1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
|
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
# Teon Brooks <teon.brooks@gmail.com>
# Marijn van Vliet <w.m.vanvliet@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
# Clemens Brunner <clemens.brunner@gmail.com>
#
# License: BSD-3-Clause
from contextlib import nullcontext
from copy import deepcopy
from datetime import timedelta
import os
import os.path as op
import shutil
from collections import defaultdict
import numpy as np
from .constants import FIFF
from .utils import _construct_bids_filename, _check_orig_units
from .pick import (pick_types, pick_channels, pick_info, _picks_to_idx,
channel_type)
from .meas_info import write_meas_info, _ensure_infos_match, ContainsMixin
from .proj import setup_proj, activate_proj, _proj_equal, ProjMixin
from ..channels.channels import (UpdateChannelsMixin, SetChannelsMixin,
InterpolationMixin, _unit2human)
from .compensator import set_current_comp, make_compensator
from .write import (start_and_end_file, start_block, end_block,
write_dau_pack16, write_float, write_double,
write_complex64, write_complex128, write_int,
write_id, write_string, _get_split_size, _NEXT_FILE_BUFFER)
from ..annotations import (Annotations, _annotations_starts_stops,
_combine_annotations, _handle_meas_date,
_sync_onset, _write_annotations)
from ..filter import (FilterMixin, notch_filter, resample, _resamp_ratio_len,
_resample_stim_channels, _check_fun)
from ..parallel import parallel_func
from ..utils import (_check_fname, _check_pandas_installed, sizeof_fmt,
_check_pandas_index_arguments, fill_doc, copy_doc,
check_fname, _get_stim_channel, _stamp_to_dt,
logger, verbose, _time_mask, warn, SizeMixin,
copy_function_doc_to_method_doc, _validate_type,
_check_preload, _get_argvalues, _check_option,
_build_data_frame, _convert_times, _scale_dataframe_data,
_check_time_format, _arange_div, TimeMixin, repr_html)
from ..defaults import _handle_default
from ..viz import plot_raw, _RAW_CLIP_DEF
from ..event import find_events, concatenate_events
from ..time_frequency.spectrum import Spectrum, SpectrumMixin
@fill_doc
class BaseRaw(ProjMixin, ContainsMixin, UpdateChannelsMixin, SetChannelsMixin,
InterpolationMixin, TimeMixin, SizeMixin, FilterMixin,
SpectrumMixin):
"""Base class for Raw data.
Parameters
----------
%(info_not_none)s
preload : bool | str | ndarray
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory). If preload is an
ndarray, the data are taken from that array. If False, data are not
read until save.
first_samps : iterable
Iterable of the first sample number from each raw file. For unsplit raw
files this should be a length-one list or tuple.
last_samps : iterable | None
Iterable of the last sample number from each raw file. For unsplit raw
files this should be a length-one list or tuple. If None, then preload
must be an ndarray.
filenames : tuple
Tuple of length one (for unsplit raw files) or length > 1 (for split
raw files).
raw_extras : list of dict
The data necessary for on-demand reads for the given reader format.
Should be the same length as ``filenames``. Will have the entry
``raw_extras['orig_nchan']`` added to it for convenience.
orig_format : str
The data format of the original raw file (e.g., ``'double'``).
dtype : dtype | None
The dtype of the raw data. If preload is an ndarray, its dtype must
match what is passed here.
buffer_size_sec : float
The buffer size in seconds that should be written by default using
:meth:`mne.io.Raw.save`.
orig_units : dict | None
Dictionary mapping channel names to their units as specified in
the header file. Example: {'FC1': 'nV'}.
.. versionadded:: 0.17
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
Notes
-----
This class is public to allow for stable type-checking in user
code (i.e., ``isinstance(my_raw_object, BaseRaw)``) but should not be used
as a constructor for `Raw` objects (use instead one of the subclass
constructors, or one of the ``mne.io.read_raw_*`` functions).
Subclasses must provide the following methods:
* _read_segment_file(self, data, idx, fi, start, stop, cals, mult)
(only needed for types that support on-demand disk reads)
"""
@verbose
def __init__(self, info, preload=False,
first_samps=(0,), last_samps=None,
filenames=(None,), raw_extras=(None,),
orig_format='double', dtype=np.float64,
buffer_size_sec=1., orig_units=None,
*, verbose=None): # noqa: D102
# wait until the end to preload data, but triage here
if isinstance(preload, np.ndarray):
# some functions (e.g., filtering) only work w/64-bit data
if preload.dtype not in (np.float64, np.complex128):
raise RuntimeError('datatype must be float64 or complex128, '
'not %s' % preload.dtype)
if preload.dtype != dtype:
raise ValueError('preload and dtype must match')
self._data = preload
self.preload = True
assert len(first_samps) == 1
last_samps = [first_samps[0] + self._data.shape[1] - 1]
load_from_disk = False
else:
if last_samps is None:
raise ValueError('last_samps must be given unless preload is '
'an ndarray')
if not preload:
self.preload = False
load_from_disk = False
else:
load_from_disk = True
self._last_samps = np.array(last_samps)
self._first_samps = np.array(first_samps)
orig_ch_names = info['ch_names']
with info._unlock(check_after=True):
# be permissive of old code
if isinstance(info['meas_date'], tuple):
info['meas_date'] = _stamp_to_dt(info['meas_date'])
self.info = info
self.buffer_size_sec = float(buffer_size_sec)
cals = np.empty(info['nchan'])
for k in range(info['nchan']):
cals[k] = info['chs'][k]['range'] * info['chs'][k]['cal']
bad = np.where(cals == 0)[0]
if len(bad) > 0:
raise ValueError('Bad cals for channels %s'
% {ii: self.ch_names[ii] for ii in bad})
self._cals = cals
self._raw_extras = list(dict() if r is None else r for r in raw_extras)
for r in self._raw_extras:
r['orig_nchan'] = info['nchan']
self._read_picks = [np.arange(info['nchan'])
for _ in range(len(raw_extras))]
# deal with compensation (only relevant for CTF data, either CTF
# reader or MNE-C converted CTF->FIF files)
self._read_comp_grade = self.compensation_grade # read property
if self._read_comp_grade is not None and len(info['comps']):
logger.info('Current compensation grade : %d'
% self._read_comp_grade)
self._comp = None
self._filenames = list(filenames)
_validate_type(orig_format, str, "orig_format")
_check_option(
"orig_format", orig_format, ("double", "single", "int", "short")
)
self.orig_format = orig_format
# Sanity check and set original units, if provided by the reader:
if orig_units:
if not isinstance(orig_units, dict):
raise ValueError('orig_units must be of type dict, but got '
' {}'.format(type(orig_units)))
# original units need to be truncated to 15 chars or renamed
# to match MNE conventions (channel name unique and less than
# 15 characters).
orig_units = deepcopy(orig_units)
for old_ch, new_ch in zip(orig_ch_names, info['ch_names']):
if old_ch in orig_units:
this_unit = orig_units[old_ch]
del orig_units[old_ch]
orig_units[new_ch] = this_unit
# STI 014 channel is native only to fif ... for all other formats
# this was artificially added by the IO procedure, so remove it
ch_names = list(info['ch_names'])
if ('STI 014' in ch_names) and not \
(self.filenames[0].endswith('.fif')):
ch_names.remove('STI 014')
# Each channel in the data must have a corresponding channel in
# the original units.
ch_correspond = [ch in orig_units for ch in ch_names]
if not all(ch_correspond):
ch_without_orig_unit = ch_names[ch_correspond.index(False)]
raise ValueError('Channel {} has no associated original '
'unit.'.format(ch_without_orig_unit))
# Final check of orig_units, editing a unit if it is not a valid
# unit
orig_units = _check_orig_units(orig_units)
self._orig_units = orig_units or dict() # always a dict
self._projectors = list()
self._projector = None
self._dtype_ = dtype
self.set_annotations(None)
self._cropped_samp = first_samps[0]
# If we have True or a string, actually do the preloading
if load_from_disk:
self._preload_data(preload)
self._init_kwargs = _get_argvalues()
@verbose
def apply_gradient_compensation(self, grade, verbose=None):
"""Apply CTF gradient compensation.
.. warning:: The compensation matrices are stored with single
precision, so repeatedly switching between different
of compensation (e.g., 0->1->3->2) can increase
numerical noise, especially if data are saved to
disk in between changing grades. It is thus best to
only use a single gradient compensation level in
final analyses.
Parameters
----------
grade : int
CTF gradient compensation level.
%(verbose)s
Returns
-------
raw : instance of Raw
The modified Raw instance. Works in-place.
"""
grade = int(grade)
current_comp = self.compensation_grade
if current_comp != grade:
if self.proj:
raise RuntimeError('Cannot change compensation on data where '
'projectors have been applied')
# Figure out what operator to use (varies depending on preload)
from_comp = current_comp if self.preload else self._read_comp_grade
comp = make_compensator(self.info, from_comp, grade)
logger.info('Compensator constructed to change %d -> %d'
% (current_comp, grade))
set_current_comp(self.info, grade)
# We might need to apply it to our data now
if self.preload:
logger.info('Applying compensator to loaded data')
lims = np.concatenate([np.arange(0, len(self.times), 10000),
[len(self.times)]])
for start, stop in zip(lims[:-1], lims[1:]):
self._data[:, start:stop] = np.dot(
comp, self._data[:, start:stop])
else:
self._comp = comp # store it for later use
return self
@property
def _dtype(self):
"""Datatype for loading data (property so subclasses can override)."""
# most classes only store real data, they won't need anything special
return self._dtype_
@verbose
def _read_segment(self, start=0, stop=None, sel=None, data_buffer=None,
projector=None, verbose=None):
"""Read a chunk of raw data.
Parameters
----------
start : int, (optional)
first sample to include (first is 0). If omitted, defaults to the
first sample in data.
stop : int, (optional)
First sample to not include.
If omitted, data is included to the end.
sel : array, optional
Indices of channels to select.
data_buffer : array or str, optional
numpy array to fill with data read, must have the correct shape.
If str, a np.memmap with the correct data type will be used
to store the data.
projector : array
SSP operator to apply to the data.
