1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
#
# License: Simplified BSD
import os.path as op
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_allclose,
assert_array_less, assert_array_equal)
import pytest
import mne
from mne.datasets import testing
from mne.label import read_label
from mne import (read_cov, read_forward_solution, read_evokeds,
convert_forward_solution)
from mne.inverse_sparse import mixed_norm, tf_mixed_norm
from mne.inverse_sparse.mxne_inverse import make_stc_from_dipoles, _split_gof
from mne.inverse_sparse.mxne_inverse import _compute_mxne_sure
from mne.inverse_sparse.mxne_optim import norm_l2inf
from mne.minimum_norm import apply_inverse, make_inverse_operator
from mne.minimum_norm.tests.test_inverse import \
assert_var_exp_log, assert_stc_res
from mne.utils import assert_stcs_equal, catch_logging, _record_warnings
from mne.dipole import Dipole
from mne.source_estimate import VolSourceEstimate
from mne.simulation import simulate_sparse_stc, simulate_evoked
data_path = testing.data_path(download=False)
# NOTE: These use the ave and cov from sample dataset (no _trunc)
fname_data = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif')
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
label = 'Aud-rh'
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', '%s.label' % label)
@pytest.fixture(scope='module', params=[testing._pytest_param])
def forward():
"""Get a forward solution."""
# module scope it for speed (but don't overwrite in use!)
return read_forward_solution(fname_fwd)
@testing.requires_testing_data
@pytest.mark.timeout(150) # ~30 sec on Travis Linux
@pytest.mark.slowtest
def test_mxne_inverse_standard(forward):
"""Test (TF-)MxNE inverse computation."""
# Read noise covariance matrix
cov = read_cov(fname_cov)
# Handling average file
loose = 0.0
depth = 0.9
evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
evoked.crop(tmin=-0.05, tmax=0.2)
evoked_l21 = evoked.copy()
evoked_l21.crop(tmin=0.081, tmax=0.1)
label = read_label(fname_label)
assert label.hemi == 'rh'
forward = convert_forward_solution(forward, surf_ori=True)
# Reduce source space to make test computation faster
inverse_operator = make_inverse_operator(evoked_l21.info, forward, cov,
loose=loose, depth=depth,
fixed=True, use_cps=True)
stc_dspm = apply_inverse(evoked_l21, inverse_operator, lambda2=1. / 9.,
method='dSPM')
stc_dspm.data[np.abs(stc_dspm.data) < 12] = 0.0
stc_dspm.data[np.abs(stc_dspm.data) >= 12] = 1.
weights_min = 0.5
# MxNE tests
alpha = 70 # spatial regularization parameter
with _record_warnings(): # CD
stc_cd = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
depth=depth, maxit=300, tol=1e-8,
active_set_size=10, weights=stc_dspm,
weights_min=weights_min, solver='cd')
stc_bcd = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
depth=depth, maxit=300, tol=1e-8, active_set_size=10,
weights=stc_dspm, weights_min=weights_min,
solver='bcd')
assert_array_almost_equal(stc_cd.times, evoked_l21.times, 5)
assert_array_almost_equal(stc_bcd.times, evoked_l21.times, 5)
assert_allclose(stc_cd.data, stc_bcd.data, rtol=1e-3, atol=0.0)
assert stc_cd.vertices[1][0] in label.vertices
assert stc_bcd.vertices[1][0] in label.vertices
# vector
with _record_warnings(): # no convergence
stc = mixed_norm(evoked_l21, forward, cov, alpha, loose=1, maxit=2)
with _record_warnings(): # no convergence
stc_vec = mixed_norm(evoked_l21, forward, cov, alpha, loose=1, maxit=2,
pick_ori='vector')
assert_stcs_equal(stc_vec.magnitude(), stc)
with _record_warnings(), \
pytest.raises(ValueError, match='pick_ori='):
mixed_norm(evoked_l21, forward, cov, alpha, loose=0, maxit=2,
pick_ori='vector')
with _record_warnings(), catch_logging() as log: # CD
