1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
|
# -*- coding: utf-8 -*-
"""Reading tools from EDF, EDF+, BDF, and GDF."""
# Authors: Teon Brooks <teon.brooks@gmail.com>
# Martin Billinger <martin.billinger@tugraz.at>
# Nicolas Barascud <nicolas.barascud@ens.fr>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
# Joan Massich <mailsik@gmail.com>
# Clemens Brunner <clemens.brunner@gmail.com>
# Jeroen Van Der Donckt (IDlab - imec) <jeroen.vanderdonckt@ugent.be>
#
# License: BSD-3-Clause
from datetime import datetime, timezone, timedelta
import os
import re
import numpy as np
from ...utils import verbose, logger, warn, _validate_type
from ..utils import _blk_read_lims, _mult_cal_one
from ..base import BaseRaw, _get_scaling
from ..meas_info import _empty_info, _unique_channel_names
from ..constants import FIFF
from ...filter import resample
from ...utils import fill_doc
from ...annotations import Annotations
# common channel type names mapped to internal ch types
CH_TYPE_MAPPING = {
'EEG': FIFF.FIFFV_EEG_CH,
'SEEG': FIFF.FIFFV_SEEG_CH,
'ECOG': FIFF.FIFFV_ECOG_CH,
'DBS': FIFF.FIFFV_DBS_CH,
'EOG': FIFF.FIFFV_EOG_CH,
'ECG': FIFF.FIFFV_ECG_CH,
'EMG': FIFF.FIFFV_EMG_CH,
'BIO': FIFF.FIFFV_BIO_CH,
'RESP': FIFF.FIFFV_RESP_CH,
'TEMP': FIFF.FIFFV_TEMPERATURE_CH,
'MISC': FIFF.FIFFV_MISC_CH,
'SAO2': FIFF.FIFFV_BIO_CH,
}
@fill_doc
class RawEDF(BaseRaw):
"""Raw object from EDF, EDF+ or BDF file.
Parameters
----------
input_fname : str
Path to the EDF, EDF+ or BDF file.
eog : list or tuple
Names of channels or list of indices that should be designated EOG
channels. Values should correspond to the electrodes in the file.
Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated MISC
channels. Values should correspond to the electrodes in the file.
Default is None.
stim_channel : 'auto' | str | list of str | int | list of int
Defaults to 'auto', which means that channels named 'status' or
'trigger' (case insensitive) are set to STIM. If str (or list of str),
all channels matching the name(s) are set to STIM. If int (or list of
ints), the channels corresponding to the indices are set to STIM.
exclude : list of str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling.
infer_types : bool
If True, try to infer channel types from channel labels. If a channel
label starts with a known type (such as 'EEG') followed by a space and
a name (such as 'Fp1'), the channel type will be set accordingly, and
the channel will be renamed to the original label without the prefix.
For unknown prefixes, the type will be 'EEG' and the name will not be
modified. If False, do not infer types and assume all channels are of
type 'EEG'.
.. versionadded:: 0.24.1
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
.. versionadded:: 1.1
%(preload)s
%(units_edf_bdf_io)s
%(encoding_edf)s
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
mne.io.read_raw_edf : Recommended way to read EDF/EDF+ files.
mne.io.read_raw_bdf : Recommended way to read BDF files.
Notes
-----
Biosemi devices trigger codes are encoded in 16-bit format, whereas system
codes (CMS in/out-of range, battery low, etc.) are coded in bits 16-23 of
the status channel (see http://www.biosemi.com/faq/trigger_signals.htm).
To retrieve correct event values (bits 1-16), one could do:
>>> events = mne.find_events(...) # doctest:+SKIP
>>> events[:, 2] &= (2**16 - 1) # doctest:+SKIP
The above operation can be carried out directly in :func:`mne.find_events`
using the ``mask`` and ``mask_type`` parameters (see
:func:`mne.find_events` for more details).
It is also possible to retrieve system codes, but no particular effort has
been made to decode these in MNE. In case it is necessary, for instance to
check the CMS bit, the following operation can be carried out:
>>> cms_bit = 20 # doctest:+SKIP
>>> cms_high = (events[:, 2] & (1 << cms_bit)) != 0 # doctest:+SKIP
It is worth noting that in some special cases, it may be necessary to shift
event values in order to retrieve correct event triggers. This depends on
the triggering device used to perform the synchronization. For instance, in
some files events need to be shifted by 8 bits:
>>> events[:, 2] >>= 8 # doctest:+SKIP
TAL channels called 'EDF Annotations' or 'BDF Annotations' are parsed and
extracted annotations are stored in raw.annotations. Use
:func:`mne.events_from_annotations` to obtain events from these
annotations.
If channels named 'status' or 'trigger' are present, they are considered as
STIM channels by default. Use func:`mne.find_events` to parse events
encoded in such analog stim channels.
"""
@verbose
def __init__(self, input_fname, eog=None, misc=None, stim_channel='auto',
exclude=(), infer_types=False, preload=False, include=None,
units=None, encoding='utf8', *, verbose=None):
logger.info('Extracting EDF parameters from {}...'.format(input_fname))
input_fname = os.path.abspath(input_fname)
info, edf_info, orig_units = _get_info(input_fname, stim_channel, eog,
misc, exclude, infer_types,
preload, include)
logger.info('Creating raw.info structure...')
_validate_type(units, (str, None, dict), 'units')
if units is None:
units = dict()
elif isinstance(units, str):
units = {ch_name: units for ch_name in info['ch_names']}
for k, (this_ch, this_unit) in enumerate(orig_units.items()):
if this_ch not in units:
continue
if this_unit not in ("", units[this_ch]):
raise ValueError(
f'Unit for channel {this_ch} is present in the file as '
f'{repr(this_unit)}, cannot overwrite it with the units '
f'argument {repr(units[this_ch])}.')
if this_unit == "":
orig_units[this_ch] = units[this_ch]
ch_type = edf_info["ch_types"][k]
scaling = _get_scaling(ch_type.lower(), orig_units[this_ch])
edf_info["units"][k] /= scaling
# Raw attributes
last_samps = [edf_info['nsamples'] - 1]
super().__init__(info, preload, filenames=[input_fname],
raw_extras=[edf_info], last_samps=last_samps,
orig_format='int', orig_units=orig_units,
verbose=verbose)
# Read annotations from file and set it
onset, duration, desc = list(), list(), list()
if len(edf_info['tal_idx']) > 0:
# Read TAL data exploiting the header info (no regexp)
idx = np.empty(0, int)
tal_data = self._read_segment_file(
np.empty((0, self.n_times)), idx, 0, 0, int(self.n_times),
np.ones((len(idx), 1)), None)
onset, duration, desc = _read_annotations_edf(
tal_data[0],
encoding=encoding,
)
self.set_annotations(Annotations(onset=onset, duration=duration,
description=desc, orig_time=None))
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
return _read_segment_file(data, idx, fi, start, stop,
self._raw_extras[fi], self._filenames[fi],
cals, mult)
@fill_doc
class RawGDF(BaseRaw):
"""Raw object from GDF file.
Parameters
----------
input_fname : str
Path to the GDF file.
eog : list or tuple
Names of channels or list of indices that should be designated EOG
channels. Values should correspond to the electrodes in the file.
Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated MISC
channels. Values should correspond to the electrodes in the file.
Default is None.
stim_channel : 'auto' | str | list of str | int | list of int
Defaults to 'auto', which means that channels named 'status' or
'trigger' (case insensitive) are set to STIM. If str (or list of str),
all channels matching the name(s) are set to STIM. If int (or list of
ints), channels corresponding to the indices are set to STIM.
exclude : list of str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling.