%(verbose)s
Returns
-------
data : array, [channels x samples]
the data matrix (channels x samples).
"""
# Initial checks
start = int(start)
stop = self.n_times if stop is None else min([int(stop), self.n_times])
if start >= stop:
raise ValueError('No data in this range')
# Initialize the data and calibration vector
if sel is None:
n_out = self.info['nchan']
idx = slice(None)
else:
n_out = len(sel)
idx = _convert_slice(sel)
del sel
assert n_out <= self.info['nchan']
data_shape = (n_out, stop - start)
dtype = self._dtype
if isinstance(data_buffer, np.ndarray):
if data_buffer.shape != data_shape:
raise ValueError('data_buffer has incorrect shape: %s != %s'
% (data_buffer.shape, data_shape))
data = data_buffer
else:
data = _allocate_data(data_buffer, data_shape, dtype)
# deal with having multiple files accessed by the raw object
cumul_lens = np.concatenate(([0], np.array(self._raw_lengths,
dtype='int')))
cumul_lens = np.cumsum(cumul_lens)
files_used = np.logical_and(np.less(start, cumul_lens[1:]),
np.greater_equal(stop - 1,
cumul_lens[:-1]))
# set up cals and mult (cals, compensation, and projector)
n_out = len(np.arange(len(self.ch_names))[idx])
cals = self._cals.ravel()[np.newaxis, :]
if projector is not None:
assert projector.shape[0] == projector.shape[1] == cals.shape[1]
if self._comp is not None:
if projector is not None:
mult = self._comp * cals
mult = np.dot(projector[idx], mult)
else:
mult = self._comp[idx] * cals
elif projector is not None:
mult = projector[idx] * cals
else:
mult = None
del projector
if mult is None:
cals = cals.T[idx]
assert cals.shape == (n_out, 1)
need_idx = idx # sufficient just to read the given channels
else:
cals = None # shouldn't be used
assert mult.shape == (n_out, len(self.ch_names))
# read all necessary for proj
need_idx = np.where(np.any(mult, axis=0))[0]
mult = mult[:, need_idx]
logger.debug(
f'Reading {len(need_idx)}/{len(self.ch_names)} channels '
f'due to projection')
assert (mult is None) ^ (cals is None) # xor
# read from necessary files
offset = 0
for fi in np.nonzero(files_used)[0]:
start_file = self._first_samps[fi]
# first iteration (only) could start in the middle somewhere
if offset == 0:
start_file += start - cumul_lens[fi]
stop_file = np.min([stop - cumul_lens[fi] + self._first_samps[fi],
self._last_samps[fi] + 1])
if start_file < self._first_samps[fi] or stop_file < start_file:
raise ValueError('Bad array indexing, could be a bug')
n_read = stop_file - start_file
this_sl = slice(offset, offset + n_read)
# reindex back to original file
orig_idx = _convert_slice(self._read_picks[fi][need_idx])
_ReadSegmentFileProtector(self)._read_segment_file(
data[:, this_sl], orig_idx, fi,
int(start_file), int(stop_file), cals, mult)
offset += n_read
return data
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a segment of data from a file.
Only needs to be implemented for readers that support
``preload=False``. Any implementation should only make use of:
- self._raw_extras[fi]
- self._filenames[fi]
So be sure to store any information necessary for reading raw data
in self._raw_extras[fi]. Things like ``info`` can be decoupled
from the original data (e.g., different subsets of channels) due
to picking before preload, for example.
Parameters
----------
data : ndarray, shape (n_out, stop - start + 1)
The data array. Should be modified inplace.
idx : ndarray | slice
The requested channel indices.
fi : int
The file index that must be read from.
start : int
The start sample in the given file.
stop : int
The stop sample in the given file (inclusive).
cals : ndarray, shape (len(idx), 1)
Channel calibrations (already sub-indexed).
mult : ndarray, shape (n_out, len(idx) | None
The compensation + projection + cals matrix, if applicable.
"""
raise NotImplementedError
def _check_bad_segment(self, start, stop, picks,
reject_start, reject_stop,
reject_by_annotation=False):
"""Check if data segment is bad.
If the slice is good, returns the data in desired range.
If rejected based on annotation, returns description of the
bad segment as a string.
Parameters
----------
start : int
First sample of the slice.
stop : int
End of the slice.
picks : array of int
Channel picks.
reject_start : int
First sample to check for overlaps with bad annotations.
reject_stop : int
Last sample to check for overlaps with bad annotations.
reject_by_annotation : bool
Whether to perform rejection based on annotations.
False by default.
Returns
-------
data : array | str
Data in the desired range (good segment) or description of the bad
segment.
"""
if start < 0:
return None
if reject_by_annotation and len(self.annotations) > 0:
annot = self.annotations
sfreq = self.info['sfreq']
onset = _sync_onset(self, annot.onset)
overlaps = np.where(onset < reject_stop / sfreq)
overlaps = np.where(onset[overlaps] + annot.duration[overlaps] >
reject_start / sfreq)
for descr in annot.description[overlaps]:
if descr.lower().startswith('bad'):
return descr
return self._getitem((picks, slice(start, stop)), return_times=False)
@verbose
def load_data(self, verbose=None):
"""Load raw data.
Parameters
----------
%(verbose)s
Returns
-------
raw : instance of Raw
The raw object with data.
Notes
-----
This function will load raw data if it was not already preloaded.
If data were already preloaded, it will do nothing.
.. versionadded:: 0.10.0
"""
if not self.preload:
self._preload_data(True)
return self
def _preload_data(self, preload):
"""Actually preload the data."""
data_buffer = preload
if isinstance(preload, (bool, np.bool_)) and not preload:
data_buffer = None
logger.info('Reading %d ... %d = %9.3f ... %9.3f secs...' %
(0, len(self.times) - 1, 0., self.times[-1]))
self._data = self._read_segment(
data_buffer=data_buffer, projector=self._projector)
assert len(self._data) == self.info['nchan']
self.preload = True
self._comp = None # no longer needed
self.close()
@property
def _first_time(self):
return self.first_samp / float(self.info['sfreq'])
@property
def first_samp(self):
"""The first data sample.
See :term:`first_samp`.
"""
return self._cropped_samp
@property
def first_time(self):
"""The first time point (including first_samp but not meas_date)."""
return self._first_time
@property
def last_samp(self):
"""The last data sample."""
return self.first_samp + sum(self._raw_lengths) - 1
@property
def _last_time(self):
return self.last_samp / float(self.info['sfreq'])
def time_as_index(self, times, use_rounding=False, origin=None):
"""Convert time to indices.
Parameters
----------
times : list-like | float | int
List of numbers or a number representing points in time.
use_rounding : bool
If True, use rounding (instead of truncation) when converting
times to indices. This can help avoid non-unique indices.
origin : datetime | float | int | None
Time reference for times. If None, ``times`` are assumed to be
relative to :term:`first_samp`.
.. versionadded:: 0.17.0
Returns
-------
index : ndarray
Indices relative to :term:`first_samp` corresponding to the times
supplied.
"""
origin = _handle_meas_date(origin)
if origin is None:
delta = 0
elif self.info['meas_date'] is None:
raise ValueError('origin must be None when info["meas_date"] '
'is None, got %s' % (origin,))
else:
first_samp_in_abs_time = (self.info['meas_date'] +
timedelta(0, self._first_time))
delta = (origin - first_samp_in_abs_time).total_seconds()
times = np.atleast_1d(times) + delta
return super(BaseRaw, self).time_as_index(times, use_rounding)
@property
def _raw_lengths(self):
return [l - f + 1 for f, l in zip(self._first_samps, self._last_samps)]
@property
def annotations(self): # noqa: D401
""":class:`~mne.Annotations` for marking segments of data."""
return self._annotations
@property
def filenames(self):
"""The filenames used."""
return tuple(self._filenames)
@verbose
def set_annotations(self, annotations, emit_warning=True,
on_missing='raise', *, verbose=None):
"""Setter for annotations.
This setter checks if they are inside the data range.
Parameters
----------
annotations : instance of mne.Annotations | None
Annotations to set. If None, the annotations is defined
but empty.
%(emit_warning)s
The default is True.
%(on_missing_ch_names)s
%(verbose)s
Returns
-------
self : instance of Raw
The raw object with annotations.
"""
meas_date = _handle_meas_date(self.info['meas_date'])
if annotations is None:
self._annotations = Annotations([], [], [], meas_date)
else:
_validate_type(annotations, Annotations, 'annotations')
if meas_date is None and annotations.orig_time is not None:
raise RuntimeError('Ambiguous operation. Setting an Annotation'
' object with known ``orig_time`` to a raw'
' object which has ``meas_date`` set to'
' None is ambiguous. Please, either set a'
' meaningful ``meas_date`` to the raw'
' object; or set ``orig_time`` to None in'
' which case the annotation onsets would be'
' taken in reference to the first sample of'
' the raw object.')
delta = 1. / self.info['sfreq']
new_annotations = annotations.copy()
new_annotations._prune_ch_names(self.info, on_missing)
if annotations.orig_time is None:
new_annotations.crop(0, self.times[-1] + delta,
emit_warning=emit_warning)
new_annotations.onset += self._first_time
else:
tmin = meas_date + timedelta(0, self._first_time)
tmax = tmin + timedelta(seconds=self.times[-1] + delta)
new_annotations.crop(tmin=tmin, tmax=tmax,
emit_warning=emit_warning)
new_annotations.onset -= (
meas_date - new_annotations.orig_time).total_seconds()
new_annotations._orig_time = meas_date
self._annotations = new_annotations
return self
def __del__(self): # noqa: D105
# remove file for memmap
if hasattr(self, '_data') and \
getattr(self._data, 'filename', None) is not None:
# First, close the file out; happens automatically on del
filename = self._data.filename
del self._data
# Now file can be removed
try:
os.remove(filename)
except OSError:
pass # ignore file that no longer exists
def __enter__(self):
"""Entering with block."""
return self
def __exit__(self, exception_type, exception_val, trace):
"""Exit with block."""
try:
self.close()
except Exception:
return exception_type, exception_val, trace
def _parse_get_set_params(self, item):
"""Parse the __getitem__ / __setitem__ tuples."""
