1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
# Author: Mainak Jas <mainak.jas@telecom-paristech.fr>
# Mikolaj Magnuski <mmagnuski@swps.edu.pl>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD-3-Clause
from copy import deepcopy
import os.path as op
import shutil
import numpy as np
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
assert_equal, assert_allclose)
import pytest
from scipy import io
import mne
from mne import write_events, read_epochs_eeglab
from mne.channels import read_custom_montage
from mne.io import read_raw_eeglab
from mne.io.eeglab.eeglab import _get_montage_information, _dol_to_lod
from mne.io.eeglab._eeglab import _readmat
from mne.io.tests.test_raw import _test_raw_reader
from mne.datasets import testing
from mne.utils import Bunch, _check_pymatreader_installed
from mne.annotations import events_from_annotations, read_annotations
base_dir = op.join(testing.data_path(download=False), 'EEGLAB')
raw_fname_mat = op.join(base_dir, 'test_raw.set')
raw_fname_onefile_mat = op.join(base_dir, 'test_raw_onefile.set')
raw_fname_event_duration = op.join(base_dir, 'test_raw_event_duration.set')
epochs_fname_mat = op.join(base_dir, 'test_epochs.set')
epochs_fname_onefile_mat = op.join(base_dir, 'test_epochs_onefile.set')
raw_mat_fnames = [raw_fname_mat, raw_fname_onefile_mat]
epochs_mat_fnames = [epochs_fname_mat, epochs_fname_onefile_mat]
raw_fname_chanloc = op.join(base_dir, 'test_raw_chanloc.set')
raw_fname_chanloc_fids = op.join(base_dir, 'test_raw_chanloc_fids.set')
raw_fname_2021 = op.join(base_dir, 'test_raw_2021.set')
raw_fname_h5 = op.join(base_dir, 'test_raw_h5.set')
raw_fname_onefile_h5 = op.join(base_dir, 'test_raw_onefile_h5.set')
epochs_fname_h5 = op.join(base_dir, 'test_epochs_h5.set')
epochs_fname_onefile_h5 = op.join(base_dir, 'test_epochs_onefile_h5.set')
raw_h5_fnames = [raw_fname_h5, raw_fname_onefile_h5]
epochs_h5_fnames = [epochs_fname_h5, epochs_fname_onefile_h5]
montage_path = op.join(base_dir, 'test_chans.locs')
@testing.requires_testing_data
@pytest.mark.parametrize('fname', [
raw_fname_mat,
pytest.param(
raw_fname_h5,
marks=[
pytest.mark.skipif(
not _check_pymatreader_installed(strict=False),
reason='pymatreader not installed'
)
]
),
raw_fname_chanloc,
], ids=op.basename)
def test_io_set_raw(fname):
"""Test importing EEGLAB .set files."""
montage = read_custom_montage(montage_path)
montage.ch_names = [
'EEG {0:03d}'.format(ii) for ii in range(len(montage.ch_names))
]
kws = dict(reader=read_raw_eeglab, input_fname=fname)
if fname.endswith('test_raw_chanloc.set'):
with pytest.warns(RuntimeWarning,
match="The data contains 'boundary' events"):
raw0 = _test_raw_reader(**kws)
elif '_h5' in fname: # should be safe enough, and much faster
raw0 = read_raw_eeglab(fname, preload=True)
else:
raw0 = _test_raw_reader(**kws)
# test that preloading works
if fname.endswith('test_raw_chanloc.set'):
raw0.set_montage(montage, on_missing='ignore')
# crop to check if the data has been properly preloaded; we cannot
# filter as the snippet of raw data is very short
raw0.crop(0, 1)
else:
raw0.set_montage(montage)
raw0.filter(1, None, l_trans_bandwidth='auto', filter_length='auto',
phase='zero')
# test that using uint16_codec does not break stuff
read_raw_kws = dict(input_fname=fname, preload=False, uint16_codec='ascii')
if fname.endswith('test_raw_chanloc.set'):
with pytest.warns(RuntimeWarning,
match="The data contains 'boundary' events"):
raw0 = read_raw_eeglab(**read_raw_kws)
raw0.set_montage(montage, on_missing='ignore')
else:
raw0 = read_raw_eeglab(**read_raw_kws)
raw0.set_montage(montage)
# Annotations
if fname != raw_fname_chanloc:
assert len(raw0.annotations) == 154
assert set(raw0.annotations.description) == {'rt', 'square'}
assert_array_equal(raw0.annotations.duration, 0.)