.. versionadded:: 0.24.1
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
.. versionadded:: 1.1
%(preload)s
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attributes and methods.
mne.io.read_raw_gdf : Recommended way to read GDF files.
Notes
-----
If channels named 'status' or 'trigger' are present, they are considered as
STIM channels by default. Use func:`mne.find_events` to parse events
encoded in such analog stim channels.
"""
@verbose
def __init__(self, input_fname, eog=None, misc=None,
stim_channel='auto', exclude=(), preload=False, include=None,
verbose=None):
logger.info('Extracting EDF parameters from {}...'.format(input_fname))
input_fname = os.path.abspath(input_fname)
info, edf_info, orig_units = _get_info(input_fname, stim_channel, eog,
misc, exclude, True, preload,
include)
logger.info('Creating raw.info structure...')
# Raw attributes
last_samps = [edf_info['nsamples'] - 1]
super().__init__(info, preload, filenames=[input_fname],
raw_extras=[edf_info], last_samps=last_samps,
orig_format='int', orig_units=orig_units,
verbose=verbose)
# Read annotations from file and set it
onset, duration, desc = _get_annotations_gdf(edf_info,
self.info['sfreq'])
self.set_annotations(Annotations(onset=onset, duration=duration,
description=desc, orig_time=None))
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
return _read_segment_file(data, idx, fi, start, stop,
self._raw_extras[fi], self._filenames[fi],
cals, mult)
def _read_ch(fid, subtype, samp, dtype_byte, dtype=None):
"""Read a number of samples for a single channel."""
# BDF
if subtype == 'bdf':
ch_data = np.fromfile(fid, dtype=dtype, count=samp * dtype_byte)
ch_data = ch_data.reshape(-1, 3).astype(INT32)
ch_data = ((ch_data[:, 0]) +
(ch_data[:, 1] << 8) +
(ch_data[:, 2] << 16))
# 24th bit determines the sign
ch_data[ch_data >= (1 << 23)] -= (1 << 24)
# GDF data and EDF data
else:
ch_data = np.fromfile(fid, dtype=dtype, count=samp)
return ch_data
def _read_segment_file(data, idx, fi, start, stop, raw_extras, filenames,
cals, mult):
"""Read a chunk of raw data."""
from scipy.interpolate import interp1d
n_samps = raw_extras['n_samps']
buf_len = int(raw_extras['max_samp'])
dtype = raw_extras['dtype_np']
dtype_byte = raw_extras['dtype_byte']
data_offset = raw_extras['data_offset']
stim_channel_idxs = raw_extras['stim_channel_idxs']
orig_sel = raw_extras['sel']
tal_idx = raw_extras.get('tal_idx', np.empty(0, int))
subtype = raw_extras['subtype']
cal = raw_extras['cal']
offsets = raw_extras['offsets']
gains = raw_extras['units']
read_sel = np.concatenate([orig_sel[idx], tal_idx])
tal_data = []
# only try to read the stim channel if it's not None and it's
# actually one of the requested channels
idx_arr = np.arange(idx.start, idx.stop) if isinstance(idx, slice) else idx
# We could read this one EDF block at a time, which would be this:
ch_offsets = np.cumsum(np.concatenate([[0], n_samps]), dtype=np.int64)
block_start_idx, r_lims, d_lims = _blk_read_lims(start, stop, buf_len)
# But to speed it up, we really need to read multiple blocks at once,
# Otherwise we can end up with e.g. 18,181 chunks for a 20 MB file!
# Let's do ~10 MB chunks:
n_per = max(10 * 1024 * 1024 // (ch_offsets[-1] * dtype_byte), 1)
with open(filenames, 'rb', buffering=0) as fid:
# Extract data
start_offset = (data_offset +
block_start_idx * ch_offsets[-1] * dtype_byte)
for ai in range(0, len(r_lims), n_per):
block_offset = ai * ch_offsets[-1] * dtype_byte
n_read = min(len(r_lims) - ai, n_per)
fid.seek(start_offset + block_offset, 0)
# Read and reshape to (n_chunks_read, ch0_ch1_ch2_ch3...)
many_chunk = _read_ch(fid, subtype, ch_offsets[-1] * n_read,
dtype_byte, dtype).reshape(n_read, -1)
r_sidx = r_lims[ai][0]
r_eidx = (buf_len * (n_read - 1) + r_lims[ai + n_read - 1][1])
d_sidx = d_lims[ai][0]
d_eidx = d_lims[ai + n_read - 1][1]
one = np.zeros((len(orig_sel), d_eidx - d_sidx), dtype=data.dtype)
for ii, ci in enumerate(read_sel):
# This now has size (n_chunks_read, n_samp[ci])
ch_data = many_chunk[:,
ch_offsets[ci]:ch_offsets[ci + 1]].copy()
if ci in tal_idx:
tal_data.append(ch_data)
continue
orig_idx = idx_arr[ii]
ch_data = ch_data * cal[orig_idx]
ch_data += offsets[orig_idx]
ch_data *= gains[orig_idx]
assert ci == orig_sel[orig_idx]
if n_samps[ci] != buf_len:
if orig_idx in stim_channel_idxs:
# Stim channel will be interpolated
old = np.linspace(0, 1, n_samps[ci] + 1, True)
new = np.linspace(0, 1, buf_len, False)
ch_data = np.append(
ch_data, np.zeros((len(ch_data), 1)), -1)
ch_data = interp1d(old, ch_data,
kind='zero', axis=-1)(new)
else:
# XXX resampling each chunk isn't great,
# it forces edge artifacts to appear at
# each buffer boundary :(
# it can also be very slow...
ch_data = resample(
ch_data.astype(np.float64), buf_len, n_samps[ci],
npad=0, axis=-1)
elif orig_idx in stim_channel_idxs:
ch_data = np.bitwise_and(ch_data.astype(int), 2**17 - 1)
one[orig_idx] = ch_data.ravel()[r_sidx:r_eidx]
_mult_cal_one(data[:, d_sidx:d_eidx], one, idx, cals, mult)
if len(tal_data) > 1:
tal_data = np.concatenate([tal.ravel() for tal in tal_data])
tal_data = tal_data[np.newaxis, :]
return tal_data
def _read_header(fname, exclude, infer_types, include=None):
"""Unify EDF, BDF and GDF _read_header call.
Parameters
----------
fname : str
Path to the EDF+, BDF, or GDF file.
exclude : list of str | str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling. A str is
interpreted as a regular expression.
infer_types : bool
If True, try to infer channel types from channel labels. If a channel
label starts with a known type (such as 'EEG') followed by a space and
a name (such as 'Fp1'), the channel type will be set accordingly, and
the channel will be renamed to the original label without the prefix.
For unknown prefixes, the type will be 'EEG' and the name will not be
modified. If False, do not infer types and assume all channels are of
type 'EEG'.
