File: test_eeglab.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (516 lines) | stat: -rw-r--r-- 22,216 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# Author: Mainak Jas <mainak.jas@telecom-paristech.fr>
#         Mikolaj Magnuski <mmagnuski@swps.edu.pl>
#         Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD-3-Clause

from copy import deepcopy
import os.path as op
import shutil

import numpy as np
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
                           assert_equal, assert_allclose)
import pytest
from scipy import io

import mne
from mne import write_events, read_epochs_eeglab
from mne.channels import read_custom_montage
from mne.io import read_raw_eeglab
from mne.io.eeglab.eeglab import _get_montage_information, _dol_to_lod
from mne.io.eeglab._eeglab import _readmat
from mne.io.tests.test_raw import _test_raw_reader
from mne.datasets import testing
from mne.utils import Bunch, _check_pymatreader_installed
from mne.annotations import events_from_annotations, read_annotations

base_dir = op.join(testing.data_path(download=False), 'EEGLAB')

raw_fname_mat = op.join(base_dir, 'test_raw.set')
raw_fname_onefile_mat = op.join(base_dir, 'test_raw_onefile.set')
raw_fname_event_duration = op.join(base_dir, 'test_raw_event_duration.set')
epochs_fname_mat = op.join(base_dir, 'test_epochs.set')
epochs_fname_onefile_mat = op.join(base_dir, 'test_epochs_onefile.set')
raw_mat_fnames = [raw_fname_mat, raw_fname_onefile_mat]
epochs_mat_fnames = [epochs_fname_mat, epochs_fname_onefile_mat]
raw_fname_chanloc = op.join(base_dir, 'test_raw_chanloc.set')
raw_fname_chanloc_fids = op.join(base_dir, 'test_raw_chanloc_fids.set')
raw_fname_2021 = op.join(base_dir, 'test_raw_2021.set')
raw_fname_h5 = op.join(base_dir, 'test_raw_h5.set')
raw_fname_onefile_h5 = op.join(base_dir, 'test_raw_onefile_h5.set')
epochs_fname_h5 = op.join(base_dir, 'test_epochs_h5.set')
epochs_fname_onefile_h5 = op.join(base_dir, 'test_epochs_onefile_h5.set')
raw_h5_fnames = [raw_fname_h5, raw_fname_onefile_h5]
epochs_h5_fnames = [epochs_fname_h5, epochs_fname_onefile_h5]

montage_path = op.join(base_dir, 'test_chans.locs')


@testing.requires_testing_data
@pytest.mark.parametrize('fname', [
    raw_fname_mat,
    pytest.param(
        raw_fname_h5,
        marks=[
            pytest.mark.skipif(
                not _check_pymatreader_installed(strict=False),
                reason='pymatreader not installed'
            )
        ]
    ),
    raw_fname_chanloc,
], ids=op.basename)
def test_io_set_raw(fname):
    """Test importing EEGLAB .set files."""
    montage = read_custom_montage(montage_path)
    montage.ch_names = [
        'EEG {0:03d}'.format(ii) for ii in range(len(montage.ch_names))
    ]

    kws = dict(reader=read_raw_eeglab, input_fname=fname)
    if fname.endswith('test_raw_chanloc.set'):
        with pytest.warns(RuntimeWarning,
                          match="The data contains 'boundary' events"):
            raw0 = _test_raw_reader(**kws)
    elif '_h5' in fname:  # should be safe enough, and much faster
        raw0 = read_raw_eeglab(fname, preload=True)
    else:
        raw0 = _test_raw_reader(**kws)

    # test that preloading works
    if fname.endswith('test_raw_chanloc.set'):
        raw0.set_montage(montage, on_missing='ignore')
        # crop to check if the data has been properly preloaded; we cannot
        # filter as the snippet of raw data is very short
        raw0.crop(0, 1)
    else:
        raw0.set_montage(montage)
        raw0.filter(1, None, l_trans_bandwidth='auto', filter_length='auto',
                    phase='zero')

    # test that using uint16_codec does not break stuff
    read_raw_kws = dict(input_fname=fname, preload=False, uint16_codec='ascii')
    if fname.endswith('test_raw_chanloc.set'):
        with pytest.warns(RuntimeWarning,
                          match="The data contains 'boundary' events"):
            raw0 = read_raw_eeglab(**read_raw_kws)
            raw0.set_montage(montage, on_missing='ignore')
    else:
        raw0 = read_raw_eeglab(**read_raw_kws)
        raw0.set_montage(montage)

    # Annotations
    if fname != raw_fname_chanloc:
        assert len(raw0.annotations) == 154
        assert set(raw0.annotations.description) == {'rt', 'square'}
        assert_array_equal(raw0.annotations.duration, 0.)