@testing.requires_testing_data
def test_io_set_raw_more(tmp_path):
"""Test importing EEGLAB .set files."""
tmp_path = str(tmp_path)
eeg = io.loadmat(raw_fname_mat, struct_as_record=False,
squeeze_me=True)['EEG']
# test reading file with one event (read old version)
negative_latency_fname = op.join(tmp_path, 'test_negative_latency.set')
events = deepcopy(eeg.event[0])
events.latency = 0
io.savemat(negative_latency_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan,
'data': 'test_negative_latency.fdt',
'epoch': eeg.epoch, 'event': events,
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
shutil.copyfile(op.join(base_dir, 'test_raw.fdt'),
negative_latency_fname.replace('.set', '.fdt'))
with pytest.warns(RuntimeWarning, match="has a sample index of -1."):
read_raw_eeglab(input_fname=negative_latency_fname, preload=True)
# test negative event latencies
events.latency = -1
io.savemat(negative_latency_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan,
'data': 'test_negative_latency.fdt',
'epoch': eeg.epoch, 'event': events,
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
with pytest.raises(ValueError, match='event sample index is negative'):
with pytest.warns(RuntimeWarning, match="has a sample index of -1."):
read_raw_eeglab(input_fname=negative_latency_fname, preload=True)
# test overlapping events
overlap_fname = op.join(tmp_path, 'test_overlap_event.set')
io.savemat(overlap_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan, 'data': 'test_overlap_event.fdt',
'epoch': eeg.epoch,
'event': [eeg.event[0], eeg.event[0]],
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
shutil.copyfile(op.join(base_dir, 'test_raw.fdt'),
overlap_fname.replace('.set', '.fdt'))
read_raw_eeglab(input_fname=overlap_fname, preload=True)
# test reading file with empty event durations
empty_dur_fname = op.join(tmp_path, 'test_empty_durations.set')
events = deepcopy(eeg.event)
for ev in events:
ev.duration = np.array([], dtype='float')
io.savemat(empty_dur_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan,
'data': 'test_negative_latency.fdt',
'epoch': eeg.epoch, 'event': events,
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
shutil.copyfile(op.join(base_dir, 'test_raw.fdt'),
empty_dur_fname.replace('.set', '.fdt'))
raw = read_raw_eeglab(input_fname=empty_dur_fname, preload=True)
assert (raw.annotations.duration == 0).all()
# test reading file when the EEG.data name is wrong
io.savemat(overlap_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan, 'data': 'test_overla_event.fdt',
'epoch': eeg.epoch,
'event': [eeg.event[0], eeg.event[0]],
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
with pytest.warns(RuntimeWarning, match="must have changed on disk"):
read_raw_eeglab(input_fname=overlap_fname, preload=True)
# raise error when both EEG.data and fdt name from set are wrong
overlap_fname = op.join(tmp_path, 'test_ovrlap_event.set')
io.savemat(overlap_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan, 'data': 'test_overla_event.fdt',
'epoch': eeg.epoch,
'event': [eeg.event[0], eeg.event[0]],
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
with pytest.raises(FileNotFoundError, match="not find the .fdt data file"):
read_raw_eeglab(input_fname=overlap_fname, preload=True)
# test reading file with one channel
one_chan_fname = op.join(tmp_path, 'test_one_channel.set')
io.savemat(one_chan_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': 1, 'data': np.random.random((1, 3)),
'epoch': eeg.epoch, 'event': eeg.epoch,