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
Returns
-------
(edf_info, orig_units) : tuple
"""
ext = os.path.splitext(fname)[1][1:].lower()
logger.info('%s file detected' % ext.upper())
if ext in ('bdf', 'edf'):
return _read_edf_header(fname, exclude, infer_types, include)
elif ext == 'gdf':
return _read_gdf_header(fname, exclude, include), None
else:
raise NotImplementedError(
f'Only GDF, EDF, and BDF files are supported, got {ext}.')
def _get_info(fname, stim_channel, eog, misc, exclude, infer_types, preload,
include=None):
"""Extract information from EDF+, BDF or GDF file."""
eog = eog if eog is not None else []
misc = misc if misc is not None else []
edf_info, orig_units = _read_header(fname, exclude, infer_types, include)
# XXX: `tal_ch_names` to pass to `_check_stim_channel` should be computed
# from `edf_info['ch_names']` and `edf_info['tal_idx']` but 'tal_idx'
# contains stim channels that are not TAL.
stim_channel_idxs, _ = _check_stim_channel(
stim_channel, edf_info['ch_names'])
sel = edf_info['sel'] # selection of channels not excluded
ch_names = edf_info['ch_names'] # of length len(sel)
if 'ch_types' in edf_info:
ch_types = edf_info['ch_types'] # of length len(sel)
else:
ch_types = [None] * len(sel)
if len(sel) == 0: # only want stim channels
n_samps = edf_info['n_samps'][[0]]
else:
n_samps = edf_info['n_samps'][sel]
nchan = edf_info['nchan']
physical_ranges = edf_info['physical_max'] - edf_info['physical_min']
cals = edf_info['digital_max'] - edf_info['digital_min']
bad_idx = np.where((~np.isfinite(cals)) | (cals == 0))[0]
if len(bad_idx) > 0:
warn('Scaling factor is not defined in following channels:\n' +
', '.join(ch_names[i] for i in bad_idx))
cals[bad_idx] = 1
bad_idx = np.where(physical_ranges == 0)[0]
if len(bad_idx) > 0:
warn('Physical range is not defined in following channels:\n' +
', '.join(ch_names[i] for i in bad_idx))
physical_ranges[bad_idx] = 1
# Creates a list of dicts of eeg channels for raw.info
logger.info('Setting channel info structure...')
chs = list()
pick_mask = np.ones(len(ch_names))
chs_without_types = list()
for idx, ch_name in enumerate(ch_names):
chan_info = {}
chan_info['cal'] = 1.
chan_info['logno'] = idx + 1
chan_info['scanno'] = idx + 1
chan_info['range'] = 1.
chan_info['unit_mul'] = FIFF.FIFF_UNITM_NONE
chan_info['ch_name'] = ch_name
chan_info['unit'] = FIFF.FIFF_UNIT_V
chan_info['coord_frame'] = FIFF.FIFFV_COORD_HEAD
chan_info['coil_type'] = FIFF.FIFFV_COIL_EEG
chan_info['kind'] = FIFF.FIFFV_EEG_CH
# montage can't be stored in EDF so channel locs are unknown:
chan_info['loc'] = np.full(12, np.nan)
# if the edf info contained channel type information
# set it now
ch_type = ch_types[idx]
if ch_type is not None and ch_type in CH_TYPE_MAPPING:
chan_info['kind'] = CH_TYPE_MAPPING.get(ch_type)
if ch_type not in ['EEG', 'ECOG', 'SEEG', 'DBS']:
chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
pick_mask[idx] = False
# if user passes in explicit mapping for eog, misc and stim
# channels set them here
if ch_name in eog or idx in eog or idx - nchan in eog:
chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
chan_info['kind'] = FIFF.FIFFV_EOG_CH
pick_mask[idx] = False
elif ch_name in misc or idx in misc or idx - nchan in misc:
chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
chan_info['kind'] = FIFF.FIFFV_MISC_CH
pick_mask[idx] = False
elif idx in stim_channel_idxs:
chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
chan_info['unit'] = FIFF.FIFF_UNIT_NONE
chan_info['kind'] = FIFF.FIFFV_STIM_CH
pick_mask[idx] = False
chan_info['ch_name'] = ch_name
ch_names[idx] = chan_info['ch_name']
edf_info['units'][idx] = 1
elif ch_type not in CH_TYPE_MAPPING:
chs_without_types.append(ch_name)
chs.append(chan_info)
# warn if channel type was not inferable
if len(chs_without_types):
msg = ('Could not determine channel type of the following channels, '
f'they will be set as EEG:\n{", ".join(chs_without_types)}')
logger.info(msg)
edf_info['stim_channel_idxs'] = stim_channel_idxs
if any(pick_mask):
picks = [item for item, mask in zip(range(nchan), pick_mask) if mask]
edf_info['max_samp'] = max_samp = n_samps[picks].max()
else:
edf_info['max_samp'] = max_samp = n_samps.max()
# Info structure
# -------------------------------------------------------------------------
not_stim_ch = [x for x in range(n_samps.shape[0])
if x not in stim_channel_idxs]
if len(not_stim_ch) == 0: # only loading stim channels
not_stim_ch = list(range(len(n_samps)))
sfreq = np.take(n_samps, not_stim_ch).max() * \
edf_info['record_length'][1] / edf_info['record_length'][0]
del n_samps
info = _empty_info(sfreq)
info['meas_date'] = edf_info['meas_date']
info['chs'] = chs
info['ch_names'] = ch_names
# Filter settings
highpass = edf_info['highpass']
lowpass = edf_info['lowpass']
if highpass.size == 0:
pass
elif all(highpass):
if highpass[0] == 'NaN':
# Placeholder for future use. Highpass set in _empty_info.
pass
elif highpass[0] == 'DC':
info['highpass'] = 0.
else:
hp = highpass[0]
try:
hp = float(hp)
except Exception:
hp = 0.
info['highpass'] = hp
else:
info['highpass'] = float(np.max(highpass))
warn('Channels contain different highpass filters. Highest filter '
'setting will be stored.')
if np.isnan(info['highpass']):
info['highpass'] = 0.
if lowpass.size == 0:
# Placeholder for future use. Lowpass set in _empty_info.
pass
elif all(lowpass):
if lowpass[0] in ('NaN', '0', '0.0'):
# Placeholder for future use. Lowpass set in _empty_info.
pass
else:
info['lowpass'] = float(lowpass[0])
else:
info['lowpass'] = float(np.min(lowpass))
warn('Channels contain different lowpass filters. Lowest filter '
'setting will be stored.')
if np.isnan(info['lowpass']):
info['lowpass'] = info['sfreq'] / 2.
if info['highpass'] > info['lowpass']:
warn(f'Highpass cutoff frequency {info["highpass"]} is greater '
f'than lowpass cutoff frequency {info["lowpass"]}, '
'setting values to 0 and Nyquist.')
info['highpass'] = 0.
info['lowpass'] = info['sfreq'] / 2.
# Some keys to be consistent with FIF measurement info
info['description'] = None
edf_info['nsamples'] = int(edf_info['n_records'] * max_samp)
info._unlocked = False
info._update_redundant()
# Later used for reading
edf_info['cal'] = physical_ranges / cals
# physical dimension in µV
edf_info['offsets'] = (
edf_info['physical_min'] - edf_info['digital_min'] * edf_info['cal'])
del edf_info['physical_min']
del edf_info['digital_min']
if edf_info['subtype'] == 'bdf':
edf_info['cal'][stim_channel_idxs] = 1
edf_info['offsets'][stim_channel_idxs] = 0
edf_info['units'][stim_channel_idxs] = 1
return info, edf_info, orig_units
def _parse_prefilter_string(prefiltering):
"""Parse prefilter string from EDF+ and BDF headers."""
highpass = np.array(
[v for hp in [re.findall(r'HP:\s*([0-9]+[.]*[0-9]*)', filt)
for filt in prefiltering] for v in hp]
)
lowpass = np.array(
[v for hp in [re.findall(r'LP:\s*([0-9]+[.]*[0-9]*)', filt)
for filt in prefiltering] for v in hp]
)
return highpass, lowpass
def _edf_str(x):
return x.decode('latin-1').split('\x00')[0]
def _edf_str_num(x):
return _edf_str(x).replace(",", ".")
def _read_edf_header(fname, exclude, infer_types, include=None):
"""Read header information from EDF+ or BDF file."""
