1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
from collections import OrderedDict
from pathlib import Path
import numpy as np
from ...utils import logger, fill_doc, verbose
from ..meas_info import create_info
from ...evoked import EvokedArray
@fill_doc
@verbose
def read_evoked_besa(fname, verbose=None):
"""Reader function for BESA .avr or .mul files.
When a .elp sidecar file is present, it will be used to determine electrode
information.
Parameters
----------
fname : str | Path
Path to the .avr or .mul file.
%(verbose)s
Returns
-------
ev : Evoked
The evoked data in the .avr or .mul file.
"""
fname = Path(fname)
if fname.suffix == '.avr':
return _read_evoked_besa_avr(fname, verbose)
elif fname.suffix == '.mul':
return _read_evoked_besa_mul(fname, verbose)
else:
raise ValueError('Filename must end in either .avr or .mul')
@verbose
def _read_evoked_besa_avr(fname, verbose):
"""Create EvokedArray from a BESA .avr file."""
with open(fname) as f:
header = f.readline().strip()
# There are two versions of .avr files. The old style, generated by
# BESA 1, 2 and 3 does not define Nchan and does not have channel names
# in the file.
new_style = 'Nchan=' in header
if new_style:
ch_names = f.readline().strip().split()
else:
ch_names = None
fields = _parse_header(header)
data = np.loadtxt(fname, skiprows=2 if new_style else 1, ndmin=2)
ch_types = _read_elp_sidecar(fname)
# Consolidate channel names
if new_style:
if len(ch_names) != len(data):
raise RuntimeError(
'Mismatch between the number of channel names defined in '
f'the .avr file ({len(ch_names)}) and the number of rows '
f'in the data matrix ({len(data)}).')
else:
# Determine channel names from the .elp sidecar file
if ch_types is not None:
ch_names = list(ch_types.keys())
if len(ch_names) != len(data):
raise RuntimeError('Mismatch between the number of channels '
f'defined in the .avr file ({len(data)}) '
f'and .elp file ({len(ch_names)}).')
else:
logger.info('No .elp file found and no channel names present in '
'the .avr file. Falling back to generic names. ')
ch_names = [f'CH{i + 1:02d}' for i in range(len(data))]
# Consolidate channel types
if ch_types is None:
logger.info('Marking all channels as EEG.')
ch_types = ['eeg'] * len(ch_names)
else:
ch_types = [ch_types[ch] for ch in ch_names]
# Go over all the header fields and make sure they are all defined to
# something sensible.
if 'Npts' in fields:
fields['Npts'] = int(fields['Npts'])
if fields['Npts'] != data.shape[1]:
logger.warn(f'The size of the data matrix ({data.shape}) does not '
f'match the "Npts" field ({fields["Npts"]}).')
if 'Nchan' in fields:
fields['Nchan'] = int(fields['Nchan'])
if fields['Nchan'] != data.shape[0]:
logger.warn(f'The size of the data matrix ({data.shape}) does not '
f'match the "Nchan" field ({fields["Nchan"]}).')
if 'DI' in fields:
fields['DI'] = float(fields['DI'])
else:
raise RuntimeError('No "DI" field present. Could not determine '
'sampling frequency.')
if 'TSB' in fields:
fields['TSB'] = float(fields['TSB'])
else:
fields['TSB'] = 0
if 'SB' in fields:
fields['SB'] = float(fields['SB'])
else:
fields['SB'] = 1.0
if 'SegmentName' not in fields:
fields['SegmentName'] = ''
# Build the Evoked object based on the header fields.
info = create_info(ch_names, sfreq=1000 / fields['DI'], ch_types='eeg')
return EvokedArray(data / fields['SB'] / 1E6, info,
tmin=fields['TSB'] / 1000,
comment=fields['SegmentName'], verbose=verbose)
@verbose
def _read_evoked_besa_mul(fname, verbose):
"""Create EvokedArray from a BESA .mul file."""
with open(fname) as f:
header = f.readline().strip()
ch_names = f.readline().strip().split()
fields = _parse_header(header)
data = np.loadtxt(fname, skiprows=2, ndmin=2)
if len(ch_names) != data.shape[1]:
raise RuntimeError('Mismatch between the number of channel names '
f'defined in the .mul file ({len(ch_names)}) '
'and the number of columns in the data matrix '
f'({data.shape[1]}).')