'chanlocs': {'labels': 'E1', 'Y': -6.6069,
'X': 6.3023, 'Z': -2.9423},
'times': eeg.times[:3], 'pnts': 3}},
appendmat=False, oned_as='row')
read_raw_eeglab(input_fname=one_chan_fname, preload=True,
montage_units='cm')
# test reading file with 3 channels - one without position information
# first, create chanlocs structured array
ch_names = ['F3', 'unknown', 'FPz']
x, y, z = [1., 2., np.nan], [4., 5., np.nan], [7., 8., np.nan]
dt = [('labels', 'S10'), ('X', 'f8'), ('Y', 'f8'), ('Z', 'f8')]
nopos_dt = [('labels', 'S10'), ('Z', 'f8')]
chanlocs = np.zeros((3,), dtype=dt)
nopos_chanlocs = np.zeros((3,), dtype=nopos_dt)
for ind, vals in enumerate(zip(ch_names, x, y, z)):
for fld in range(4):
chanlocs[ind][dt[fld][0]] = vals[fld]
if fld in (0, 3):
nopos_chanlocs[ind][dt[fld][0]] = vals[fld]
# In theory this should work and be simpler, but there is an obscure
# SciPy writing bug that pops up sometimes:
# nopos_chanlocs = np.array(chanlocs[['labels', 'Z']])
# test reading channel names but not positions when there is no X (only Z)
# field in the EEG.chanlocs structure
nopos_fname = op.join(tmp_path, 'test_no_chanpos.set')
io.savemat(nopos_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate, 'nbchan': 3,
'data': np.random.random((3, 2)), 'epoch': eeg.epoch,
'event': eeg.epoch, 'chanlocs': nopos_chanlocs,
'times': eeg.times[:2], 'pnts': 2}},
appendmat=False, oned_as='row')
# load the file
raw = read_raw_eeglab(input_fname=nopos_fname, preload=True,
montage_units='cm')
# test that channel names have been loaded but not channel positions
for i in range(3):
assert_equal(raw.info['chs'][i]['ch_name'], ch_names[i])
assert_array_equal(raw.info['chs'][i]['loc'][:3],
np.array([np.nan, np.nan, np.nan]))
@pytest.mark.timeout(60) # ~60 sec on Travis OSX
@testing.requires_testing_data
@pytest.mark.parametrize('fnames', [
epochs_mat_fnames,
pytest.param(
epochs_h5_fnames,
marks=[
pytest.mark.slowtest,
pytest.mark.skipif(
not _check_pymatreader_installed(strict=False),
reason='pymatreader not installed'
)
]
)
])
def test_io_set_epochs(fnames):
"""Test importing EEGLAB .set epochs files."""
epochs_fname, epochs_fname_onefile = fnames
with pytest.warns(RuntimeWarning, match='multiple events'):
epochs = read_epochs_eeglab(epochs_fname)
with pytest.warns(RuntimeWarning, match='multiple events'):
epochs2 = read_epochs_eeglab(epochs_fname_onefile)
# one warning for each read_epochs_eeglab because both files have epochs
# associated with multiple events
assert_array_equal(epochs.get_data(), epochs2.get_data())
@testing.requires_testing_data
def test_io_set_epochs_events(tmp_path):
"""Test different combinations of events and event_ids."""
tmp_path = str(tmp_path)
out_fname = op.join(tmp_path, 'test-eve.fif')
events = np.array([[4, 0, 1], [12, 0, 2], [20, 0, 3], [26, 0, 3]])
write_events(out_fname, events)
event_id = {'S255/S8': 1, 'S8': 2, 'S255/S9': 3}
epochs = read_epochs_eeglab(epochs_fname_mat, events, event_id)
assert_equal(len(epochs.events), 4)
assert epochs.preload
assert epochs._bad_dropped
epochs = read_epochs_eeglab(epochs_fname_mat, out_fname, event_id)
pytest.raises(ValueError, read_epochs_eeglab, epochs_fname_mat,
None, event_id)
pytest.raises(ValueError, read_epochs_eeglab, epochs_fname_mat,
epochs.events, None)
@testing.requires_testing_data
@pytest.mark.filterwarnings('ignore:At least one epoch has multiple events')
@pytest.mark.filterwarnings("ignore:The data contains 'boundary' events")
def test_degenerate(tmp_path):
"""Test some degenerate conditions."""