edf_info = {'events': []}
with open(fname, 'rb') as fid:
fid.read(8) # version (unused here)
# patient ID
patient = {}
id_info = fid.read(80).decode('latin-1').rstrip()
id_info = id_info.split(' ')
if len(id_info):
patient['id'] = id_info[0]
if len(id_info) == 4:
try:
birthdate = datetime.strptime(id_info[2], "%d-%b-%Y")
except ValueError:
birthdate = "X"
patient['sex'] = id_info[1]
patient['birthday'] = birthdate
patient['name'] = id_info[3]
# Recording ID
meas_id = {}
rec_info = fid.read(80).decode('latin-1').rstrip().split(' ')
valid_startdate = False
if len(rec_info) == 5:
try:
startdate = datetime.strptime(rec_info[1], "%d-%b-%Y")
except ValueError:
startdate = "X"
else:
valid_startdate = True
meas_id['startdate'] = startdate
meas_id['study_id'] = rec_info[2]
meas_id['technician'] = rec_info[3]
meas_id['equipment'] = rec_info[4]
# If startdate available in recording info, use it instead of the
# file's meas_date since it contains all 4 digits of the year
if valid_startdate:
day = meas_id['startdate'].day
month = meas_id['startdate'].month
year = meas_id['startdate'].year
fid.read(8) # skip file's meas_date
else:
meas_date = fid.read(8).decode('latin-1')
day, month, year = [int(x) for x in meas_date.split('.')]
year = year + 2000 if year < 85 else year + 1900
meas_time = fid.read(8).decode('latin-1')
hour, minute, sec = [int(x) for x in meas_time.split('.')]
try:
meas_date = datetime(year, month, day, hour, minute, sec,
tzinfo=timezone.utc)
except ValueError:
warn(f'Invalid date encountered ({year:04d}-{month:02d}-'
f'{day:02d} {hour:02d}:{minute:02d}:{sec:02d}).')
meas_date = None
header_nbytes = int(_edf_str(fid.read(8)))
# The following 44 bytes sometimes identify the file type, but this is
# not guaranteed. Therefore, we skip this field and use the file
# extension to determine the subtype (EDF or BDF, which differ in the
# number of bytes they use for the data records; EDF uses 2 bytes
# whereas BDF uses 3 bytes).
fid.read(44)
subtype = os.path.splitext(fname)[1][1:].lower()
n_records = int(_edf_str(fid.read(8)))
record_length = float(_edf_str(fid.read(8)))
record_length = np.array([record_length, 1.]) # in seconds
if record_length[0] == 0:
record_length[0] = 1.
warn('Header information is incorrect for record length. Default '
'record length set to 1.\nIt is possible that this file only'
' contains annotations and no signals. In that case, please '
'use mne.read_annotations() to load these annotations.')
nchan = int(_edf_str(fid.read(4)))
channels = list(range(nchan))
# read in 16 byte labels and strip any extra spaces at the end
ch_labels = [fid.read(16).strip().decode('latin-1') for _ in channels]
# get channel names and optionally channel type
# EDF specification contains 16 bytes that encode channel names,
# optionally prefixed by a string representing channel type separated
# by a space
if infer_types:
ch_types, ch_names = [], []
for ch_label in ch_labels:
ch_type, ch_name = 'EEG', ch_label # default to EEG
parts = ch_label.split(' ')
if len(parts) > 1:
if parts[0].upper() in CH_TYPE_MAPPING:
ch_type = parts[0].upper()
ch_name = ' '.join(parts[1:])
logger.info(f"Channel '{ch_label}' recognized as type "
f"{ch_type} (renamed to '{ch_name}').")
ch_types.append(ch_type)
ch_names.append(ch_name)
else:
ch_types, ch_names = ['EEG'] * nchan, ch_labels
exclude = _find_exclude_idx(ch_names, exclude, include)
tal_idx = _find_tal_idx(ch_names)
exclude = np.concatenate([exclude, tal_idx])
sel = np.setdiff1d(np.arange(len(ch_names)), exclude)
for ch in channels:
fid.read(80) # transducer
units = [fid.read(8).strip().decode('latin-1') for ch in channels]
edf_info['units'] = list()
for i, unit in enumerate(units):
if i in exclude:
continue
# allow μ (greek mu), µ (micro symbol) and μ (sjis mu) codepoints
if unit in ('\u03BCV', '\u00B5V', '\x83\xCAV', 'uV'):
edf_info['units'].append(1e-6)
elif unit == 'mV':
edf_info['units'].append(1e-3)
else:
edf_info['units'].append(1)
edf_info['units'] = np.array(edf_info['units'], float)
ch_names = [ch_names[idx] for idx in sel]
units = [units[idx] for idx in sel]
# make sure channel names are unique
ch_names = _unique_channel_names(ch_names)
orig_units = dict(zip(ch_names, units))
physical_min = np.array(
[float(_edf_str_num(fid.read(8))) for ch in channels])[sel]
physical_max = np.array(
[float(_edf_str_num(fid.read(8))) for ch in channels])[sel]
digital_min = np.array(
[float(_edf_str_num(fid.read(8))) for ch in channels])[sel]
digital_max = np.array(
[float(_edf_str_num(fid.read(8))) for ch in channels])[sel]
prefiltering = [_edf_str(fid.read(80)).strip() for ch in channels][:-1]
highpass, lowpass = _parse_prefilter_string(prefiltering)
# number of samples per record
n_samps = np.array([int(_edf_str(fid.read(8))) for ch in channels])
# Populate edf_info
edf_info.update(
ch_names=ch_names, ch_types=ch_types, data_offset=header_nbytes,
digital_max=digital_max, digital_min=digital_min,
highpass=highpass, sel=sel, lowpass=lowpass, meas_date=meas_date,
n_records=n_records, n_samps=n_samps, nchan=nchan,
subject_info=patient, physical_max=physical_max,
physical_min=physical_min, record_length=record_length,
subtype=subtype, tal_idx=tal_idx)
fid.read(32 * nchan).decode() # reserved
assert fid.tell() == header_nbytes
fid.seek(0, 2)
n_bytes = fid.tell()
n_data_bytes = n_bytes - header_nbytes
total_samps = (n_data_bytes // 3 if subtype == 'bdf'
else n_data_bytes // 2)
read_records = total_samps // np.sum(n_samps)
if n_records != read_records:
warn('Number of records from the header does not match the file '
'size (perhaps the recording was not stopped before exiting).'
' Inferring from the file size.')
edf_info['n_records'] = read_records
del n_records
if subtype == 'bdf':
edf_info['dtype_byte'] = 3 # 24-bit (3 byte) integers
edf_info['dtype_np'] = UINT8
else:
edf_info['dtype_byte'] = 2 # 16-bit (2 byte) integers
edf_info['dtype_np'] = INT16
return edf_info, orig_units
INT8 = '<i1'
UINT8 = '<u1'
INT16 = '<i2'
UINT16 = '<u2'
INT32 = '<i4'
UINT32 = '<u4'
INT64 = '<i8'
UINT64 = '<u8'
FLOAT32 = '<f4'
FLOAT64 = '<f8'
GDFTYPE_NP = (None, INT8, UINT8, INT16, UINT16, INT32, UINT32,
INT64, UINT64, None, None, None, None,
None, None, None, FLOAT32, FLOAT64)
GDFTYPE_BYTE = tuple(np.dtype(x).itemsize if x is not None else 0
for x in GDFTYPE_NP)
def _check_dtype_byte(types):
assert sum(GDFTYPE_BYTE) == 42
dtype_byte = [GDFTYPE_BYTE[t] for t in types]
dtype_np = [GDFTYPE_NP[t] for t in types]
if len(np.unique(dtype_byte)) > 1:
# We will not read it properly, so this should be an error
raise RuntimeError("Reading multiple data types not supported")
return dtype_np[0], dtype_byte[0]
def _read_gdf_header(fname, exclude, include=None):
"""Read GDF 1.x and GDF 2.x header info."""