@testing.requires_testing_data
def test_io_set_raw_more(tmp_path):
    """Test importing EEGLAB .set files."""
    tmp_path = str(tmp_path)
    eeg = io.loadmat(raw_fname_mat, struct_as_record=False,
                     squeeze_me=True)['EEG']

    # test reading file with one event (read old version)
    negative_latency_fname = op.join(tmp_path, 'test_negative_latency.set')
    events = deepcopy(eeg.event[0])
    events.latency = 0
    io.savemat(negative_latency_fname,
               {'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
                        'nbchan': eeg.nbchan,
                        'data': 'test_negative_latency.fdt',
                        'epoch': eeg.epoch, 'event': events,
                        'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
               appendmat=False, oned_as='row')
    shutil.copyfile(op.join(base_dir, 'test_raw.fdt'),
                    negative_latency_fname.replace('.set', '.fdt'))
    with pytest.warns(RuntimeWarning, match="has a sample index of -1."):
        read_raw_eeglab(input_fname=negative_latency_fname, preload=True)

    # test negative event latencies
    events.latency = -1
    io.savemat(negative_latency_fname,
               {'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
                        'nbchan': eeg.nbchan,
                        'data': 'test_negative_latency.fdt',
                        'epoch': eeg.epoch, 'event': events,
                        'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
               appendmat=False, oned_as='row')
    with pytest.raises(ValueError, match='event sample index is negative'):
        with pytest.warns(RuntimeWarning, match="has a sample index of -1."):
            read_raw_eeglab(input_fname=negative_latency_fname, preload=True)

    # test overlapping events
    overlap_fname = op.join(tmp_path, 'test_overlap_event.set')
    io.savemat(overlap_fname,
               {'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
                        'nbchan': eeg.nbchan, 'data': 'test_overlap_event.fdt',
                        'epoch': eeg.epoch,
                        'event': [eeg.event[0], eeg.event[0]],
                        'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
               appendmat=False, oned_as='row')
    shutil.copyfile(op.join(base_dir, 'test_raw.fdt'),
                    overlap_fname.replace('.set', '.fdt'))
    read_raw_eeglab(input_fname=overlap_fname, preload=True)

    # test reading file with empty event durations
    empty_dur_fname = op.join(tmp_path, 'test_empty_durations.set')
    events = deepcopy(eeg.event)
    for ev in events:
        ev.duration = np.array([], dtype='float')

    io.savemat(empty_dur_fname,
               {'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
                        'nbchan': eeg.nbchan,
                        'data': 'test_negative_latency.fdt',
                        'epoch': eeg.epoch, 'event': events,
                        'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
               appendmat=False, oned_as='row')
    shutil.copyfile(op.join(base_dir, 'test_raw.fdt'),
                    empty_dur_fname.replace('.set', '.fdt'))
    raw = read_raw_eeglab(input_fname=empty_dur_fname, preload=True)
    assert (raw.annotations.duration == 0).all()

    # test reading file when the EEG.data name is wrong
    io.savemat(overlap_fname,
               {'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
                        'nbchan': eeg.nbchan, 'data': 'test_overla_event.fdt',
                        'epoch': eeg.epoch,
                        'event': [eeg.event[0], eeg.event[0]],
                        'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
               appendmat=False, oned_as='row')
    with pytest.warns(RuntimeWarning, match="must have changed on disk"):
        read_raw_eeglab(input_fname=overlap_fname, preload=True)

    # raise error when both EEG.data and fdt name from set are wrong
    overlap_fname = op.join(tmp_path, 'test_ovrlap_event.set')
    io.savemat(overlap_fname,
               {'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
                        'nbchan': eeg.nbchan, 'data': 'test_overla_event.fdt',
                        'epoch': eeg.epoch,
                        'event': [eeg.event[0], eeg.event[0]],
                        'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
               appendmat=False, oned_as='row')
    with pytest.raises(FileNotFoundError, match="not find the .fdt data file"):
        read_raw_eeglab(input_fname=overlap_fname, preload=True)