dips = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
depth=depth, maxit=300, tol=1e-8, active_set_size=10,
weights=stc_dspm, weights_min=weights_min,
solver='cd', return_as_dipoles=True, verbose=True)
stc_dip = make_stc_from_dipoles(dips, forward['src'])
assert isinstance(dips[0], Dipole)
assert stc_dip.subject == "sample"
assert_stcs_equal(stc_cd, stc_dip)
assert_var_exp_log(log.getvalue(), 51, 53) # 51.8
# Single time point things should match
with _record_warnings(), catch_logging() as log:
dips = mixed_norm(evoked_l21.copy().crop(0.081, 0.081),
forward, cov, alpha, loose=loose,
depth=depth, maxit=300, tol=1e-8, active_set_size=10,
weights=stc_dspm, weights_min=weights_min,
solver='cd', return_as_dipoles=True, verbose=True)
assert_var_exp_log(log.getvalue(), 37.8, 38.0) # 37.9
gof = sum(dip.gof[0] for dip in dips) # these are now partial exp vars
assert_allclose(gof, 37.9, atol=0.1)
with _record_warnings(), catch_logging() as log:
stc, res = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
depth=depth, maxit=300, tol=1e-8,
weights=stc_dspm, # gh-6382
active_set_size=10, return_residual=True,
solver='cd', verbose=True)
assert_array_almost_equal(stc.times, evoked_l21.times, 5)
assert stc.vertices[1][0] in label.vertices
assert_var_exp_log(log.getvalue(), 51, 53) # 51.8
assert stc.data.min() < -1e-9 # signed
assert_stc_res(evoked_l21, stc, forward, res)
# irMxNE tests
with _record_warnings(), catch_logging() as log: # CD
stc, residual = mixed_norm(
evoked_l21, forward, cov, alpha, n_mxne_iter=5, loose=0.0001,
depth=depth, maxit=300, tol=1e-8, active_set_size=10,
solver='cd', return_residual=True, pick_ori='vector', verbose=True)
assert_array_almost_equal(stc.times, evoked_l21.times, 5)
assert stc.vertices[1][0] in label.vertices
assert stc.vertices == [[63152], [79017]]
assert_var_exp_log(log.getvalue(), 51, 53) # 51.8
assert_stc_res(evoked_l21, stc, forward, residual)
# Do with TF-MxNE for test memory savings
alpha = 60. # overall regularization parameter
l1_ratio = 0.01 # temporal regularization proportion
stc, _ = tf_mixed_norm(evoked, forward, cov,
loose=loose, depth=depth, maxit=100, tol=1e-4,
tstep=4, wsize=16, window=0.1, weights=stc_dspm,
weights_min=weights_min, return_residual=True,
alpha=alpha, l1_ratio=l1_ratio)
assert_array_almost_equal(stc.times, evoked.times, 5)
assert stc.vertices[1][0] in label.vertices
# vector
stc_nrm = tf_mixed_norm(
evoked, forward, cov, loose=1, depth=depth, maxit=2, tol=1e-4,
tstep=4, wsize=16, window=0.1, weights=stc_dspm,
weights_min=weights_min, alpha=alpha, l1_ratio=l1_ratio)
stc_vec, residual = tf_mixed_norm(
evoked, forward, cov, loose=1, depth=depth, maxit=2, tol=1e-4,
tstep=4, wsize=16, window=0.1, weights=stc_dspm,
weights_min=weights_min, alpha=alpha, l1_ratio=l1_ratio,
pick_ori='vector', return_residual=True)
assert_stcs_equal(stc_vec.magnitude(), stc_nrm)
pytest.raises(ValueError, tf_mixed_norm, evoked, forward, cov,
alpha=101, l1_ratio=0.03)
pytest.raises(ValueError, tf_mixed_norm, evoked, forward, cov,
alpha=50., l1_ratio=1.01)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_mxne_vol_sphere():
"""Test (TF-)MxNE with a sphere forward and volumic source space."""
evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
evoked.crop(tmin=-0.05, tmax=0.2)
cov = read_cov(fname_cov)
evoked_l21 = evoked.copy()
evoked_l21.crop(tmin=0.081, tmax=0.1)
info = evoked.info
sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
src = mne.setup_volume_source_space(subject=None, pos=15., mri=None,
sphere=(0.0, 0.0, 0.0, 0.08),
bem=None, mindist=5.0,
exclude=2.0, sphere_units='m')
fwd = mne.make_forward_solution(info, trans=None, src=src,
bem=sphere, eeg=False, meg=True)
alpha = 80.