edf_info = dict()
events = None
with open(fname, 'rb') as fid:
version = fid.read(8).decode()
edf_info['type'] = edf_info['subtype'] = version[:3]
edf_info['number'] = float(version[4:])
meas_date = None
# GDF 1.x
# ---------------------------------------------------------------------
if edf_info['number'] < 1.9:
# patient ID
pid = fid.read(80).decode('latin-1')
pid = pid.split(' ', 2)
patient = {}
if len(pid) >= 2:
patient['id'] = pid[0]
patient['name'] = pid[1]
# Recording ID
meas_id = {}
meas_id['recording_id'] = _edf_str(fid.read(80)).strip()
# date
tm = _edf_str(fid.read(16)).strip()
try:
if tm[14:16] == ' ':
tm = tm[:14] + '00' + tm[16:]
meas_date = datetime(
int(tm[0:4]), int(tm[4:6]),
int(tm[6:8]), int(tm[8:10]),
int(tm[10:12]), int(tm[12:14]),
int(tm[14:16]) * pow(10, 4),
tzinfo=timezone.utc)
except Exception:
pass
header_nbytes = np.fromfile(fid, INT64, 1)[0]
meas_id['equipment'] = np.fromfile(fid, UINT8, 8)[0]
meas_id['hospital'] = np.fromfile(fid, UINT8, 8)[0]
meas_id['technician'] = np.fromfile(fid, UINT8, 8)[0]
fid.seek(20, 1) # 20bytes reserved
n_records = np.fromfile(fid, INT64, 1)[0]
# record length in seconds
record_length = np.fromfile(fid, UINT32, 2)
if record_length[0] == 0:
record_length[0] = 1.
warn('Header information is incorrect for record length. '
'Default record length set to 1.')
nchan = np.fromfile(fid, UINT32, 1)[0]
channels = list(range(nchan))
ch_names = [_edf_str(fid.read(16)).strip() for ch in channels]
exclude = _find_exclude_idx(ch_names, exclude, include)
sel = np.setdiff1d(np.arange(len(ch_names)), exclude)
fid.seek(80 * len(channels), 1) # transducer
units = [_edf_str(fid.read(8)).strip() for ch in channels]
edf_info['units'] = list()
for i, unit in enumerate(units):
if i in exclude:
continue
if unit[:2] == 'uV':
edf_info['units'].append(1e-6)
else:
edf_info['units'].append(1)
edf_info['units'] = np.array(edf_info['units'], float)
ch_names = [ch_names[idx] for idx in sel]
physical_min = np.fromfile(fid, FLOAT64, len(channels))
physical_max = np.fromfile(fid, FLOAT64, len(channels))
digital_min = np.fromfile(fid, INT64, len(channels))
digital_max = np.fromfile(fid, INT64, len(channels))
prefiltering = [_edf_str(fid.read(80)) for ch in channels][:-1]
highpass, lowpass = _parse_prefilter_string(prefiltering)
# n samples per record
n_samps = np.fromfile(fid, INT32, len(channels))
# channel data type
dtype = np.fromfile(fid, INT32, len(channels))
# total number of bytes for data
bytes_tot = np.sum([GDFTYPE_BYTE[t] * n_samps[i]
for i, t in enumerate(dtype)])
# Populate edf_info
dtype_np, dtype_byte = _check_dtype_byte(dtype)
edf_info.update(
bytes_tot=bytes_tot, ch_names=ch_names,
data_offset=header_nbytes, digital_min=digital_min,
digital_max=digital_max,
dtype_byte=dtype_byte, dtype_np=dtype_np, exclude=exclude,
highpass=highpass, sel=sel, lowpass=lowpass,
meas_date=meas_date,
meas_id=meas_id, n_records=n_records, n_samps=n_samps,
nchan=nchan, subject_info=patient, physical_max=physical_max,
physical_min=physical_min, record_length=record_length)
fid.seek(32 * edf_info['nchan'], 1) # reserved
assert fid.tell() == header_nbytes
# Event table
# -----------------------------------------------------------------
etp = header_nbytes + n_records * edf_info['bytes_tot']
# skip data to go to event table
fid.seek(etp)
etmode = np.fromfile(fid, UINT8, 1)[0]
if etmode in (1, 3):
sr = np.fromfile(fid, UINT8, 3)
event_sr = sr[0]
for i in range(1, len(sr)):
event_sr = event_sr + sr[i] * 2 ** (i * 8)
n_events = np.fromfile(fid, UINT32, 1)[0]
pos = np.fromfile(fid, UINT32, n_events) - 1 # 1-based inds
typ = np.fromfile(fid, UINT16, n_events)
if etmode == 3:
chn = np.fromfile(fid, UINT16, n_events)
dur = np.fromfile(fid, UINT32, n_events)
else:
chn = np.zeros(n_events, dtype=np.int32)
dur = np.ones(n_events, dtype=UINT32)
np.maximum(dur, 1, out=dur)
events = [n_events, pos, typ, chn, dur]
# GDF 2.x
# ---------------------------------------------------------------------
else:
# FIXED HEADER
handedness = ('Unknown', 'Right', 'Left', 'Equal')
gender = ('Unknown', 'Male', 'Female')
scale = ('Unknown', 'No', 'Yes', 'Corrected')
# date
pid = fid.read(66).decode()
pid = pid.split(' ', 2)
patient = {}
if len(pid) >= 2:
patient['id'] = pid[0]
patient['name'] = pid[1]
fid.seek(10, 1) # 10bytes reserved
# Smoking / Alcohol abuse / drug abuse / medication
sadm = np.fromfile(fid, UINT8, 1)[0]
patient['smoking'] = scale[sadm % 4]
patient['alcohol_abuse'] = scale[(sadm >> 2) % 4]
patient['drug_abuse'] = scale[(sadm >> 4) % 4]
patient['medication'] = scale[(sadm >> 6) % 4]
patient['weight'] = np.fromfile(fid, UINT8, 1)[0]
if patient['weight'] == 0 or patient['weight'] == 255:
patient['weight'] = None
patient['height'] = np.fromfile(fid, UINT8, 1)[0]
if patient['height'] == 0 or patient['height'] == 255:
patient['height'] = None
# Gender / Handedness / Visual Impairment
ghi = np.fromfile(fid, UINT8, 1)[0]
patient['sex'] = gender[ghi % 4]
patient['handedness'] = handedness[(ghi >> 2) % 4]
patient['visual'] = scale[(ghi >> 4) % 4]
# Recording identification
meas_id = {}
meas_id['recording_id'] = _edf_str(fid.read(64)).strip()
vhsv = np.fromfile(fid, UINT8, 4)
loc = {}
if vhsv[3] == 0:
loc['vertpre'] = 10 * int(vhsv[0] >> 4) + int(vhsv[0] % 16)
loc['horzpre'] = 10 * int(vhsv[1] >> 4) + int(vhsv[1] % 16)
loc['size'] = 10 * int(vhsv[2] >> 4) + int(vhsv[2] % 16)
else:
loc['vertpre'] = 29
loc['horzpre'] = 29
loc['size'] = 29
loc['version'] = 0
loc['latitude'] = \
float(np.fromfile(fid, UINT32, 1)[0]) / 3600000
loc['longitude'] = \
float(np.fromfile(fid, UINT32, 1)[0]) / 3600000
loc['altitude'] = float(np.fromfile(fid, INT32, 1)[0]) / 100
meas_id['loc'] = loc
meas_date = np.fromfile(fid, UINT64, 1)[0]
if meas_date != 0:
meas_date = (datetime(1, 1, 1, tzinfo=timezone.utc) +
timedelta(meas_date * pow(2, -32) - 367))
else:
meas_date = None
birthday = np.fromfile(fid, UINT64, 1).tolist()[0]
if birthday == 0:
birthday = datetime(1, 1, 1, tzinfo=timezone.utc)
else:
birthday = (datetime(1, 1, 1, tzinfo=timezone.utc) +
timedelta(birthday * pow(2, -32) - 367))
patient['birthday'] = birthday
if patient['birthday'] != datetime(1, 1, 1, 0, 0,
tzinfo=timezone.utc):
today = datetime.now(tz=timezone.utc)
patient['age'] = today.year - patient['birthday'].year
today = today.replace(year=patient['birthday'].year)
if today < patient['birthday']:
patient['age'] -= 1
else:
patient['age'] = None
header_nbytes = np.fromfile(fid, UINT16, 1)[0] * 256
fid.seek(6, 1) # 6 bytes reserved
meas_id['equipment'] = np.fromfile(fid, UINT8, 8)
meas_id['ip'] = np.fromfile(fid, UINT8, 6)
patient['headsize'] = np.fromfile(fid, UINT16, 3)
patient['headsize'] = np.asarray(patient['headsize'], np.float32)
patient['headsize'] = np.ma.masked_array(
patient['headsize'],
np.equal(patient['headsize'], 0), None).filled()
ref = np.fromfile(fid, FLOAT32, 3)
gnd = np.fromfile(fid, FLOAT32, 3)
n_records = np.fromfile(fid, INT64, 1)[0]
# record length in seconds
record_length = np.fromfile(fid, UINT32, 2)
if record_length[0] == 0:
record_length[0] = 1.