# test if .dat file raises an error
tmp_path = str(tmp_path)
eeg = io.loadmat(epochs_fname_mat, struct_as_record=False,
squeeze_me=True)['EEG']
eeg.data = 'epochs_fname.dat'
bad_epochs_fname = op.join(tmp_path, 'test_epochs.set')
io.savemat(bad_epochs_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan, 'data': eeg.data,
'epoch': eeg.epoch, 'event': eeg.event,
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
shutil.copyfile(op.join(base_dir, 'test_epochs.fdt'),
op.join(tmp_path, 'test_epochs.dat'))
pytest.raises(NotImplementedError, read_epochs_eeglab,
bad_epochs_fname)
# error when montage units incorrect
with pytest.raises(ValueError, match=r'prefix \+ "m" format'):
read_epochs_eeglab(epochs_fname_mat, montage_units='mV')
# warning when head radius too small
with pytest.warns(RuntimeWarning, match='is above'):
read_raw_eeglab(raw_fname_chanloc, montage_units='km')
# warning when head radius too large
with pytest.warns(RuntimeWarning, match='is below'):
read_raw_eeglab(raw_fname_chanloc, montage_units='µm')
@pytest.mark.parametrize("fname", [
raw_fname_mat,
raw_fname_onefile_mat,
# We don't test the h5 variants here because they are implicitly tested
# in test_io_set_raw
])
@pytest.mark.filterwarnings('ignore: Complex objects')
@testing.requires_testing_data
def test_eeglab_annotations(fname):
"""Test reading annotations in EEGLAB files."""
annotations = read_annotations(fname)
assert len(annotations) == 154
assert set(annotations.description) == {'rt', 'square'}
assert np.all(annotations.duration == 0.)
@testing.requires_testing_data
def test_eeglab_read_annotations():
"""Test annotations onsets are timestamps (+ validate some)."""
annotations = read_annotations(raw_fname_mat)
validation_samples = [0, 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
expected_onset = np.array([1.00, 1.69, 2.08, 4.70, 7.71, 11.30, 17.18,
20.20, 26.12, 29.14, 35.25, 44.30, 47.15])
assert annotations.orig_time is None
assert_array_almost_equal(annotations.onset[validation_samples],
expected_onset, decimal=2)
# test if event durations are imported correctly
raw = read_raw_eeglab(raw_fname_event_duration, preload=True,
montage_units='dm')
# file contains 3 annotations with 0.5 s (64 samples) duration each
assert_allclose(raw.annotations.duration, np.ones(3) * 0.5)
@testing.requires_testing_data
def test_eeglab_event_from_annot():
"""Test all forms of obtaining annotations."""
raw_fname_mat = op.join(base_dir, 'test_raw.set')
raw_fname = raw_fname_mat
event_id = {'rt': 1, 'square': 2}
raw1 = read_raw_eeglab(input_fname=raw_fname, preload=False)
annotations = read_annotations(raw_fname)
assert len(raw1.annotations) == 154
raw1.set_annotations(annotations)
events_b, _ = events_from_annotations(raw1, event_id=event_id)
assert len(events_b) == 154
def _assert_array_allclose_nan(left, right):
assert_array_equal(np.isnan(left), np.isnan(right))
assert_allclose(left[~np.isnan(left)], right[~np.isnan(left)], atol=1e-8)
@pytest.fixture(scope='session')
def three_chanpos_fname(tmp_path_factory):
"""Test file with 3 channels to exercise EEGLAB reader.
File characteristics
- ch_names: 'F3', 'unknown', 'FPz'
- 'FPz' has no position information.
- the rest is aleatory
Notes from when this code was factorized:
# test reading file with one event (read old version)
"""
fname = str(tmp_path_factory.mktemp('data') / 'test_chanpos.set')
file_conent = dict(EEG={
'trials': 1, 'nbchan': 3, 'pnts': 3, 'epoch': [], 'event': [],
'srate': 128, 'times': np.array([0., 0.1, 0.2]),
'data': np.empty([3, 3]),
'chanlocs': np.array(
[(b'F3', 1., 4., 7.),
(b'unknown', np.nan, np.nan, np.nan),
(b'FPz', 2., 5., 8.)],
dtype=[('labels', 'S10'), ('X', 'f8'), ('Y', 'f8'), ('Z', 'f8')]
)
})
io.savemat(file_name=fname, mdict=file_conent, appendmat=False,
oned_as='row')
return fname
@testing.requires_testing_data
def test_position_information(three_chanpos_fname):
"""Test reading file with 3 channels - one without position information."""