# make sure item is a tuple
if not isinstance(item, tuple): # only channel selection passed
item = (item, slice(None, None, None))
if len(item) != 2: # should be channels and time instants
raise RuntimeError("Unable to access raw data (need both channels "
"and time)")
sel = _picks_to_idx(self.info, item[0])
if isinstance(item[1], slice):
time_slice = item[1]
start, stop, step = (time_slice.start, time_slice.stop,
time_slice.step)
else:
item1 = item[1]
# Let's do automated type conversion to integer here
if np.array(item[1]).dtype.kind == 'i':
item1 = int(item1)
if isinstance(item1, (int, np.integer)):
start, stop, step = item1, item1 + 1, 1
else:
raise ValueError('Must pass int or slice to __getitem__')
if start is None:
start = 0
if step is not None and step != 1:
raise ValueError('step needs to be 1 : %d given' % step)
if isinstance(sel, (int, np.integer)):
sel = np.array([sel])
if sel is not None and len(sel) == 0:
raise ValueError("Empty channel list")
return sel, start, stop
def __getitem__(self, item):
"""Get raw data and times.
Parameters
----------
item : tuple or array-like
See below for use cases.
Returns
-------
data : ndarray, shape (n_channels, n_times)
The raw data.
times : ndarray, shape (n_times,)
The times associated with the data.
Examples
--------
Generally raw data is accessed as::
>>> data, times = raw[picks, time_slice] # doctest: +SKIP
To get all data, you can thus do either of::
>>> data, times = raw[:] # doctest: +SKIP
Which will be equivalent to:
>>> data, times = raw[:, :] # doctest: +SKIP
To get only the good MEG data from 10-20 seconds, you could do::
>>> picks = mne.pick_types(raw.info, meg=True, exclude='bads') # doctest: +SKIP
>>> t_idx = raw.time_as_index([10., 20.]) # doctest: +SKIP
>>> data, times = raw[picks, t_idx[0]:t_idx[1]] # doctest: +SKIP
""" # noqa: E501
return self._getitem(item)
def _getitem(self, item, return_times=True):
sel, start, stop = self._parse_get_set_params(item)
if self.preload:
data = self._data[sel, start:stop]
else:
data = self._read_segment(start=start, stop=stop, sel=sel,
projector=self._projector)
if return_times:
# Rather than compute the entire thing just compute the subset
# times = self.times[start:stop]
# stop can be None here so don't use it directly
times = np.arange(start, start + data.shape[1], dtype=float)
times /= self.info['sfreq']
return data, times
else:
return data
def __setitem__(self, item, value):
"""Set raw data content."""
_check_preload(self, 'Modifying data of Raw')
sel, start, stop = self._parse_get_set_params(item)
# set the data
self._data[sel, start:stop] = value
@verbose
def get_data(self, picks=None, start=0, stop=None,
reject_by_annotation=None, return_times=False, units=None,
*, tmin=None, tmax=None, verbose=None):
"""Get data in the given range.
Parameters
----------
%(picks_all)s
start : int
The first sample to include. Defaults to 0.
stop : int | None
End sample (first not to include). If None (default), the end of
the data is used.
reject_by_annotation : None | 'omit' | 'NaN'
Whether to reject by annotation. If None (default), no rejection is
done. If 'omit', segments annotated with description starting with
'bad' are omitted. If 'NaN', the bad samples are filled with NaNs.
return_times : bool
Whether to return times as well. Defaults to False.
%(units)s
tmin : int | float | None
Start time of data to get in seconds. The ``tmin`` parameter is
ignored if the ``start`` parameter is bigger than 0.
.. versionadded:: 0.24.0
tmax : int | float | None
End time of data to get in seconds. The ``tmax`` parameter is
ignored if the ``stop`` parameter is defined.
.. versionadded:: 0.24.0
%(verbose)s
Returns
-------
data : ndarray, shape (n_channels, n_times)
Copy of the data in the given range.
times : ndarray, shape (n_times,)
Times associated with the data samples. Only returned if
return_times=True.
Notes
-----
.. versionadded:: 0.14.0
"""
# validate types
_validate_type(start, types=('int-like'), item_name='start',
type_name='int')
_validate_type(stop, types=('int-like', None), item_name='stop',
type_name='int, None')
picks = _picks_to_idx(self.info, picks, 'all', exclude=())
# Get channel factors for conversion into specified unit
# (vector of ones if no conversion needed)
if units is not None:
ch_factors = _get_ch_factors(self, units, picks)
# convert to ints
picks = np.atleast_1d(np.arange(self.info['nchan'])[picks])
# handle start/tmin stop/tmax
tmin_start, tmax_stop = self._handle_tmin_tmax(tmin, tmax)
# tmin/tmax are ignored if start/stop are defined to
# something other than their defaults
start = tmin_start if start == 0 else start
stop = tmax_stop if stop is None else stop
# truncate start/stop to the open interval [0, n_times]
start = min(max(0, start), self.n_times)
stop = min(max(0, stop), self.n_times)
if len(self.annotations) == 0 or reject_by_annotation is None:
getitem = self._getitem(
(picks, slice(start, stop)), return_times=return_times)
if return_times:
data, times = getitem
if units is not None:
data *= ch_factors[:, np.newaxis]
return data, times
if units is not None:
getitem *= ch_factors[:, np.newaxis]
return getitem
_check_option('reject_by_annotation', reject_by_annotation.lower(),
['omit', 'nan'])
onsets, ends = _annotations_starts_stops(self, ['BAD'])
keep = (onsets < stop) & (ends > start)
onsets = np.maximum(onsets[keep], start)
ends = np.minimum(ends[keep], stop)
if len(onsets) == 0:
data, times = self[picks, start:stop]
if units is not None:
data *= ch_factors[:, np.newaxis]
if return_times:
return data, times
return data
n_samples = stop - start # total number of samples
used = np.ones(n_samples, bool)
for onset, end in zip(onsets, ends):
if onset >= end:
continue
used[onset - start: end - start] = False
used = np.concatenate([[False], used, [False]])
starts = np.where(~used[:-1] & used[1:])[0] + start
stops = np.where(used[:-1] & ~used[1:])[0] + start
n_kept = (stops - starts).sum() # kept samples
n_rejected = n_samples - n_kept # rejected samples
if n_rejected > 0:
if reject_by_annotation == 'omit':
msg = ("Omitting {} of {} ({:.2%}) samples, retaining {}"
" ({:.2%}) samples.")
logger.info(msg.format(n_rejected, n_samples,
n_rejected / n_samples,
n_kept, n_kept / n_samples))
data = np.zeros((len(picks), n_kept))
times = np.zeros(data.shape[1])
idx = 0
for start, stop in zip(starts, stops): # get the data
if start == stop:
continue
end = idx + stop - start
data[:, idx:end], times[idx:end] = self[picks, start:stop]
idx = end
else:
msg = ("Setting {} of {} ({:.2%}) samples to NaN, retaining {}"
" ({:.2%}) samples.")
logger.info(msg.format(n_rejected, n_samples,
n_rejected / n_samples,
n_kept, n_kept / n_samples))
data, times = self[picks, start:stop]
data[:, ~used[1:-1]] = np.nan
else:
data, times = self[picks, start:stop]
if units is not None:
data *= ch_factors[:, np.newaxis]
if return_times:
return data, times
return data
@verbose
def apply_function(self, fun, picks=None, dtype=None, n_jobs=None,
channel_wise=True, verbose=None, **kwargs):
"""Apply a function to a subset of channels.
%(applyfun_summary_raw)s
Parameters
----------
%(fun_applyfun)s
%(picks_all_data_noref)s
%(dtype_applyfun)s
%(n_jobs)s Ignored if ``channel_wise=False`` as the workload
is split across channels.
%(channel_wise_applyfun)s
.. versionadded:: 0.18
%(verbose)s
%(kwargs_fun)s
Returns
-------
self : instance of Raw
The raw object with transformed data.
"""
_check_preload(self, 'raw.apply_function')
picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False)
if not callable(fun):
raise ValueError('fun needs to be a function')
data_in = self._data
if dtype is not None and dtype != self._data.dtype:
self._data = self._data.astype(dtype)
if channel_wise:
parallel, p_fun, n_jobs = parallel_func(_check_fun, n_jobs)
if n_jobs == 1:
# modify data inplace to save memory
for idx in picks:
self._data[idx, :] = _check_fun(fun, data_in[idx, :],
**kwargs)
else:
# use parallel function
data_picks_new = parallel(
p_fun(fun, data_in[p], **kwargs) for p in picks)
for pp, p in enumerate(picks):
self._data[p, :] = data_picks_new[pp]
else:
self._data[picks, :] = _check_fun(
fun, data_in[picks, :], **kwargs)
return self
# Need a separate method because the default pad is different for raw
@copy_doc(FilterMixin.filter)
def filter(self, l_freq, h_freq, picks=None, filter_length='auto',
l_trans_bandwidth='auto', h_trans_bandwidth='auto', n_jobs=None,
method='fir', iir_params=None, phase='zero',
fir_window='hamming', fir_design='firwin',
skip_by_annotation=('edge', 'bad_acq_skip'),
pad='reflect_limited', verbose=None): # noqa: D102
return super().filter(
l_freq, h_freq, picks, filter_length, l_trans_bandwidth,
h_trans_bandwidth, n_jobs=n_jobs, method=method,
iir_params=iir_params, phase=phase, fir_window=fir_window,
fir_design=fir_design, skip_by_annotation=skip_by_annotation,
pad=pad, verbose=verbose)
@verbose
def notch_filter(self, freqs, picks=None, filter_length='auto',
notch_widths=None, trans_bandwidth=1.0, n_jobs=None,
method='fir', iir_params=None, mt_bandwidth=None,
p_value=0.05, phase='zero', fir_window='hamming',
fir_design='firwin', pad='reflect_limited', verbose=None):
"""Notch filter a subset of channels.
Parameters
----------
freqs : float | array of float | None
Specific frequencies to filter out from data, e.g.,
``np.arange(60, 241, 60)`` in the US or ``np.arange(50, 251, 50)``
in Europe. ``None`` can only be used with the mode
``'spectrum_fit'``, where an F test is used to find sinusoidal
components.