warn('Header information is incorrect for record length. '
'Default record length set to 1.')
nchan = np.fromfile(fid, UINT16, 1)[0]
fid.seek(2, 1) # 2bytes reserved
# Channels (variable header)
channels = list(range(nchan))
ch_names = [_edf_str(fid.read(16)).strip() for ch in channels]
exclude = _find_exclude_idx(ch_names, exclude, include)
sel = np.setdiff1d(np.arange(len(ch_names)), exclude)
fid.seek(80 * len(channels), 1) # reserved space
fid.seek(6 * len(channels), 1) # phys_dim, obsolete
"""The Physical Dimensions are encoded as int16, according to:
- Units codes :
https://sourceforge.net/p/biosig/svn/HEAD/tree/trunk/biosig/doc/units.csv
- Decimal factors codes:
https://sourceforge.net/p/biosig/svn/HEAD/tree/trunk/biosig/doc/DecimalFactors.txt
""" # noqa
units = np.fromfile(fid, UINT16, len(channels)).tolist()
unitcodes = np.array(units[:])
edf_info['units'] = list()
for i, unit in enumerate(units):
if i in exclude:
continue
if unit == 4275: # microvolts
edf_info['units'].append(1e-6)
elif unit == 4274: # millivolts
edf_info['units'].append(1e-3)
elif unit == 512: # dimensionless
edf_info['units'].append(1)
elif unit == 0:
edf_info['units'].append(1) # unrecognized
else:
warn('Unsupported physical dimension for channel %d '
'(assuming dimensionless). Please contact the '
'MNE-Python developers for support.' % i)
edf_info['units'].append(1)
edf_info['units'] = np.array(edf_info['units'], float)
ch_names = [ch_names[idx] for idx in sel]
physical_min = np.fromfile(fid, FLOAT64, len(channels))
physical_max = np.fromfile(fid, FLOAT64, len(channels))
digital_min = np.fromfile(fid, FLOAT64, len(channels))
digital_max = np.fromfile(fid, FLOAT64, len(channels))
fid.seek(68 * len(channels), 1) # obsolete
lowpass = np.fromfile(fid, FLOAT32, len(channels))
highpass = np.fromfile(fid, FLOAT32, len(channels))
notch = np.fromfile(fid, FLOAT32, len(channels))
# number of samples per record
n_samps = np.fromfile(fid, INT32, len(channels))
# data type
dtype = np.fromfile(fid, INT32, len(channels))
channel = {}
channel['xyz'] = [np.fromfile(fid, FLOAT32, 3)[0]
for ch in channels]
if edf_info['number'] < 2.19:
impedance = np.fromfile(fid, UINT8,
len(channels)).astype(float)
impedance[impedance == 255] = np.nan
channel['impedance'] = pow(2, impedance / 8)
fid.seek(19 * len(channels), 1) # reserved
else:
tmp = np.fromfile(fid, FLOAT32, 5 * len(channels))
tmp = tmp[::5]
fZ = tmp[:]
impedance = tmp[:]
# channels with no voltage (code 4256) data
ch = [unitcodes & 65504 != 4256][0]
impedance[np.where(ch)] = None
# channel with no impedance (code 4288) data
ch = [unitcodes & 65504 != 4288][0]
fZ[np.where(ch)[0]] = None
assert fid.tell() == header_nbytes
# total number of bytes for data
bytes_tot = np.sum([GDFTYPE_BYTE[t] * n_samps[i]
for i, t in enumerate(dtype)])
# Populate edf_info
dtype_np, dtype_byte = _check_dtype_byte(dtype)
edf_info.update(
bytes_tot=bytes_tot, ch_names=ch_names,
data_offset=header_nbytes,
dtype_byte=dtype_byte, dtype_np=dtype_np,
digital_min=digital_min, digital_max=digital_max,
exclude=exclude, gnd=gnd, highpass=highpass, sel=sel,
impedance=impedance, lowpass=lowpass, meas_date=meas_date,
meas_id=meas_id, n_records=n_records, n_samps=n_samps,
nchan=nchan, notch=notch, subject_info=patient,
physical_max=physical_max, physical_min=physical_min,
record_length=record_length, ref=ref)
# EVENT TABLE
# -----------------------------------------------------------------
etp = edf_info['data_offset'] + edf_info['n_records'] * \
edf_info['bytes_tot']
fid.seek(etp) # skip data to go to event table
etmode = fid.read(1).decode()
if etmode != '':
etmode = np.fromstring(etmode, UINT8).tolist()[0]
if edf_info['number'] < 1.94:
sr = np.fromfile(fid, UINT8, 3)
event_sr = sr[0]
for i in range(1, len(sr)):
event_sr = event_sr + sr[i] * 2**(i * 8)
n_events = np.fromfile(fid, UINT32, 1)[0]
else:
ne = np.fromfile(fid, UINT8, 3)
n_events = ne[0]
for i in range(1, len(ne)):
n_events = n_events + ne[i] * 2**(i * 8)
event_sr = np.fromfile(fid, FLOAT32, 1)[0]
pos = np.fromfile(fid, UINT32, n_events) - 1 # 1-based inds
typ = np.fromfile(fid, UINT16, n_events)
if etmode == 3:
chn = np.fromfile(fid, UINT16, n_events)
dur = np.fromfile(fid, UINT32, n_events)
else:
chn = np.zeros(n_events, dtype=np.uint32)
dur = np.ones(n_events, dtype=np.uint32)
np.clip(dur, 1, np.inf, out=dur)
events = [n_events, pos, typ, chn, dur]
edf_info['event_sfreq'] = event_sr
edf_info.update(events=events, sel=np.arange(len(edf_info['ch_names'])))
return edf_info
def _check_stim_channel(stim_channel, ch_names,
tal_ch_names=['EDF Annotations', 'BDF Annotations']):
"""Check that the stimulus channel exists in the current datafile."""