nan = np.nan
EXPECTED_LOCATIONS_FROM_FILE = np.array([
[-4., 1., 7., 0., 0., 0., nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[-5., 2., 8., 0., 0., 0., nan, nan, nan, nan, nan, nan],
]) * 0.01 # 0.01 is to scale cm to meters
EXPECTED_LOCATIONS_FROM_MONTAGE = np.array([
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
])
raw = read_raw_eeglab(input_fname=three_chanpos_fname, preload=True,
montage_units='cm')
assert_array_equal(np.array([ch['loc'] for ch in raw.info['chs']]),
EXPECTED_LOCATIONS_FROM_FILE)
# To accommodate the new behavior so that:
# read_raw_eeglab(.. montage=montage) and raw.set_montage(montage)
# behaves the same we need to flush the montage. otherwise we get
# a mix of what is in montage and in the file
raw = read_raw_eeglab(
input_fname=three_chanpos_fname,
preload=True, montage_units='cm',
).set_montage(None) # Flush the montage builtin within input_fname
_assert_array_allclose_nan(np.array([ch['loc'] for ch in raw.info['chs']]),
EXPECTED_LOCATIONS_FROM_MONTAGE)
@testing.requires_testing_data
def test_io_set_raw_2021():
"""Test reading new default file format (no EEG struct)."""
assert "EEG" not in io.loadmat(raw_fname_2021)
_test_raw_reader(reader=read_raw_eeglab, input_fname=raw_fname_2021,
test_preloading=False, preload=True)
@testing.requires_testing_data
def test_read_single_epoch():
"""Test reading raw set file as an Epochs instance."""
with pytest.raises(ValueError, match='trials less than 2'):
read_epochs_eeglab(raw_fname_mat)
@testing.requires_testing_data
def test_get_montage_info_with_ch_type():
"""Test that the channel types are properly returned."""
mat = _readmat(raw_fname_onefile_mat)
n = len(mat['EEG']['chanlocs']['labels'])
mat['EEG']['chanlocs']['type'] = ['eeg'] * (n - 2) + ['eog'] + ['stim']
mat['EEG']['chanlocs'] = _dol_to_lod(mat['EEG']['chanlocs'])
mat['EEG'] = Bunch(**mat['EEG'])
ch_names, ch_types, montage = _get_montage_information(mat['EEG'], False)
assert len(ch_names) == len(ch_types) == n
assert ch_types == ['eeg'] * (n - 2) + ['eog'] + ['stim']
assert montage is None
# test unknown type warning
mat = _readmat(raw_fname_onefile_mat)
n = len(mat['EEG']['chanlocs']['labels'])
mat['EEG']['chanlocs']['type'] = ['eeg'] * (n - 2) + ['eog'] + ['unknown']
mat['EEG']['chanlocs'] = _dol_to_lod(mat['EEG']['chanlocs'])
mat['EEG'] = Bunch(**mat['EEG'])
with pytest.warns(RuntimeWarning, match='Unknown types found'):
ch_names, ch_types, montage = \
_get_montage_information(mat['EEG'], False)
@testing.requires_testing_data
@pytest.mark.parametrize('has_type', (True, False))
def test_fidsposition_information(monkeypatch, has_type):
"""Test reading file with 3 fiducial locations."""
if not has_type:
def get_bad_information(eeg, get_pos, scale_units=1.):
del eeg.chaninfo['nodatchans']['type']
return _get_montage_information(eeg, get_pos,
scale_units=scale_units)
monkeypatch.setattr(mne.io.eeglab.eeglab, '_get_montage_information',
get_bad_information)
raw = read_raw_eeglab(raw_fname_chanloc_fids, montage_units='cm')
montage = raw.get_montage()
pos = montage.get_positions()
n_eeg = 129
if not has_type:
# These should now be estimated from the data
assert_allclose(pos['nasion'], [0, 0.0997, 0], atol=1e-4)
assert_allclose(pos['lpa'], -pos['nasion'][[1, 0, 0]])
assert_allclose(pos['rpa'], pos['nasion'][[1, 0, 0]])
assert pos['nasion'] is not None
assert pos['lpa'] is not None
assert pos['rpa'] is not None
assert len(pos['nasion']) == 3
assert len(pos['lpa']) == 3
assert len(pos['rpa']) == 3
assert len(raw.info['dig']) == n_eeg + 3
|