting the goodness of fit."""
    # first a trivial case
    gain = np.array([[0., 1., 1.], [1., 1., 0.]]).T
    M = np.ones((3, 1))
    X = np.ones((2, 1))
    M_est = gain @ X
    assert_allclose(M_est, np.array([[1., 2., 1.]]).T)  # a reasonable estimate
    if mod == 'mult':
        gain *= [1., -0.5]
        X[1] *= -2
    elif mod == 'augment':
        gain = np.concatenate((gain, np.zeros((3, 1))), axis=1)
        X = np.concatenate((X, [[1.]]))
    elif mod == 'sign':
        gain[1] *= -1
        M[1] *= -1
        M_est[1] *= -1
    elif mod in ('zero', 'less'):
        gain = np.array([[1, 1., 1.], [1., 1., 1.]]).T
        if mod == 'zero':
            X[:, 0] = [1., 0.]
        else:
            X[:, 0] = [1., 0.5]
        M_est = gain @ X
    else:
        assert mod is None
    res = M - M_est
    gof = 100 * (1. - (res * res).sum() / (M * M).sum())
    gof_split = _split_gof(M, X, gain)
    assert_allclose(gof_split.sum(), gof)
    want = gof_split[[0, 0]]
    if mod == 'augment':
        want = np.concatenate((want, [[0]]))
    if mod in ('mult', 'less'):
        assert_array_less(gof_split[1], gof_split[0])
    elif mod == 'zero':
        assert_allclose(gof_split[0], gof_split.sum(0))
        assert_allclose(gof_split[1], 0., atol=1e-6)
    else:
        assert_allclose(gof_split, want, atol=1e-12)


@testing.requires_testing_data
@pytest.mark.parametrize('idx, weights', [
    # empirically determined approximately orthogonal columns: 0, 15157, 19448
    ([0], [1]),
    ([0, 15157], [1, 1]),
    ([0, 15157], [1, 3]),
    ([0, 15157], [5, -1]),
    ([0, 15157, 19448], [1, 1, 1]),
    ([0, 15157, 19448], [1e-2, 1, 5]),
])
def test_split_gof_meg(forward, idx, weights):
    """Test GOF splitting on MEG data."""
    gain = forward['sol']['data'][:, idx]
    # close to orthogonal
    norms = np.linalg.norm(gain, axis=0)
    triu = np.triu_indices(len(idx), 1)
    prods = np.abs(np.dot(gain.T, gain) / np.outer(norms, norms))[triu]
    assert_array_less(prods, 5e-3)  # approximately orthogonal
    # first, split across time (one dipole per time point)
    M = gain * weights
    gof_split = _split_gof(M, np.diag(weights), gain)
    assert_allclose(gof_split.sum(0), 100., atol=1e-5)  # all sum to 100
    assert_allclose(gof_split, 100 * np.eye(len(weights)), atol=1)  # loc
    # next, summed to a single time point (all dipoles active at one time pt)
    weights = np.array(weights)[:, np.newaxis]
    x = gain @ weights
    assert x.shape == (gain.shape[0], 1)
    gof_split = _split_gof(x, weights, gain)
    want = (norms * weights.T).T ** 2
    want = 100 * want / want.sum()
    assert_allclose(gof_split, want, atol=1e-3, rtol=1e-2)
    assert_allclose(gof_split.sum(), 100, rtol=1e-5)