DEFAULT_STIM_CH_NAMES = ['status', 'trigger']
if stim_channel is None or stim_channel is False:
return [], []
if stim_channel is True: # convenient aliases
stim_channel = 'auto'
elif isinstance(stim_channel, str):
if stim_channel == 'auto':
if 'auto' in ch_names:
warn(RuntimeWarning, "Using `stim_channel='auto'` when auto"
" also corresponds to a channel name is ambiguous."
" Please use `stim_channel=['auto']`.")
else:
valid_stim_ch_names = DEFAULT_STIM_CH_NAMES
else:
valid_stim_ch_names = [stim_channel.lower()]
elif isinstance(stim_channel, int):
valid_stim_ch_names = [ch_names[stim_channel].lower()]
elif isinstance(stim_channel, list):
if all([isinstance(s, str) for s in stim_channel]):
valid_stim_ch_names = [s.lower() for s in stim_channel]
elif all([isinstance(s, int) for s in stim_channel]):
valid_stim_ch_names = [ch_names[s].lower() for s in stim_channel]
else:
raise ValueError('Invalid stim_channel')
else:
raise ValueError('Invalid stim_channel')
# Forbid the synthesis of stim channels from TAL Annotations
tal_ch_names_found = [ch for ch in valid_stim_ch_names
if ch in [t.lower() for t in tal_ch_names]]
if len(tal_ch_names_found):
_msg = ('The synthesis of the stim channel is not supported'
' since 0.18. Please remove {} from `stim_channel`'
' and use `mne.events_from_annotations` instead'
).format(tal_ch_names_found)
raise ValueError(_msg)
ch_names_low = [ch.lower() for ch in ch_names]
found = list(set(valid_stim_ch_names) & set(ch_names_low))
if not found:
return [], []
else:
stim_channel_idxs = [ch_names_low.index(f) for f in found]
names = [ch_names[idx] for idx in stim_channel_idxs]
return stim_channel_idxs, names
def _find_exclude_idx(ch_names, exclude, include=None):
"""Find indices of all channels to exclude.
If there are several channels called "A" and we want to exclude "A", then
add (the index of) all "A" channels to the exclusion list.
"""
if include: # find other than include channels
if exclude:
raise ValueError(
"'exclude' must be empty if 'include' is assigned. "
f"Got {exclude}.")
if isinstance(include, str): # regex for channel names
indices_include = []
for idx, ch in enumerate(ch_names):
if re.match(include, ch):
indices_include.append(idx)
indices = np.setdiff1d(np.arange(len(ch_names)), indices_include)
return indices
# list of channel names
return [idx for idx, ch in enumerate(ch_names) if ch not in include]
if isinstance(exclude, str): # regex for channel names
indices = []
for idx, ch in enumerate(ch_names):
if re.match(exclude, ch):
indices.append(idx)
return indices
# list of channel names
return [idx for idx, ch in enumerate(ch_names) if ch in exclude]
def _find_tal_idx(ch_names):
# Annotations / TAL Channels
accepted_tal_ch_names = ['EDF Annotations', 'BDF Annotations']
tal_channel_idx = np.where(np.in1d(ch_names, accepted_tal_ch_names))[0]
return tal_channel_idx
@fill_doc
def read_raw_edf(input_fname, eog=None, misc=None, stim_channel='auto',
exclude=(), infer_types=False, include=None, preload=False,
units=None, encoding='utf8', *, verbose=None):
"""Reader function for EDF or EDF+ files.
Parameters
----------
input_fname : str
Path to the EDF or EDF+ file.
eog : list or tuple
Names of channels or list of indices that should be designated EOG
channels. Values should correspond to the electrodes in the file.
Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated MISC
channels. Values should correspond to the electrodes in the file.
Default is None.
stim_channel : 'auto' | str | list of str | int | list of int
Defaults to 'auto', which means that channels named 'status' or
'trigger' (case insensitive) are set to STIM. If str (or list of str),
all channels matching the name(s) are set to STIM. If int (or list of
ints), channels corresponding to the indices are set to STIM.
exclude : list of str | str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling. A str is
interpreted as a regular expression.
infer_types : bool
If True, try to infer channel types from channel labels. If a channel
label starts with a known type (such as 'EEG') followed by a space and
a name (such as 'Fp1'), the channel type will be set accordingly, and
the channel will be renamed to the original label without the prefix.
For unknown prefixes, the type will be 'EEG' and the name will not be
modified. If False, do not infer types and assume all channels are of
type 'EEG'.
.. versionadded:: 0.24.1
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
.. versionadded:: 1.1
%(preload)s
%(units_edf_bdf_io)s
%(encoding_edf)s
%(verbose)s
Returns
-------
raw : instance of RawEDF
The raw instance.
See Also
--------
mne.io.read_raw_bdf : Reader function for BDF files.
mne.io.read_raw_gdf : Reader function for GDF files.
mne.export.export_raw : Export function for EDF files.
Notes
-----
It is worth noting that in some special cases, it may be necessary to shift
event values in order to retrieve correct event triggers. This depends on
the triggering device used to perform the synchronization. For instance, in
some files events need to be shifted by 8 bits:
>>> events[:, 2] >>= 8 # doctest:+SKIP
TAL channels called 'EDF Annotations' are parsed and extracted annotations
are stored in raw.annotations. Use :func:`mne.events_from_annotations` to
obtain events from these annotations.
If channels named 'status' or 'trigger' are present, they are considered as
STIM channels by default. Use func:`mne.find_events` to parse events
encoded in such analog stim channels.
The EDF specification allows optional storage of channel types in the
prefix of the signal label for each channel. For example, ``EEG Fz``
implies that ``Fz`` is an EEG channel and ``MISC E`` would imply ``E`` is
a MISC channel. However, there is no standard way of specifying all
channel types. MNE-Python will try to infer the channel type, when such a
string exists, defaulting to EEG, when there is no prefix or the prefix is
not recognized.
The following prefix strings are mapped to MNE internal types:
- 'EEG': 'eeg'
- 'SEEG': 'seeg'
- 'ECOG': 'ecog'
- 'DBS': 'dbs'
- 'EOG': 'eog'
- 'ECG': 'ecg'
- 'EMG': 'emg'
- 'BIO': 'bio'
- 'RESP': 'resp'
- 'MISC': 'misc'
- 'SAO2': 'bio'
The EDF specification allows storage of subseconds in measurement date.
However, this reader currently sets subseconds to 0 by default.
"""
input_fname = os.path.abspath(input_fname)
ext = os.path.splitext(input_fname)[1][1:].lower()
if ext != 'edf':
raise NotImplementedError(f'Only EDF files are supported, got {ext}.')
return RawEDF(input_fname=input_fname, eog=eog, misc=misc,
stim_channel=stim_channel, exclude=exclude,
infer_types=infer_types, preload=preload, include=include,
units=units, encoding=encoding, verbose=verbose)
@fill_doc
def read_raw_bdf(input_fname, eog=None, misc=None, stim_channel='auto',
exclude=(), infer_types=False, include=None, preload=False,
units=None, encoding='utf8', *, verbose=None):
"""Reader function for BDF files.
Parameters
----------
input_fname : str
Path to the BDF file.
eog : list or tuple
Names of channels or list of indices that should be designated EOG
channels. Values should correspond to the electrodes in the file.
Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated MISC
channels. Values should correspond to the electrodes in the file.
Default is None.
stim_channel : 'auto' | str | list of str | int | list of int
Defaults to 'auto', which means that channels named 'status' or
'trigger' (case insensitive) are set to STIM. If str (or list of str),
all channels matching the name(s) are set to STIM. If int (or list of
ints), channels corresponding to the indices are set to STIM.
exclude : list of str | str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling. A str is
interpreted as a regular expression.
infer_types : bool
If True, try to infer channel types from channel labels. If a channel
label starts with a known type (such as 'EEG') followed by a space and
a name (such as 'Fp1'), the channel type will be set accordingly, and
the channel will be renamed to the original label without the prefix.