%(picks_all_data)s
%(filter_length_notch)s
notch_widths : float | array of float | None
Width of each stop band (centred at each freq in freqs) in Hz.
If None, ``freqs / 200`` is used.
trans_bandwidth : float
Width of the transition band in Hz.
Only used for ``method='fir'``.
%(n_jobs_fir)s
%(method_fir)s
%(iir_params)s
mt_bandwidth : float | None
The bandwidth of the multitaper windowing function in Hz.
Only used in 'spectrum_fit' mode.
p_value : float
P-value to use in F-test thresholding to determine significant
sinusoidal components to remove when ``method='spectrum_fit'`` and
``freqs=None``. Note that this will be Bonferroni corrected for the
number of frequencies, so large p-values may be justified.
%(phase)s
%(fir_window)s
%(fir_design)s
%(pad_fir)s
The default is ``'reflect_limited'``.
.. versionadded:: 0.15
%(verbose)s
Returns
-------
raw : instance of Raw
The raw instance with filtered data.
See Also
--------
mne.filter.notch_filter
mne.io.Raw.filter
Notes
-----
Applies a zero-phase notch filter to the channels selected by
"picks". By default the data of the Raw object is modified inplace.
The Raw object has to have the data loaded e.g. with ``preload=True``
or ``self.load_data()``.
.. note:: If n_jobs > 1, more memory is required as
``len(picks) * n_times`` additional time points need to
be temporarily stored in memory.
For details, see :func:`mne.filter.notch_filter`.
"""
fs = float(self.info['sfreq'])
picks = _picks_to_idx(self.info, picks, exclude=(), none='data_or_ica')
_check_preload(self, 'raw.notch_filter')
self._data = notch_filter(
self._data, fs, freqs, filter_length=filter_length,
notch_widths=notch_widths, trans_bandwidth=trans_bandwidth,
method=method, iir_params=iir_params, mt_bandwidth=mt_bandwidth,
p_value=p_value, picks=picks, n_jobs=n_jobs, copy=False,
phase=phase, fir_window=fir_window, fir_design=fir_design,
pad=pad)
return self
@verbose
def resample(self, sfreq, npad='auto', window='boxcar', stim_picks=None,
n_jobs=None, events=None, pad='reflect_limited',
verbose=None):
"""Resample all channels.
If appropriate, an anti-aliasing filter is applied before resampling.
See :ref:`resampling-and-decimating` for more information.
.. warning:: The intended purpose of this function is primarily to
speed up computations (e.g., projection calculation) when
precise timing of events is not required, as downsampling
raw data effectively jitters trigger timings. It is
generally recommended not to epoch downsampled data,
but instead epoch and then downsample, as epoching
downsampled data jitters triggers.
For more, see
`this illustrative gist
<https://gist.github.com/larsoner/01642cb3789992fbca59>`_.
If resampling the continuous data is desired, it is
recommended to construct events using the original data.
The event onsets can be jointly resampled with the raw
data using the 'events' parameter (a resampled copy is
returned).
Parameters
----------
sfreq : float
New sample rate to use.
%(npad)s
%(window_resample)s
stim_picks : list of int | None
Stim channels. These channels are simply subsampled or
supersampled (without applying any filtering). This reduces
resampling artifacts in stim channels, but may lead to missing
triggers. If None, stim channels are automatically chosen using
:func:`mne.pick_types`.
%(n_jobs_cuda)s
events : 2D array, shape (n_events, 3) | None
An optional event matrix. When specified, the onsets of the events
are resampled jointly with the data. NB: The input events are not
modified, but a new array is returned with the raw instead.
%(pad)s
The default is ``'reflect_limited'``.
.. versionadded:: 0.15
%(verbose)s
Returns
-------
raw : instance of Raw
The resampled version of the raw object.
events : array, shape (n_events, 3) | None
If events are jointly resampled, these are returned with the raw.
See Also
--------
mne.io.Raw.filter
mne.Epochs.resample
Notes
-----
For some data, it may be more accurate to use ``npad=0`` to reduce
artifacts. This is dataset dependent -- check your data!
For optimum performance and to make use of ``n_jobs > 1``, the raw
object has to have the data loaded e.g. with ``preload=True`` or
``self.load_data()``, but this increases memory requirements. The
resulting raw object will have the data loaded into memory.
"""
# When no event object is supplied, some basic detection of dropped
# events is performed to generate a warning. Finding events can fail
# for a variety of reasons, e.g. if no stim channel is present or it is
# corrupted. This should not stop the resampling from working. The
# warning should simply not be generated in this case.
if events is None:
try:
original_events = find_events(self)
except Exception:
pass
sfreq = float(sfreq)
o_sfreq = float(self.info['sfreq'])
offsets = np.concatenate(([0], np.cumsum(self._raw_lengths)))
# set up stim channel processing
if stim_picks is None:
stim_picks = pick_types(self.info, meg=False, ref_meg=False,
stim=True, exclude=[])
else:
stim_picks = _picks_to_idx(self.info, stim_picks, exclude=(),
with_ref_meg=False)
kwargs = dict(up=sfreq, down=o_sfreq, npad=npad, window=window,
n_jobs=n_jobs, pad=pad)
ratio, n_news = zip(*(_resamp_ratio_len(sfreq, o_sfreq, old_len)
for old_len in self._raw_lengths))
ratio, n_news = ratio[0], np.array(n_news, int)
new_offsets = np.cumsum([0] + list(n_news))
if self.preload:
new_data = np.empty(
(len(self.ch_names), new_offsets[-1]), self._data.dtype)
for ri, (n_orig, n_new) in enumerate(zip(self._raw_lengths, n_news)):
this_sl = slice(new_offsets[ri], new_offsets[ri + 1])
if self.preload:
data_chunk = self._data[:, offsets[ri]:offsets[ri + 1]]
new_data[:, this_sl] = resample(data_chunk, **kwargs)
# In empirical testing, it was faster to resample all channels
# (above) and then replace the stim channels than it was to
# only resample the proper subset of channels and then use
# np.insert() to restore the stims.
if len(stim_picks) > 0:
new_data[stim_picks, this_sl] = _resample_stim_channels(
data_chunk[stim_picks], n_new, data_chunk.shape[1])
else: # this will not be I/O efficient, but will be mem efficient
for ci in range(len(self.ch_names)):
data_chunk = self.get_data(
ci, offsets[ri], offsets[ri + 1], verbose='error')[0]
if ci == 0 and ri == 0:
new_data = np.empty(
(len(self.ch_names), new_offsets[-1]),
data_chunk.dtype)
if ci in stim_picks:
resamp = _resample_stim_channels(
data_chunk, n_new, data_chunk.shape[-1])[0]
else:
resamp = resample(data_chunk, **kwargs)
new_data[ci, this_sl] = resamp
self._cropped_samp = int(np.round(self._cropped_samp * ratio))
self._first_samps = np.round(self._first_samps * ratio).astype(int)
self._last_samps = (np.array(self._first_samps) + n_news - 1)
self._raw_lengths[ri] = list(n_news)
assert np.array_equal(n_news, self._last_samps - self._first_samps + 1)
self._data = new_data
self.preload = True
lowpass = self.info.get('lowpass')
lowpass = np.inf if lowpass is None else lowpass
with self.info._unlock():
self.info['lowpass'] = min(lowpass, sfreq / 2.)
self.info['sfreq'] = sfreq
# See the comment above why we ignore all errors here.
if events is None:
try:
# Did we loose events?
resampled_events = find_events(self)
if len(resampled_events) != len(original_events):
warn('Resampling of the stim channels caused event '
'information to become unreliable. Consider finding '
'events on the original data and passing the event '
'matrix as a parameter.')
except Exception:
pass
return self
else:
# always make a copy of events
events = events.copy()
events[:, 0] = np.minimum(
np.round(events[:, 0] * ratio).astype(int),
self._data.shape[1] + self.first_samp - 1
)
return self, events
@verbose
def crop(self, tmin=0.0, tmax=None, include_tmax=True, *, verbose=None):
"""Crop raw data file.
Limit the data from the raw file to go between specific times. Note
that the new ``tmin`` is assumed to be ``t=0`` for all subsequently
called functions (e.g., :meth:`~mne.io.Raw.time_as_index`, or
:class:`~mne.Epochs`). New :term:`first_samp` and :term:`last_samp`
are set accordingly.
Thus function operates in-place on the instance.
Use :meth:`mne.io.Raw.copy` if operation on a copy is desired.
Parameters
----------
%(tmin_raw)s
%(tmax_raw)s
%(include_tmax)s
%(verbose)s
Returns
-------
raw : instance of Raw
The cropped raw object, modified in-place.
"""
max_time = (self.n_times - 1) / self.info['sfreq']
if tmax is None:
tmax = max_time
if tmin > tmax:
raise ValueError('tmin (%s) must be less than tmax (%s)'
% (tmin, tmax))
if tmin < 0.0:
raise ValueError('tmin (%s) must be >= 0' % (tmin,))
elif tmax - int(not include_tmax) / self.info['sfreq'] > max_time:
raise ValueError('tmax (%s) must be less than or equal to the max '
'time (%0.4f sec)' % (tmax, max_time))
smin, smax = np.where(_time_mask(
self.times, tmin, tmax, sfreq=self.info['sfreq'],
include_tmax=include_tmax))[0][[0, -1]]
cumul_lens = np.concatenate(([0], np.array(self._raw_lengths,
dtype='int')))
cumul_lens = np.cumsum(cumul_lens)
keepers = np.logical_and(np.less(smin, cumul_lens[1:]),
np.greater_equal(smax, cumul_lens[:-1]))
keepers = np.where(keepers)[0]
# if we drop file(s) from the beginning, we need to keep track of
# how many samples we dropped relative to that one
self._cropped_samp += smin
self._first_samps = np.atleast_1d(self._first_samps[keepers])
# Adjust first_samp of first used file!
self._first_samps[0] += smin - cumul_lens[keepers[0]]
self._last_samps = np.atleast_1d(self._last_samps[keepers])
self._last_samps[-1] -= cumul_lens[keepers[-1] + 1] - 1 - smax
self._read_picks = [self._read_picks[ri] for ri in keepers]
assert all(len(r) == len(self._read_picks[0])
for r in self._read_picks)
self._raw_extras = [self._raw_extras[ri] for ri in keepers]
self._filenames = [self._filenames[ri] for ri in keepers]
if self.preload:
# slice and copy to avoid the reference to large array
self._data = self._data[:, smin:smax + 1].copy()
annotations = self.annotations
# now call setter to filter out annotations outside of interval
if annotations.orig_time is None:
assert self.info['meas_date'] is None
# When self.info['meas_date'] is None (which is guaranteed if
# self.annotations.orig_time is None), when we do the
# self.set_annotations, it's assumed that the annotations onset
# are relative to first_time, so we have to subtract it, then
# set_annotations will put it back.
annotations.onset -= self.first_time
self.set_annotations(annotations, False)
return self
@verbose
def crop_by_annotations(self, annotations=None, *, verbose=None):
"""Get crops of raw data file for selected annotations.