@pytest.mark.parametrize('n_sensors, n_dipoles, n_times', [
    (10, 15, 7),
    (20, 60, 20),
])
@pytest.mark.parametrize('nnz', [2, 4])
@pytest.mark.parametrize('corr', [0.75])
@pytest.mark.parametrize('n_orient', [1, 3])
def test_mxne_inverse_sure_synthetic(n_sensors, n_dipoles, n_times, nnz, corr,
                                     n_orient, snr=4):
    """Tests SURE criterion for automatic alpha selection on synthetic data."""
    rng = np.random.RandomState(0)
    sigma = np.sqrt(1 - corr ** 2)
    U = rng.randn(n_sensors)
    # generate gain matrix
    G = np.empty([n_sensors, n_dipoles], order='F')
    G[:, :n_orient] = np.expand_dims(U, axis=-1)
    n_dip_per_pos = n_dipoles // n_orient
    for j in range(1, n_dip_per_pos):
        U *= corr
        U += sigma * rng.randn(n_sensors)
        G[:, j * n_orient:(j + 1) * n_orient] = np.expand_dims(U, axis=-1)
    # generate coefficient matrix
    support = rng.choice(n_dip_per_pos, nnz, replace=False)
    X = np.zeros((n_dipoles, n_times))
    for k in support:
        X[k * n_orient:(k + 1) * n_orient, :] = rng.normal(
            size=(n_orient, n_times))
    # generate measurement matrix
    M = G @ X
    noise = rng.randn(n_sensors, n_times)
    sigma = 1 / np.linalg.norm(noise) * np.linalg.norm(M) / snr
    M += sigma * noise
    # inverse modeling with sure
    alpha_max = norm_l2inf(np.dot(G.T, M), n_orient, copy=False)
    alpha_grid = np.geomspace(alpha_max, alpha_max / 10, num=15)
    _, active_set, _ = _compute_mxne_sure(M, G, alpha_grid, sigma=sigma,
                                          n_mxne_iter=5, maxit=3000, tol=1e-4,
                                          n_orient=n_orient,
                                          active_set_size=10, debias=True,
                                          solver="auto", dgap_freq=10,
                                          random_state=0, verbose=False)
    assert np.count_nonzero(active_set, axis=-1) == n_orient * nnz


@pytest.mark.slowtest  # slow on Azure
@testing.requires_testing_data
def test_mxne_inverse_sure():
    """Tests SURE criterion for automatic alpha selection on MEG data."""
    def data_fun(times):
        data = np.zeros(times.shape)
        data[times >= 0] = 50e-9
        return data
    n_dipoles = 2
    raw = mne.io.read_raw_fif(fname_raw)
    info = mne.io.read_info(fname_data)
    with info._unlock():
        info['projs'] = []
    noise_cov = mne.make_ad_hoc_cov(info)
    label_names = ['Aud-lh', 'Aud-rh']
    labels = [
        mne.read_label(data_path / 'MEG' / 'sample' / 'labels' / f'{ln}.label')
        for ln in label_names]
    fname_fwd = op.join(data_path, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
    forward = mne.read_forward_solution(fname_fwd)
    forward = mne.pick_types_forward(forward, meg="grad", eeg=False,
                                     exclude=raw.info['bads'])
    times = np.arange(100, dtype=np.float64) / raw.info['sfreq'] - 0.1
    stc = simulate_sparse_stc(forward['src'], n_dipoles=n_dipoles, times=times,
                              random_state=1, labels=labels, data_fun=data_fun)
    nave = 30
    evoked = simulate_evoked(forward, stc, info, noise_cov, nave=nave,
                             use_cps=False, iir_filter=None)
    evoked = evoked.crop(tmin=0, tmax=10e-3)
    stc_ = mixed_norm(evoked, forward, noise_cov, loose=0.9, n_mxne_iter=5,
                      depth=0.9)
    assert_array_equal(stc_.vertices, stc.vertices)


@pytest.mark.slowtest  # slow on Azure
@testing.requires_testing_data
def test_mxne_inverse_empty():
    """Tests solver with too high alpha."""
    evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
    evoked.pick("grad", exclude="bads")
    fname_fwd = op.join(data_path, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
    forward = mne.read_forward_solution(fname_fwd)
    forward = mne.pick_types_forward(forward, meg="grad", eeg=False,
                                     exclude=evoked.info['bads'])
    cov = read_cov(fname_cov)
    with pytest.warns(RuntimeWarning, match='too big'):
        stc, residual = mixed_norm(
            evoked, forward, cov, n_mxne_iter=3, alpha=99,
            return_residual=True)
        assert stc.data.size == 0
        assert stc.vertices[0].size == 0
        assert stc.vertices[1].size == 0
        assert_allclose(evoked.data, residual.data)