For unknown prefixes, the type will be 'EEG' and the name will not be
modified. If False, do not infer types and assume all channels are of
type 'EEG'.
.. versionadded:: 0.24.1
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
.. versionadded:: 1.1
%(preload)s
%(units_edf_bdf_io)s
%(encoding_edf)s
%(verbose)s
Returns
-------
raw : instance of RawEDF
The raw instance.
See Also
--------
mne.io.read_raw_edf : Reader function for EDF and EDF+ files.
mne.io.read_raw_gdf : Reader function for GDF files.
Notes
-----
Biosemi devices trigger codes are encoded in 16-bit format, whereas system
codes (CMS in/out-of range, battery low, etc.) are coded in bits 16-23 of
the status channel (see http://www.biosemi.com/faq/trigger_signals.htm).
To retrieve correct event values (bits 1-16), one could do:
>>> events = mne.find_events(...) # doctest:+SKIP
>>> events[:, 2] &= (2**16 - 1) # doctest:+SKIP
The above operation can be carried out directly in :func:`mne.find_events`
using the ``mask`` and ``mask_type`` parameters (see
:func:`mne.find_events` for more details).
It is also possible to retrieve system codes, but no particular effort has
been made to decode these in MNE. In case it is necessary, for instance to
check the CMS bit, the following operation can be carried out:
>>> cms_bit = 20 # doctest:+SKIP
>>> cms_high = (events[:, 2] & (1 << cms_bit)) != 0 # doctest:+SKIP
It is worth noting that in some special cases, it may be necessary to shift
event values in order to retrieve correct event triggers. This depends on
the triggering device used to perform the synchronization. For instance, in
some files events need to be shifted by 8 bits:
>>> events[:, 2] >>= 8 # doctest:+SKIP
TAL channels called 'BDF Annotations' are parsed and extracted annotations
are stored in raw.annotations. Use :func:`mne.events_from_annotations` to
obtain events from these annotations.
If channels named 'status' or 'trigger' are present, they are considered as
STIM channels by default. Use func:`mne.find_events` to parse events
encoded in such analog stim channels.
"""
input_fname = os.path.abspath(input_fname)
ext = os.path.splitext(input_fname)[1][1:].lower()
if ext != 'bdf':
raise NotImplementedError(f'Only BDF files are supported, got {ext}.')
return RawEDF(input_fname=input_fname, eog=eog, misc=misc,
stim_channel=stim_channel, exclude=exclude,
infer_types=infer_types, preload=preload, include=include,
units=units, encoding=encoding, verbose=verbose)
@fill_doc
def read_raw_gdf(input_fname, eog=None, misc=None, stim_channel='auto',
exclude=(), include=None, preload=False, verbose=None):
"""Reader function for GDF files.
Parameters
----------
input_fname : str
Path to the GDF file.
eog : list or tuple
Names of channels or list of indices that should be designated EOG
channels. Values should correspond to the electrodes in the file.
Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated MISC
channels. Values should correspond to the electrodes in the file.
Default is None.
stim_channel : 'auto' | str | list of str | int | list of int
Defaults to 'auto', which means that channels named 'status' or
'trigger' (case insensitive) are set to STIM. If str (or list of str),
all channels matching the name(s) are set to STIM. If int (or list of
ints), channels corresponding to the indices are set to STIM.
exclude : list of str | str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling. A str is
interpreted as a regular expression.
include : list of str | str
Channel names to be included. A str is interpreted as a regular
expression. 'exclude' must be empty if include is assigned.
%(preload)s
%(verbose)s
Returns
-------
raw : instance of RawGDF
The raw instance.
See Also
--------
mne.io.read_raw_edf : Reader function for EDF and EDF+ files.
mne.io.read_raw_bdf : Reader function for BDF files.
Notes
-----
If channels named 'status' or 'trigger' are present, they are considered as
STIM channels by default. Use func:`mne.find_events` to parse events
encoded in such analog stim channels.
"""
input_fname = os.path.abspath(input_fname)
ext = os.path.splitext(input_fname)[1][1:].lower()
if ext != 'gdf':
raise NotImplementedError(f'Only BDF files are supported, got {ext}.')
return RawGDF(input_fname=input_fname, eog=eog, misc=misc,
stim_channel=stim_channel, exclude=exclude, preload=preload,
include=include, verbose=verbose)
@fill_doc
def _read_annotations_edf(annotations, encoding='utf8'):
"""Annotation File Reader.
Parameters
----------
annotations : ndarray (n_chans, n_samples) | str
Channel data in EDF+ TAL format or path to annotation file.
%(encoding_edf)s
Returns
-------
onset : array of float, shape (n_annotations,)
The starting time of annotations in seconds after ``orig_time``.
duration : array of float, shape (n_annotations,)
Durations of the annotations in seconds.
description : array of str, shape (n_annotations,)
Array of strings containing description for each annotation. If a
string, all the annotations are given the same description. To reject
epochs, use description starting with keyword 'bad'. See example above.
"""
pat = '([+-]\\d+\\.?\\d*)(\x15(\\d+\\.?\\d*))?(\x14.*?)\x14\x00'
if isinstance(annotations, str):
with open(annotations, "rb") as annot_file:
triggers = re.findall(pat.encode(), annot_file.read())
triggers = [tuple(map(lambda x: x.decode(), t)) for t in triggers]
else:
tals = bytearray()
annotations = np.atleast_2d(annotations)
for chan in annotations:
this_chan = chan.ravel()
if this_chan.dtype == INT32: # BDF
this_chan = this_chan.view(dtype=UINT8)
this_chan = this_chan.reshape(-1, 4)
# Why only keep the first 3 bytes as BDF values
# are stored with 24 bits (not 32)
this_chan = this_chan[:, :3].ravel()
# As ravel() returns a 1D array we can add all values at once
tals.extend(this_chan)
else:
this_chan = chan.astype(np.int64)
# Exploit np vectorized processing
tals.extend(np.uint8([this_chan % 256, this_chan // 256])
.flatten('F'))
try:
triggers = re.findall(pat, tals.decode(encoding))
except UnicodeDecodeError as e:
raise Exception(
"Encountered invalid byte in at least one annotations channel."
" You might want to try setting \"encoding='latin1'\"."
) from e
events = []
offset = 0.
for k, ev in enumerate(triggers):
onset = float(ev[0]) + offset
duration = float(ev[2]) if ev[2] else 0
for description in ev[3].split('\x14')[1:]:
if description:
events.append([onset, duration, description])
elif k == 0:
# The startdate/time of a file is specified in the EDF+ header
# fields 'startdate of recording' and 'starttime of recording'.
# These fields must indicate the absolute second in which the
# start of the first data record falls. So, the first TAL in
# the first data record always starts with +0.X, indicating
# that the first data record starts a fraction, X, of a second
# after the startdate/time that is specified in the EDF+
# header. If X=0, then the .X may be omitted.
offset = -onset
return zip(*events) if events else (list(), list(), list())
def _get_annotations_gdf(edf_info, sfreq):
onset, duration, desc = list(), list(), list()
events = edf_info.get('events', None)
# Annotations in GDF: events are stored as the following
# list: `events = [n_events, pos, typ, chn, dur]` where pos is the
# latency, dur is the duration in samples. They both are
# numpy.ndarray
if events is not None and events[1].shape[0] > 0:
onset = events[1] / sfreq
duration = events[4] / sfreq
desc = events[2]
return onset, duration, desc
|