# Computing inverse with restricted orientations should also work, since
# we have a discrete source space.
stc = mixed_norm(evoked_l21, fwd, cov, alpha, loose=0.2,
return_residual=False, maxit=3, tol=1e-8,
active_set_size=10)
assert_array_almost_equal(stc.times, evoked_l21.times, 5)
# irMxNE tests
with catch_logging() as log:
stc = mixed_norm(evoked_l21, fwd, cov, alpha,
n_mxne_iter=1, maxit=30, tol=1e-8,
active_set_size=10, verbose=True)
assert isinstance(stc, VolSourceEstimate)
assert_array_almost_equal(stc.times, evoked_l21.times, 5)
assert_var_exp_log(log.getvalue(), 9, 11) # 10.2
# Compare orientation obtained using fit_dipole and gamma_map
# for a simulated evoked containing a single dipole
stc = mne.VolSourceEstimate(50e-9 * np.random.RandomState(42).randn(1, 4),
vertices=[stc.vertices[0][:1]],
tmin=stc.tmin,
tstep=stc.tstep)
evoked_dip = mne.simulation.simulate_evoked(fwd, stc, info, cov, nave=1e9,
use_cps=True)
dip_mxne = mixed_norm(evoked_dip, fwd, cov, alpha=80,
n_mxne_iter=1, maxit=30, tol=1e-8,
active_set_size=10, return_as_dipoles=True)
amp_max = [np.max(d.amplitude) for d in dip_mxne]
dip_mxne = dip_mxne[np.argmax(amp_max)]
assert dip_mxne.pos[0] in src[0]['rr'][stc.vertices[0]]
dip_fit = mne.fit_dipole(evoked_dip, cov, sphere)[0]
assert np.abs(np.dot(dip_fit.ori[0], dip_mxne.ori[0])) > 0.99
dist = 1000 * np.linalg.norm(dip_fit.pos[0] - dip_mxne.pos[0])
assert dist < 4. # within 4 mm
# Do with TF-MxNE for test memory savings
alpha = 60. # overall regularization parameter
l1_ratio = 0.01 # temporal regularization proportion
stc, _ = tf_mixed_norm(evoked, fwd, cov, maxit=3, tol=1e-4,
tstep=16, wsize=32, window=0.1, alpha=alpha,
l1_ratio=l1_ratio, return_residual=True)
assert isinstance(stc, VolSourceEstimate)
assert_array_almost_equal(stc.times, evoked.times, 5)
@pytest.mark.parametrize('mod', (
None, 'mult', 'augment', 'sign', 'zero', 'less'))
def test_split_gof_basic(mod):
"""Test splitting the goodness of fit."""
# first a trivial case
gain = np.array([[0., 1., 1.], [1., 1., 0.]]).T
M = np.ones((3, 1))
X = np.ones((2, 1))
M_est = gain @ X
assert_allclose(M_est, np.array([[1., 2., 1.]]).T) # a reasonable estimate
if mod == 'mult':
gain *= [1., -0.5]
X[1] *= -2
elif mod == 'augment':
gain = np.concatenate((gain, np.zeros((3, 1))), axis=1)
X = np.concatenate((X, [[1.]]))
elif mod == 'sign':
gain[1] *= -1
M[1] *= -1
M_est[1] *= -1
elif mod in ('zero', 'less'):
gain = np.array([[1, 1., 1.], [1., 1., 1.]]).T
if mod == 'zero':
X[:, 0] = [1., 0.]
else:
X[:, 0] = [1., 0.5]
M_est = gain @ X
else:
assert mod is None
res = M - M_est
gof = 100 * (1. - (res * res).sum() / (M * M).sum())
gof_split = _split_gof(M, X, gain)
assert_allclose(gof_split.sum(), gof)
want = gof_split[[0, 0]]
if mod == 'augment':
want = np.concatenate((want, [[0]]))
if mod in ('mult', 'less'):
assert_array_less(gof_split[1], gof_split[0])
elif mod == 'zero':
assert_allclose(gof_split[0], gof_split.sum(0))
assert_allclose(gof_split[1], 0., atol=1e-6)
else:
assert_allclose(gof_split, want, atol=1e-12)
@testing.requires_testing_data
@pytest.mark.parametrize('idx, weights', [
# empirically determined approximately orthogonal columns: 0, 15157, 19448
([0], [1]),
([0, 15157], [1, 1]),
([0, 15157], [1, 3]),
([0, 15157], [5, -1]),
([0, 15157, 19448], [1, 1, 1]),
([0, 15157, 19448], [1e-2, 1, 5]),
])
def test_split_gof_meg(forward, idx, weights):
"""Test GOF splitting on MEG data."""
gain = forward['sol']['data'][:, idx]
# close to orthogonal
norms = np.linalg.norm(gain, axis=0)
triu = np.triu_indices(len(idx), 1)
prods = np.abs(np.dot(gain.T, gain) / np.outer(norms, norms))[triu]
assert_array_less(prods, 5e-3) # approximately orthogonal
# first, split across time (one dipole per time point)
M = gain * weights
gof_split = _split_gof(M, np.diag(weights), gain)
assert_allclose(gof_split.sum(0), 100., atol=1e-5) # all sum to 100
assert_allclose(gof_split, 100 * np.eye(len(weights)), atol=1) # loc
# next, summed to a single time point (all dipoles active at one time pt)
weights = np.array(weights)[:, np.newaxis]
x = gain @ weights
assert x.shape == (gain.shape[0], 1)
gof_split = _split_gof(x, weights, gain)
want = (norms * weights.T).T ** 2
want = 100 * want / want.sum()
assert_allclose(gof_split, want, atol=1e-3, rtol=1e-2)
assert_allclose(gof_split.sum(), 100, rtol=1e-5)
@pytest.mark.parametrize('n_sensors, n_dipoles, n_times', [
(10, 15, 7),
(20, 60, 20),
])
@pytest.mark.parametrize('nnz', [2, 4])
@pytest.mark.parametrize('corr', [0.75])
@pytest.mark.parametrize('n_orient', [1, 3])
def test_mxne_inverse_sure_synthetic(n_sensors, n_dipoles, n_times, nnz, corr,
n_orient, snr=4):
"""Tests SURE criterion for automatic alpha selection on synthetic data."""