# Consolidate channel types
ch_types = _read_elp_sidecar(fname)
if ch_types is None:
logger.info('Marking all channels as EEG.')
ch_types = ['eeg'] * len(ch_names)
else:
ch_types = [ch_types[ch] for ch in ch_names]
# Go over all the header fields and make sure they are all defined to
# something sensible.
if 'TimePoints' in fields:
fields['TimePoints'] = int(fields['TimePoints'])
if fields['TimePoints'] != data.shape[0]:
logger.warn(
f'The size of the data matrix ({data.shape}) does not '
f'match the "TimePoints" field ({fields["TimePoints"]}).')
if 'Channels' in fields:
fields['Channels'] = int(fields['Channels'])
if fields['Channels'] != data.shape[1]:
logger.warn(f'The size of the data matrix ({data.shape}) does not '
f'match the "Channels" field ({fields["Channels"]}).')
if 'SamplingInterval[ms]' in fields:
fields['SamplingInterval[ms]'] = float(fields['SamplingInterval[ms]'])
else:
raise RuntimeError('No "SamplingInterval[ms]" field present. Could '
'not determine sampling frequency.')
if 'BeginSweep[ms]' in fields:
fields['BeginSweep[ms]'] = float(fields['BeginSweep[ms]'])
else:
fields['BeginSweep[ms]'] = 0.0
if 'Bins/uV' in fields:
fields['Bins/uV'] = float(fields['Bins/uV'])
else:
fields['Bins/uV'] = 1
if 'SegmentName' not in fields:
fields['SegmentName'] = ''
# Build the Evoked object based on the header fields.
info = create_info(ch_names, sfreq=1000 / fields['SamplingInterval[ms]'],
ch_types=ch_types)
return EvokedArray(data.T / fields['Bins/uV'] / 1E6, info,
tmin=fields['BeginSweep[ms]'] / 1000,
comment=fields['SegmentName'], verbose=verbose)
def _parse_header(header):
"""Parse an .avr or .mul header string into name/val pairs.
The header line looks like:
Npts= 256 TSB= 0.000 DI= 4.000000 SB= 1.000 SC= 200.0 Nchan= 27
No consistent use of separation chars, so parsing this is a bit iffy.
Parameters
----------
header : str
The first line of the file.
Returns
-------
fields : dict
The parsed header fields
"""
parts = header.split() # Splits on one or more spaces
name_val_pairs = zip(parts[::2], parts[1::2])
return dict((name.replace('=', ''), val) for name, val in name_val_pairs)
def _read_elp_sidecar(fname):
"""Read a possible .elp sidecar file with electrode information.
The reason we don't use the read_custom_montage for this is that we are
interested in the channel types, which a DigMontage object does not provide
us.
Parameters
----------
fname : Path
The path of the .avr or .mul file. The corresponding .elp file will be
derived from this path.
Returns
-------
ch_type : OrderedDict | None
If the sidecar file exists, return a dictionary mapping channel names
to channel types. Otherwise returns ``None``.
"""
fname_elp = fname.parent / (fname.stem + '.elp')
if not fname_elp.exists():
logger.info(f'No {fname_elp} file present containing electrode '
'information.')
return None
logger.info(f'Reading electrode names and types from {fname_elp}')
ch_types = OrderedDict()
with open(fname_elp) as f:
lines = f.readlines()
if len(lines[0].split()) > 3:
# Channel types present
for line in lines:
ch_type, ch_name = line.split()[:2]
ch_types[ch_name] = ch_type.lower()
else:
# No channel types present
logger.info('No channel types present in .elp file. Marking all '
'channels as EEG.')
for line in lines:
ch_name = line.split()[:1]
ch_types[ch_name] = 'eeg'
return ch_types
|