Parameters
----------
annotations : instance of Annotations | None
The annotations to use for cropping the raw file. If None,
the annotations from the instance are used.
%(verbose)s
Returns
-------
raws : list
The cropped raw objects.
"""
if annotations is None:
annotations = self.annotations
raws = []
for annot in annotations:
onset = annot["onset"] - self.first_time
# be careful about near-zero errors (crop is very picky about this,
# e.g., -1e-8 is an error)
if -self.info['sfreq'] / 2 < onset < 0:
onset = 0
raw_crop = self.copy().crop(onset, onset + annot["duration"])
raws.append(raw_crop)
return raws
@verbose
def save(self, fname, picks=None, tmin=0, tmax=None, buffer_size_sec=None,
drop_small_buffer=False, proj=False, fmt='single',
overwrite=False, split_size='2GB', split_naming='neuromag',
verbose=None):
"""Save raw data to file.
Parameters
----------
fname : str
File name of the new dataset. This has to be a new filename
unless data have been preloaded. Filenames should end with
``raw.fif`` (common raw data), ``raw_sss.fif``
(Maxwell-filtered continuous data),
``raw_tsss.fif`` (temporally signal-space-separated data),
``_meg.fif`` (common MEG data), ``_eeg.fif`` (common EEG data),
or ``_ieeg.fif`` (common intracranial EEG data). You may also
append an additional ``.gz`` suffix to enable gzip compression.
%(picks_all)s
%(tmin_raw)s
%(tmax_raw)s
buffer_size_sec : float | None
Size of data chunks in seconds. If None (default), the buffer
size of the original file is used.
drop_small_buffer : bool
Drop or not the last buffer. It is required by maxfilter (SSS)
that only accepts raw files with buffers of the same size.
proj : bool
If True the data is saved with the projections applied (active).
.. note:: If ``apply_proj()`` was used to apply the projections,
the projectons will be active even if ``proj`` is False.
fmt : 'single' | 'double' | 'int' | 'short'
Format to use to save raw data. Valid options are 'double',
'single', 'int', and 'short' for 64- or 32-bit float, or 32- or
16-bit integers, respectively. It is **strongly** recommended to
use 'single', as this is backward-compatible, and is standard for
maintaining precision. Note that using 'short' or 'int' may result
in loss of precision, complex data cannot be saved as 'short',
and neither complex data types nor real data stored as 'double'
can be loaded with the MNE command-line tools. See raw.orig_format
to determine the format the original data were stored in.
%(overwrite)s
To overwrite original file (the same one that was loaded),
data must be preloaded upon reading.
split_size : str | int
Large raw files are automatically split into multiple pieces. This
parameter specifies the maximum size of each piece. If the
parameter is an integer, it specifies the size in Bytes. It is
also possible to pass a human-readable string, e.g., 100MB.
.. note:: Due to FIFF file limitations, the maximum split
size is 2GB.
%(split_naming)s
.. versionadded:: 0.17
%(verbose)s
Notes
-----
If Raw is a concatenation of several raw files, **be warned** that
only the measurement information from the first raw file is stored.
This likely means that certain operations with external tools may not
work properly on a saved concatenated file (e.g., probably some
or all forms of SSS). It is recommended not to concatenate and
then save raw files for this reason.
Samples annotated ``BAD_ACQ_SKIP`` are not stored in order to optimize
memory. Whatever values, they will be loaded as 0s when reading file.
"""
endings = ('raw.fif', 'raw_sss.fif', 'raw_tsss.fif',
'_meg.fif', '_eeg.fif', '_ieeg.fif')
endings += tuple([f'{e}.gz' for e in endings])
endings_err = ('.fif', '.fif.gz')
# convert to str, check for overwrite a few lines later
fname = _check_fname(fname, overwrite=True, verbose="error")
check_fname(fname, 'raw', endings, endings_err=endings_err)
split_size = _get_split_size(split_size)
if not self.preload and fname in self._filenames:
raise ValueError('You cannot save data to the same file.'
' Please use a different filename.')
if self.preload:
if np.iscomplexobj(self._data):
warn('Saving raw file with complex data. Loading with '
'command-line MNE tools will not work.')
type_dict = dict(short=FIFF.FIFFT_DAU_PACK16,
int=FIFF.FIFFT_INT,
single=FIFF.FIFFT_FLOAT,
double=FIFF.FIFFT_DOUBLE)
_check_option('fmt', fmt, type_dict.keys())
reset_dict = dict(short=False, int=False, single=True, double=True)
reset_range = reset_dict[fmt]
data_type = type_dict[fmt]
data_test = self[0, 0][0]
if fmt == 'short' and np.iscomplexobj(data_test):
raise ValueError('Complex data must be saved as "single" or '
'"double", not "short"')
# check for file existence and expand `~` if present
fname = _check_fname(fname=fname, overwrite=overwrite,
verbose="error")
if proj:
info = deepcopy(self.info)
projector, info = setup_proj(info)
activate_proj(info['projs'], copy=False)
else:
info = self.info
projector = None
#
# Set up the reading parameters
#
# Convert to samples
start, stop = self._tmin_tmax_to_start_stop(tmin, tmax)
buffer_size = self._get_buffer_size(buffer_size_sec)
# write the raw file
_validate_type(split_naming, str, 'split_naming')
_check_option('split_naming', split_naming, ('neuromag', 'bids'))
_write_raw(fname, self, info, picks, fmt, data_type, reset_range,
start, stop, buffer_size, projector, drop_small_buffer,
split_size, split_naming, 0, None, overwrite)
@verbose
def export(self, fname, fmt='auto', physical_range='auto',
add_ch_type=False, *, overwrite=False, verbose=None):
"""Export Raw to external formats.
%(export_fmt_support_raw)s
%(export_warning)s
Parameters
----------
%(fname_export_params)s
%(export_fmt_params_raw)s
%(physical_range_export_params)s
%(add_ch_type_export_params)s
%(overwrite)s
.. versionadded:: 0.24.1
%(verbose)s
Notes
-----
.. versionadded:: 0.24
%(export_warning_note_raw)s
%(export_eeglab_note)s
%(export_edf_note)s
"""
from ..export import export_raw
export_raw(fname, self, fmt, physical_range=physical_range,
add_ch_type=add_ch_type, overwrite=overwrite,
verbose=verbose)
def _tmin_tmax_to_start_stop(self, tmin, tmax):
start = int(np.floor(tmin * self.info['sfreq']))
# "stop" is the first sample *not* to save, so we need +1's here
if tmax is None:
stop = np.inf
else:
stop = self.time_as_index(float(tmax), use_rounding=True)[0] + 1
stop = min(stop, self.last_samp - self.first_samp + 1)
if stop <= start or stop <= 0:
raise ValueError('tmin (%s) and tmax (%s) yielded no samples'
% (tmin, tmax))
return start, stop
@copy_function_doc_to_method_doc(plot_raw)
def plot(self, events=None, duration=10.0, start=0.0, n_channels=20,
bgcolor='w', color=None, bad_color='lightgray',
event_color='cyan', scalings=None, remove_dc=True, order=None,
show_options=False, title=None, show=True, block=False,
highpass=None, lowpass=None, filtorder=4, clipping=_RAW_CLIP_DEF,
show_first_samp=False, proj=True, group_by='type',
butterfly=False, decim='auto', noise_cov=None, event_id=None,
show_scrollbars=True, show_scalebars=True, time_format='float',
precompute=None, use_opengl=None, *, theme=None,
overview_mode=None, verbose=None):
return plot_raw(self, events, duration, start, n_channels, bgcolor,
color, bad_color, event_color, scalings, remove_dc,
order, show_options, title, show, block, highpass,
lowpass, filtorder, clipping, show_first_samp,
proj, group_by, butterfly, decim, noise_cov=noise_cov,
event_id=event_id, show_scrollbars=show_scrollbars,
show_scalebars=show_scalebars, time_format=time_format,
precompute=precompute, use_opengl=use_opengl,
theme=theme, overview_mode=overview_mode,
verbose=verbose)
@property
def ch_names(self):
"""Channel names."""
return self.info['ch_names']
@property
def times(self):
"""Time points."""
out = _arange_div(self.n_times, float(self.info['sfreq']))
out.flags['WRITEABLE'] = False
return out
@property
def n_times(self):
"""Number of time points."""
return self.last_samp - self.first_samp + 1
def __len__(self):
"""Return the number of time points.
Returns
-------
len : int
The number of time points.
Examples
--------
This can be used as::
>>> len(raw) # doctest: +SKIP
1000
"""
return self.n_times
@verbose
def load_bad_channels(self, bad_file=None, force=False, verbose=None):
"""Mark channels as bad from a text file.
This function operates mostly in the style of the C function
``mne_mark_bad_channels``. Each line in the text file will be
interpreted as a name of a bad channel.
Parameters
----------
bad_file : path-like | None
File name of the text file containing bad channels.
If ``None`` (default), bad channels are cleared, but this
is more easily done directly with ``raw.info['bads'] = []``.
force : bool
Whether or not to force bad channel marking (of those
that exist) if channels are not found, instead of
raising an error. Defaults to ``False``.