rng = np.random.RandomState(0)
sigma = np.sqrt(1 - corr ** 2)
U = rng.randn(n_sensors)
# generate gain matrix
G = np.empty([n_sensors, n_dipoles], order='F')
G[:, :n_orient] = np.expand_dims(U, axis=-1)
n_dip_per_pos = n_dipoles // n_orient
for j in range(1, n_dip_per_pos):
U *= corr
U += sigma * rng.randn(n_sensors)
G[:, j * n_orient:(j + 1) * n_orient] = np.expand_dims(U, axis=-1)
# generate coefficient matrix
support = rng.choice(n_dip_per_pos, nnz, replace=False)
X = np.zeros((n_dipoles, n_times))
for k in support:
X[k * n_orient:(k + 1) * n_orient, :] = rng.normal(
size=(n_orient, n_times))
# generate measurement matrix
M = G @ X
noise = rng.randn(n_sensors, n_times)
sigma = 1 / np.linalg.norm(noise) * np.linalg.norm(M) / snr
M += sigma * noise
# inverse modeling with sure
alpha_max = norm_l2inf(np.dot(G.T, M), n_orient, copy=False)
alpha_grid = np.geomspace(alpha_max, alpha_max / 10, num=15)
_, active_set, _ = _compute_mxne_sure(M, G, alpha_grid, sigma=sigma,
n_mxne_iter=5, maxit=3000, tol=1e-4,
n_orient=n_orient,
active_set_size=10, debias=True,
solver="auto", dgap_freq=10,
random_state=0, verbose=False)
assert np.count_nonzero(active_set, axis=-1) == n_orient * nnz
@pytest.mark.slowtest # slow on Azure
@testing.requires_testing_data
def test_mxne_inverse_sure():
"""Tests SURE criterion for automatic alpha selection on MEG data."""
def data_fun(times):
data = np.zeros(times.shape)
data[times >= 0] = 50e-9
return data
n_dipoles = 2
raw = mne.io.read_raw_fif(fname_raw)
info = mne.io.read_info(fname_data)
with info._unlock():
info['projs'] = []
noise_cov = mne.make_ad_hoc_cov(info)
label_names = ['Aud-lh', 'Aud-rh']
labels = [
mne.read_label(data_path / 'MEG' / 'sample' / 'labels' / f'{ln}.label')
for ln in label_names]
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
forward = mne.read_forward_solution(fname_fwd)
forward = mne.pick_types_forward(forward, meg="grad", eeg=False,
exclude=raw.info['bads'])
times = np.arange(100, dtype=np.float64) / raw.info['sfreq'] - 0.1
stc = simulate_sparse_stc(forward['src'], n_dipoles=n_dipoles, times=times,
random_state=1, labels=labels, data_fun=data_fun)
nave = 30
evoked = simulate_evoked(forward, stc, info, noise_cov, nave=nave,
use_cps=False, iir_filter=None)
evoked = evoked.crop(tmin=0, tmax=10e-3)
stc_ = mixed_norm(evoked, forward, noise_cov, loose=0.9, n_mxne_iter=5,
depth=0.9)
assert_array_equal(stc_.vertices, stc.vertices)
@pytest.mark.slowtest # slow on Azure
@testing.requires_testing_data
def test_mxne_inverse_empty():
"""Tests solver with too high alpha."""
evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
evoked.pick("grad", exclude="bads")
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
forward = mne.read_forward_solution(fname_fwd)
forward = mne.pick_types_forward(forward, meg="grad", eeg=False,
exclude=evoked.info['bads'])
cov = read_cov(fname_cov)
with pytest.warns(RuntimeWarning, match='too big'):
stc, residual = mixed_norm(
evoked, forward, cov, n_mxne_iter=3, alpha=99,
return_residual=True)
assert stc.data.size == 0
assert stc.vertices[0].size == 0
assert stc.vertices[1].size == 0
assert_allclose(evoked.data, residual.data)
|