%(verbose)s
"""
prev_bads = self.info['bads']
new_bads = []
if bad_file is not None:
# Check to make sure bad channels are there
names = frozenset(self.info['ch_names'])
with open(bad_file) as fid:
bad_names = [line for line in fid.read().splitlines() if line]
new_bads = [ci for ci in bad_names if ci in names]
count_diff = len(bad_names) - len(new_bads)
if count_diff > 0:
msg = (f'{count_diff} bad channel(s) from:'
f'\n{bad_file}\nnot found in:\n{self.filenames[0]}')
if not force:
raise ValueError(msg)
else:
warn(msg)
if prev_bads != new_bads:
logger.info(f'Updating bad channels: {prev_bads} -> {new_bads}')
self.info['bads'] = new_bads
else:
logger.info(f'No channels updated. Bads are: {prev_bads}')
@fill_doc
def append(self, raws, preload=None):
"""Concatenate raw instances as if they were continuous.
.. note:: Boundaries of the raw files are annotated bad. If you wish to
use the data as continuous recording, you can remove the
boundary annotations after concatenation (see
:meth:`mne.Annotations.delete`).
Parameters
----------
raws : list, or Raw instance
List of Raw instances to concatenate to the current instance
(in order), or a single raw instance to concatenate.
%(preload_concatenate)s
"""
if not isinstance(raws, list):
raws = [raws]
# make sure the raws are compatible
all_raws = [self]
all_raws += raws
_check_raw_compatibility(all_raws)
# deal with preloading data first (while files are separate)
all_preloaded = self.preload and all(r.preload for r in raws)
if preload is None:
if all_preloaded:
preload = True
else:
preload = False
if preload is False:
if self.preload:
self._data = None
self.preload = False
else:
# do the concatenation ourselves since preload might be a string
nchan = self.info['nchan']
c_ns = np.cumsum([rr.n_times for rr in ([self] + raws)])
nsamp = c_ns[-1]
if not self.preload:
this_data = self._read_segment(projector=self._projector)
else:
this_data = self._data
# allocate the buffer
_data = _allocate_data(preload, (nchan, nsamp), this_data.dtype)
_data[:, 0:c_ns[0]] = this_data
for ri in range(len(raws)):
if not raws[ri].preload:
# read the data directly into the buffer
data_buffer = _data[:, c_ns[ri]:c_ns[ri + 1]]
raws[ri]._read_segment(data_buffer=data_buffer,
projector=self._projector)
else:
_data[:, c_ns[ri]:c_ns[ri + 1]] = raws[ri]._data
self._data = _data
self.preload = True
# now combine information from each raw file to construct new self
annotations = self.annotations
assert annotations.orig_time == self.info['meas_date']
edge_samps = list()
for ri, r in enumerate(raws):
n_samples = self.last_samp - self.first_samp + 1
annotations = _combine_annotations(
annotations, r.annotations, n_samples,
self.first_samp, r.first_samp,
self.info['sfreq'])
edge_samps.append(sum(self._last_samps) -
sum(self._first_samps) + (ri + 1))
self._first_samps = np.r_[self._first_samps, r._first_samps]
self._last_samps = np.r_[self._last_samps, r._last_samps]
self._read_picks += r._read_picks
self._raw_extras += r._raw_extras
self._filenames += r._filenames
assert annotations.orig_time == self.info['meas_date']
# The above _combine_annotations gets everything synchronized to
# first_samp. set_annotations (with no absolute time reference) assumes
# that the annotations being set are relative to first_samp, and will
# add it back on. So here we have to remove it:
if annotations.orig_time is None:
annotations.onset -= self.first_samp / self.info['sfreq']
self.set_annotations(annotations)
for edge_samp in edge_samps:
onset = _sync_onset(self, (edge_samp) / self.info['sfreq'], True)
self.annotations.append(onset, 0., 'BAD boundary')
self.annotations.append(onset, 0., 'EDGE boundary')
if not (len(self._first_samps) == len(self._last_samps) ==
len(self._raw_extras) == len(self._filenames) ==
len(self._read_picks)):
raise RuntimeError('Append error') # should never happen
def close(self):
"""Clean up the object.
Does nothing for objects that close their file descriptors.
Things like RawFIF will override this method.
"""
pass # noqa
def copy(self):
"""Return copy of Raw instance.
Returns
-------
inst : instance of Raw
A copy of the instance.
"""
return deepcopy(self)
def __repr__(self): # noqa: D105
name = self.filenames[0]
name = '' if name is None else op.basename(name) + ', '
size_str = str(sizeof_fmt(self._size)) # str in case it fails -> None
size_str += ', data%s loaded' % ('' if self.preload else ' not')
s = ('%s%s x %s (%0.1f s), ~%s'
% (name, len(self.ch_names), self.n_times, self.times[-1],
size_str))
return "<%s | %s>" % (self.__class__.__name__, s)
@repr_html
def _repr_html_(self, caption=None):
from ..html_templates import repr_templates_env
basenames = [
os.path.basename(f) for f in self._filenames if f is not None
]
# https://stackoverflow.com/a/10981895
duration = timedelta(seconds=self.times[-1])
hours, remainder = divmod(duration.seconds, 3600)
minutes, seconds = divmod(remainder, 60)
seconds += duration.microseconds / 1e6
seconds = np.ceil(seconds) # always take full seconds
duration = f'{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}'
raw_template = repr_templates_env.get_template('raw.html.jinja')
return raw_template.render(
info_repr=self.info._repr_html_(caption=caption),
filenames=basenames, duration=duration
)
def add_events(self, events, stim_channel=None, replace=False):
"""Add events to stim channel.
Parameters
----------
events : ndarray, shape (n_events, 3)
Events to add. The first column specifies the sample number of
each event, the second column is ignored, and the third column
provides the event value. If events already exist in the Raw
instance at the given sample numbers, the event values will be
added together.
stim_channel : str | None
Name of the stim channel to add to. If None, the config variable
'MNE_STIM_CHANNEL' is used. If this is not found, it will default
to 'STI 014'.
replace : bool
If True the old events on the stim channel are removed before
adding the new ones.
Notes
-----
Data must be preloaded in order to add events.
"""
_check_preload(self, 'Adding events')
events = np.asarray(events)
if events.ndim != 2 or events.shape[1] != 3:
raise ValueError('events must be shape (n_events, 3)')
stim_channel = _get_stim_channel(stim_channel, self.info)
pick = pick_channels(self.ch_names, stim_channel)
if len(pick) == 0:
raise ValueError('Channel %s not found' % stim_channel)
pick = pick[0]
idx = events[:, 0].astype(int)
if np.any(idx < self.first_samp) or np.any(idx > self.last_samp):
raise ValueError('event sample numbers must be between %s and %s'
% (self.first_samp, self.last_samp))
if not all(idx == events[:, 0]):
raise ValueError('event sample numbers must be integers')
if replace:
self._data[pick, :] = 0.
self._data[pick, idx - self.first_samp] += events[:, 2]
def _get_buffer_size(self, buffer_size_sec=None):
"""Get the buffer size."""
if buffer_size_sec is None:
buffer_size_sec = self.buffer_size_sec
buffer_size_sec = float(buffer_size_sec)
return int(np.ceil(buffer_size_sec * self.info['sfreq']))
@verbose
def compute_psd(self, method='welch', fmin=0, fmax=np.inf, tmin=None,
tmax=None, picks=None, proj=False,
reject_by_annotation=True, *, n_jobs=1, verbose=None,
**method_kw):
"""Perform spectral analysis on sensor data.
Parameters
----------
%(method_psd)s
Default is ``'welch'``.
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(reject_by_annotation_psd)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
spectrum : instance of Spectrum
The spectral representation of the data.
Notes
-----
.. versionadded:: 1.2
References
----------
.. footbibliography::
"""
return Spectrum(
self, method=method, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax,
picks=picks, proj=proj, reject_by_annotation=reject_by_annotation,
n_jobs=n_jobs, verbose=verbose, **method_kw)
@verbose
def to_data_frame(self, picks=None, index=None,
scalings=None, copy=True, start=None, stop=None,
long_format=False, time_format=None, *,
verbose=None):
"""Export data in tabular structure as a pandas DataFrame.
Channels are converted to columns in the DataFrame. By default, an
additional column "time" is added, unless ``index`` is not ``None``
(in which case time values form the DataFrame's index).
Parameters
----------
%(picks_all)s
%(index_df_raw)s
Defaults to ``None``.
%(scalings_df)s
%(copy_df)s
start : int | None
Starting sample index for creating the DataFrame from a temporal
span of the Raw object. ``None`` (the default) uses the first
sample.
stop : int | None
Ending sample index for creating the DataFrame from a temporal span
of the Raw object. ``None`` (the default) uses the last sample.
%(long_format_df_raw)s
%(time_format_df_raw)s
.. versionadded:: 0.20
%(verbose)s
Returns
-------
%(df_return)s
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# arg checking
valid_index_args = ['time']
valid_time_formats = ['ms', 'timedelta', 'datetime']
index = _check_pandas_index_arguments(index, valid_index_args)
time_format = _check_time_format(time_format, valid_time_formats,
self.info['meas_date'])
# get data
picks = _picks_to_idx(self.info, picks, 'all', exclude=())
data, times = self[picks, start:stop]
data = data.T
if copy:
data = data.copy()
data = _scale_dataframe_data(self, data, picks, scalings)
# prepare extra columns / multiindex
mindex = list()
times = _convert_times(self, times, time_format)
mindex.append(('time', times))
# build DataFrame
df = _build_data_frame(self, data, picks, long_format, mindex, index,
default_index=['time'])
return df
def describe(self, data_frame=False):
"""Describe channels (name, type, descriptive statistics).
Parameters
----------
data_frame : bool
If True, return results in a pandas.DataFrame. If False, only print
results. Columns 'ch', 'type', and 'unit' indicate channel index,
channel type, and unit of the remaining five columns. These columns
are 'min' (minimum), 'Q1' (first quartile or 25% percentile),
'median', 'Q3' (third quartile or 75% percentile), and 'max'
(maximum).
Returns
-------
result : None | pandas.DataFrame
If data_frame=False, returns None. If data_frame=True, returns
results in a pandas.DataFrame (requires pandas).
"""
from scipy.stats import scoreatpercentile as q
nchan = self.info["nchan"]
# describe each channel
cols = defaultdict(list)
cols["name"] = self.ch_names
for i in range(nchan):
ch = self.info["chs"][i]
data = self[i][0]
cols["type"].append(channel_type(self.info, i))
cols["unit"].append(_unit2human[ch["unit"]])
cols["min"].append(np.min(data))
cols["Q1"].append(q(data, 25))
cols["median"].append(np.median(data))
cols["Q3"].append(q(data, 75))
cols["max"].append(np.max(data))
if data_frame: # return data frame
import pandas as pd
df = pd.DataFrame(cols)
df.index.name = "ch"
return df
# convert into commonly used units
scalings = _handle_default("scalings")
units = _handle_default("units")
for i in range(nchan):
unit = units.get(cols['type'][i])
scaling = scalings.get(cols['type'][i], 1)
if scaling != 1:
cols['unit'][i] = unit
for col in ["min", "Q1", "median", "Q3", "max"]:
cols[col][i] *= scaling
lens = {"ch": max(2, len(str(nchan))),
"name": max(4, max([len(n) for n in cols["name"]])),
"type": max(4, max([len(t) for t in cols["type"]])),
"unit": max(4, max([len(u) for u in cols["unit"]]))}
# print description, start with header
print(self)
print(f"{'ch':>{lens['ch']}} "
f"{'name':<{lens['name']}} "
f"{'type':<{lens['type']}} "
f"{'unit':<{lens['unit']}} "
f"{'min':>9} "
f"{'Q1':>9} "
f"{'median':>9} "
f"{'Q3':>9} "
f"{'max':>9}")
# print description for each channel
for i in range(nchan):
msg = (f"{i:>{lens['ch']}} "
f"{cols['name'][i]:<{lens['name']}} "
f"{cols['type'][i].upper():<{lens['type']}} "
f"{cols['unit'][i]:<{lens['unit']}} ")
for col in ["min", "Q1", "median", "Q3"]:
msg += f"{cols[col][i]:>9.2f} "
msg += f"{cols['max'][i]:>9.2f}"
print(msg)
def _allocate_data(preload, shape, dtype):
"""Allocate data in memory or in memmap for preloading."""
if preload in (None, True): # None comes from _read_segment
data = np.zeros(shape, dtype)
else:
_validate_type(preload, 'path-like', 'preload')
data = np.memmap(str(preload), mode='w+', dtype=dtype, shape=shape)
return data
def _index_as_time(index, sfreq, first_samp=0, use_first_samp=False):
"""Convert indices to time.
Parameters
----------
index : list-like | int
List of ints or int representing points in time.
use_first_samp : boolean
If True, the time returned is relative to the session onset, else
relative to the recording onset.
Returns
-------
times : ndarray
Times corresponding to the index supplied.
"""
times = np.atleast_1d(index) + (first_samp if use_first_samp else 0)
return times / sfreq
def _convert_slice(sel):
if len(sel) and (np.diff(sel) == 1).all():
return slice(sel[0], sel[-1] + 1)
else:
return sel
def _get_ch_factors(inst, units, picks_idxs):
"""Get scaling factors for data, given units.
Parameters
----------
inst : instance of Raw | Epochs | Evoked
The instance.
%(units)s
picks_idxs : ndarray
The picks as provided through _picks_to_idx.
Returns
-------
ch_factors : ndarray of floats, shape(len(picks),)
The sacling factors for each channel, ordered according
to picks.
"""
_validate_type(units, types=(None, str, dict), item_name="units")
ch_factors = np.ones(len(picks_idxs))
si_units = _handle_default('si_units')
ch_types = inst.get_channel_types(picks=picks_idxs)
# Convert to dict if str units
if isinstance(units, str):
# Check that there is only one channel type
unit_ch_type = list(set(ch_types) & set(si_units.keys()))
if len(unit_ch_type) > 1:
raise ValueError('"units" cannot be str if there is more than '
'one channel type with a unit '
f'{unit_ch_type}.')
units = {unit_ch_type[0]: units} # make the str argument a dict
# Loop over the dict to get channel factors
if isinstance(units, dict):
for ch_type, ch_unit in units.items():
# Get the scaling factors
scaling = _get_scaling(ch_type, ch_unit)
if scaling != 1:
indices = [i_ch for i_ch, ch in enumerate(ch_types)
if ch == ch_type]
ch_factors[indices] *= scaling
return ch_factors
def _get_scaling(ch_type, target_unit):
"""Return the scaling factor based on the channel type and a target unit.
Parameters
----------
ch_type : str
The channel type.
target_unit : str
The target unit for the provided channel type.
Returns
-------
scaling : float
The scaling factor to convert from the si_unit (used by default for MNE
objects) to the target unit.
"""
scaling = 1.
si_units = _handle_default('si_units')
si_units_splitted = {key: si_units[key].split('/') for key in si_units}
prefixes = _handle_default('prefixes')
prefix_list = list(prefixes.keys())
# Check that the provided unit exists for the ch_type
unit_list = target_unit.split('/')
if ch_type not in si_units.keys():
raise KeyError(
f'{ch_type} is not a channel type that can be scaled '
'from units.')
si_unit_list = si_units_splitted[ch_type]
if len(unit_list) != len(si_unit_list):
raise ValueError(
f'{target_unit} is not a valid unit for {ch_type}, use a '
f'sub-multiple of {si_units[ch_type]} instead.')
for i, unit in enumerate(unit_list):
valid = [prefix + si_unit_list[i]
for prefix in prefix_list]
if unit not in valid:
raise ValueError(
f'{target_unit} is not a valid unit for {ch_type}, use a '
f'sub-multiple of {si_units[ch_type]} instead.')
# Get the scaling factors
for i, unit in enumerate(unit_list):
has_square = False
# XXX power normally not used as csd cannot get_data()
if unit[-1] == '²':
has_square = True
if unit == 'm' or unit == 'm²':
factor = 1.
elif unit[0] in prefixes.keys():
factor = prefixes[unit[0]]
else:
factor = 1.
if factor != 1:
if has_square:
factor *= factor
if i == 0:
scaling = scaling * factor
elif i == 1:
scaling = scaling / factor
return scaling
class _ReadSegmentFileProtector(object):
"""Ensure only _filenames, _raw_extras, and _read_segment_file are used."""
def __init__(self, raw):
self.__raw = raw
assert hasattr(raw, '_projector')
self._filenames = raw._filenames
self._raw_extras = raw._raw_extras
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
return self.__raw.__class__._read_segment_file(
self, data, idx, fi, start, stop, cals, mult)
class _RawShell(object):
"""Create a temporary raw object."""
def __init__(self): # noqa: D102
self.first_samp = None
self.last_samp = None
self._first_time = None
self._last_time = None
self._cals = None
self._rawdir = None
self._projector = None
@property
def n_times(self): # noqa: D102
return self.last_samp - self.first_samp + 1
@property
def annotations(self): # noqa: D102
return self._annotations
def set_annotations(self, annotations):
if annotations is None:
annotations = Annotations([], [], [], None)
self._annotations = annotations.copy()
###############################################################################
# Writing
def _write_raw(fname, raw, info, picks, fmt, data_type, reset_range, start,
stop, buffer_size, projector, drop_small_buffer,
split_size, split_naming, part_idx, prev_fname, overwrite):
"""Write raw file with splitting."""
# we've done something wrong if we hit this
n_times_max = len(raw.times)
if start >= stop or stop > n_times_max:
raise RuntimeError('Cannot write raw file with no data: %s -> %s '
'(max: %s) requested' % (start, stop, n_times_max))
# Expand `~` if present
fname = _check_fname(fname=fname, overwrite=overwrite)
base, ext = op.splitext(fname)
if part_idx > 0:
if split_naming == 'neuromag':
# insert index in filename
use_fname = '%s-%d%s' % (base, part_idx, ext)
else:
assert split_naming == 'bids'
use_fname = _construct_bids_filename(base, ext, part_idx + 1)
# check for file existence
_check_fname(use_fname, overwrite)
else:
use_fname = fname
# reserve our BIDS split fname in case we need to split
if split_naming == 'bids' and part_idx == 0:
# reserve our possible split name
reserved_fname = _construct_bids_filename(base, ext, part_idx + 1)
logger.info(
f'Reserving possible split file {op.basename(reserved_fname)}')
_check_fname(reserved_fname, overwrite)
ctx = _ReservedFilename(reserved_fname)
else:
reserved_fname = use_fname
ctx = nullcontext()
logger.info('Writing %s' % use_fname)
picks = _picks_to_idx(info, picks, 'all', ())
with start_and_end_file(use_fname) as fid:
cals = _start_writing_raw(fid, info, picks, data_type,
reset_range, raw.annotations)
with ctx:
final_fname = _write_raw_fid(
raw, info, picks, fid, cals, part_idx, start, stop,
buffer_size, prev_fname, split_size, use_fname,
projector, drop_small_buffer, fmt, fname, reserved_fname,
data_type, reset_range, split_naming,
overwrite=True # we've started writing already above
)
if final_fname != use_fname:
assert split_naming == 'bids'
logger.info(f'Renaming BIDS split file {op.basename(final_fname)}')
ctx.remove = False
shutil.move(use_fname, final_fname)
if part_idx == 0:
logger.info('[done]')
return final_fname, part_idx
class _ReservedFilename:
def __init__(self, fname):
self.fname = fname
assert op.isdir(op.dirname(fname)), fname
with open(fname, 'w'):
pass
self.remove = True
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
if self.remove:
os.remove(self.fname)
def _write_raw_fid(raw, info, picks, fid, cals, part_idx, start, stop,
buffer_size, prev_fname, split_size, use_fname,
projector, drop_small_buffer, fmt, fname, reserved_fname,
data_type, reset_range, split_naming, overwrite):
first_samp = raw.first_samp + start
if first_samp != 0:
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first_samp)
# previous file name and id
if part_idx > 0 and prev_fname is not None:
start_block(fid, FIFF.FIFFB_REF)
write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_PREV_FILE)
write_string(fid, FIFF.FIFF_REF_FILE_NAME, prev_fname)
if info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_REF_FILE_ID, info['meas_id'])
write_int(fid, FIFF.FIFF_REF_FILE_NUM, part_idx - 1)
end_block(fid, FIFF.FIFFB_REF)
pos_prev = fid.tell()
if pos_prev > split_size:
raise ValueError('file is larger than "split_size" after writing '
'measurement information, you must use a larger '
'value for split size: %s plus enough bytes for '
'the chosen buffer_size' % pos_prev)
# Check to see if this has acquisition skips and, if so, if we can
# write out empty buffers instead of zeroes
firsts = list(range(start, stop, buffer_size))
lasts = np.array(firsts) + buffer_size
if lasts[-1] > stop:
lasts[-1] = stop
sk_onsets, sk_ends = _annotations_starts_stops(raw, 'bad_acq_skip')
do_skips = False
if len(sk_onsets) > 0:
if np.in1d(sk_onsets, firsts).all() and np.in1d(sk_ends, lasts).all():
do_skips = True
else:
if part_idx == 0:
warn('Acquisition skips detected but did not fit evenly into '
'output buffer_size, will be written as zeroes.')
n_current_skip = 0
final_fname = use_fname
for first, last in zip(firsts, lasts):
if do_skips:
if ((first >= sk_onsets) & (last <= sk_ends)).any():
# Track how many we have
n_current_skip += 1
continue
elif n_current_skip > 0:
# Write out an empty buffer instead of data
write_int(fid, FIFF.FIFF_DATA_SKIP, n_current_skip)
# These two NOPs appear to be optional (MaxFilter does not do
# it, but some acquisition machines do) so let's not bother.
# write_nop(fid)
# write_nop(fid)
n_current_skip = 0
data, times = raw[picks, first:last]
assert len(times) == last - first
if projector is not None:
data = np.dot(projector, data)
if ((drop_small_buffer and (first > start) and
(len(times) < buffer_size))):
logger.info('Skipping data chunk due to small buffer ... '
'[done]')
break
logger.debug(f'Writing FIF {first:6d} ... {last:6d} ...')
_write_raw_buffer(fid, data, cals, fmt)
pos = fid.tell()
this_buff_size_bytes = pos - pos_prev
overage = pos - split_size + _NEXT_FILE_BUFFER
if overage > 0:
# This should occur on the first buffer write of the file, so
# we should mention the space required for the meas info
raise ValueError(
'buffer size (%s) is too large for the given split size (%s) '
'by %s bytes after writing info (%s) and leaving enough space '
'for end tags (%s): decrease "buffer_size_sec" or increase '
'"split_size".' % (this_buff_size_bytes, split_size, overage,
pos_prev, _NEXT_FILE_BUFFER))
# Split files if necessary, leave some space for next file info
# make sure we check to make sure we actually *need* another buffer
# with the "and" check
if pos >= split_size - this_buff_size_bytes - _NEXT_FILE_BUFFER and \
first + buffer_size < stop:
final_fname = reserved_fname
next_fname, next_idx = _write_raw(
fname, raw, info, picks, fmt,
data_type, reset_range, first + buffer_size, stop, buffer_size,
projector, drop_small_buffer, split_size, split_naming,
part_idx + 1, final_fname, overwrite)
start_block(fid, FIFF.FIFFB_REF)
write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE)
write_string(fid, FIFF.FIFF_REF_FILE_NAME, op.basename(next_fname))
if info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_REF_FILE_ID, info['meas_id'])
write_int(fid, FIFF.FIFF_REF_FILE_NUM, next_idx)
end_block(fid, FIFF.FIFFB_REF)
break
pos_prev = pos
logger.info('Closing %s' % use_fname)
if info.get('maxshield', False):
end_block(fid, FIFF.FIFFB_IAS_RAW_DATA)
else:
end_block(fid, FIFF.FIFFB_RAW_DATA)
end_block(fid, FIFF.FIFFB_MEAS)
return final_fname
@fill_doc
def _start_writing_raw(fid, info, sel, data_type,
reset_range, annotations):
"""Start write raw data in file.
Parameters
----------
fid : file
The created file.
%(info_not_none)s
sel : array of int | None
Indices of channels to include. If None, all channels
are included.
data_type : int
The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT),
5 (FIFFT_DOUBLE), 16 (FIFFT_DAU_PACK16), or 3 (FIFFT_INT) for raw data.
reset_range : bool
If True, the info['chs'][k]['range'] parameter will be set to unity.
annotations : instance of Annotations
The annotations to write.
Returns
-------
fid : file
The file descriptor.
cals : list
calibration factors.
"""
#
# Measurement info
#
info = pick_info(info, sel)
#
# Create the file and save the essentials
#
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id'])
cals = []
for k in range(info['nchan']):
#
# Scan numbers may have been messed up
#
info['chs'][k]['scanno'] = k + 1 # scanno starts at 1 in FIF format
if reset_range is True:
info['chs'][k]['range'] = 1.0
cals.append(info['chs'][k]['cal'] * info['chs'][k]['range'])
write_meas_info(fid, info, data_type=data_type, reset_range=reset_range)
#
# Annotations
#
if len(annotations) > 0: # don't save empty annot
_write_annotations(fid, annotations)
#
# Start the raw data
#
if info.get('maxshield', False):
start_block(fid, FIFF.FIFFB_IAS_RAW_DATA)
else:
start_block(fid, FIFF.FIFFB_RAW_DATA)
return cals
def _write_raw_buffer(fid, buf, cals, fmt):
"""Write raw buffer.
Parameters
----------
fid : file descriptor
an open raw data file.
buf : array
The buffer to write.
cals : array
Calibration factors.
fmt : str
'short', 'int', 'single', or 'double' for 16/32 bit int or 32/64 bit
float for each item. This will be doubled for complex datatypes. Note
that short and int formats cannot be used for complex data.
"""
if buf.shape[0] != len(cals):
raise ValueError('buffer and calibration sizes do not match')
_check_option('fmt', fmt, ['short', 'int', 'single', 'double'])
cast_int = False # allow unsafe cast
if np.isrealobj(buf):
if fmt == 'short':
write_function = write_dau_pack16
cast_int = True
elif fmt == 'int':
write_function = write_int
cast_int = True
elif fmt == 'single':
write_function = write_float
else:
write_function = write_double
else:
if fmt == 'single':
write_function = write_complex64
elif fmt == 'double':
write_function = write_complex128
else:
raise ValueError('only "single" and "double" supported for '
'writing complex data')
buf = buf / np.ravel(cals)[:, None]
if cast_int:
buf = buf.astype(np.int32)
write_function(fid, FIFF.FIFF_DATA_BUFFER, buf)
def _check_raw_compatibility(raw):
"""Ensure all instances of Raw have compatible parameters."""
for ri in range(1, len(raw)):
if not isinstance(raw[ri], type(raw[0])):
raise ValueError(f'raw[{ri}] type must match')
for key in ('nchan', 'bads', 'sfreq'):
a, b = raw[ri].info[key], raw[0].info[key]
if a != b:
raise ValueError(
f'raw[{ri}].info[{key}] must match:\n'
f'{repr(a)} != {repr(b)}')
if not set(raw[ri].info['ch_names']) == set(raw[0].info['ch_names']):
raise ValueError('raw[%d][\'info\'][\'ch_names\'] must match' % ri)
if not all(raw[ri]._cals == raw[0]._cals):
raise ValueError('raw[%d]._cals must match' % ri)
if len(raw[0].info['projs']) != len(raw[ri].info['projs']):
raise ValueError('SSP projectors in raw files must be the same')
if not all(_proj_equal(p1, p2) for p1, p2 in
zip(raw[0].info['projs'], raw[ri].info['projs'])):
raise ValueError('SSP projectors in raw files must be the same')
if not all(r.orig_format == raw[0].orig_format for r in raw):
warn('raw files do not all have the same data format, could result in '
'precision mismatch. Setting raw.orig_format="unknown"')
raw[0].orig_format = 'unknown'
@verbose
def concatenate_raws(raws, preload=None, events_list=None, *,
on_mismatch='raise', verbose=None):
"""Concatenate `~mne.io.Raw` instances as if they were continuous.
.. note:: ``raws[0]`` is modified in-place to achieve the concatenation.
Boundaries of the raw files are annotated bad. If you wish to use
the data as continuous recording, you can remove the boundary
annotations after concatenation (see
:meth:`mne.Annotations.delete`).
Parameters
----------
raws : list
List of `~mne.io.Raw` instances to concatenate (in order).
%(preload_concatenate)s
events_list : None | list
The events to concatenate. Defaults to ``None``.
%(on_mismatch_info)s
%(verbose)s
Returns
-------
raw : instance of Raw
The result of the concatenation (first Raw instance passed in).
events : ndarray of int, shape (n_events, 3)
The events. Only returned if ``event_list`` is not None.
"""
for idx, raw in enumerate(raws[1:], start=1):
_ensure_infos_match(info1=raws[0].info, info2=raw.info,
name=f'raws[{idx}]', on_mismatch=on_mismatch)
if events_list is not None:
if len(events_list) != len(raws):
raise ValueError('`raws` and `event_list` are required '
'to be of the same length')
first, last = zip(*[(r.first_samp, r.last_samp) for r in raws])
events = concatenate_events(events_list, first, last)
raws[0].append(raws[1:], preload)
if events_list is None:
return raws[0]
else:
return raws[0], events
def _check_maxshield(allow_maxshield):
"""Warn or error about MaxShield."""
msg = ('This file contains raw Internal Active '
'Shielding data. It may be distorted. Elekta '
'recommends it be run through MaxFilter to '
'produce reliable results. Consider closing '
'the file and running MaxFilter on the data.')
if allow_maxshield:
if not (isinstance(allow_maxshield, str) and
allow_maxshield == 'yes'):
warn(msg)
else:
msg += (' Use allow_maxshield=True if you are sure you'
' want to load the data despite this warning.')
raise ValueError(msg)
|