    # test reading file with one channel
    one_chan_fname = op.join(tmp_path, 'test_one_channel.set')
    io.savemat(one_chan_fname,
               {'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
                        'nbchan': 1, 'data': np.random.random((1, 3)),
                        'epoch': eeg.epoch, 'event': eeg.epoch,
                        'chanlocs': {'labels': 'E1', 'Y': -6.6069,
                                     'X': 6.3023, 'Z': -2.9423},
                        'times': eeg.times[:3], 'pnts': 3}},
               appendmat=False, oned_as='row')
    read_raw_eeglab(input_fname=one_chan_fname, preload=True,
                    montage_units='cm')

    # test reading file with 3 channels - one without position information
    # first, create chanlocs structured array
    ch_names = ['F3', 'unknown', 'FPz']
    x, y, z = [1., 2., np.nan], [4., 5., np.nan], [7., 8., np.nan]
    dt = [('labels', 'S10'), ('X', 'f8'), ('Y', 'f8'), ('Z', 'f8')]
    nopos_dt = [('labels', 'S10'), ('Z', 'f8')]
    chanlocs = np.zeros((3,), dtype=dt)
    nopos_chanlocs = np.zeros((3,), dtype=nopos_dt)
    for ind, vals in enumerate(zip(ch_names, x, y, z)):
        for fld in range(4):
            chanlocs[ind][dt[fld][0]] = vals[fld]
            if fld in (0, 3):
                nopos_chanlocs[ind][dt[fld][0]] = vals[fld]
    # In theory this should work and be simpler, but there is an obscure
    # SciPy writing bug that pops up sometimes:
    # nopos_chanlocs = np.array(chanlocs[['labels', 'Z']])

    # test reading channel names but not positions when there is no X (only Z)
    # field in the EEG.chanlocs structure
    nopos_fname = op.join(tmp_path, 'test_no_chanpos.set')
    io.savemat(nopos_fname,
               {'EEG': {'trials': eeg.trials, 'srate': eeg.srate, 'nbchan': 3,
                        'data': np.random.random((3, 2)), 'epoch': eeg.epoch,
                        'event': eeg.epoch, 'chanlocs': nopos_chanlocs,
                        'times': eeg.times[:2], 'pnts': 2}},
               appendmat=False, oned_as='row')
    # load the file
    raw = read_raw_eeglab(input_fname=nopos_fname, preload=True,
                          montage_units='cm')

    # test that channel names have been loaded but not channel positions
    for i in range(3):
        assert_equal(raw.info['chs'][i]['ch_name'], ch_names[i])
        assert_array_equal(raw.info['chs'][i]['loc'][:3],
                           np.array([np.nan, np.nan, np.nan]))


@pytest.mark.timeout(60)  # ~60 sec on Travis OSX
@testing.requires_testing_data
@pytest.mark.parametrize('fnames', [
    epochs_mat_fnames,
    pytest.param(
        epochs_h5_fnames,
        marks=[
            pytest.mark.slowtest,
            pytest.mark.skipif(
                not _check_pymatreader_installed(strict=False),
                reason='pymatreader not installed'
            )
        ]
    )
])
def test_io_set_epochs(fnames):
    """Test importing EEGLAB .set epochs files."""
    epochs_fname, epochs_fname_onefile = fnames
    with pytest.warns(RuntimeWarning, match='multiple events'):
        epochs = read_epochs_eeglab(epochs_fname)
    with pytest.warns(RuntimeWarning, match='multiple events'):
        epochs2 = read_epochs_eeglab(epochs_fname_onefile)
    # one warning for each read_epochs_eeglab because both files have epochs
    # associated with multiple events
    assert_array_equal(epochs.get_data(), epochs2.get_data())


@testing.requires_testing_data
def test_io_set_epochs_events(tmp_path):
    """Test different combinations of events and event_ids."""
    tmp_path = str(tmp_path)
    out_fname = op.join(tmp_path, 'test-eve.fif')
    events = np.array([[4, 0, 1], [12, 0, 2], [20, 0, 3], [26, 0, 3]])
    write_events(out_fname, events)
    event_id = {'S255/S8': 1, 'S8': 2, 'S255/S9': 3}
    epochs = read_epochs_eeglab(epochs_fname_mat, events, event_id)
    assert_equal(len(epochs.events), 4)
    assert epochs.preload
    assert epochs._bad_dropped
    epochs = read_epochs_eeglab(epochs_fname_mat, out_fname, event_id)
    pytest.raises(ValueError, read_epochs_eeglab, epochs_fname_mat,
                  None, event_id)
    pytest.raises(ValueError, read_epochs_eeglab, epochs_fname_mat,
                  epochs.events, None)


@testing.requires_testing_data
@pytest.mark.filterwarnings('ignore:At least one epoch has multiple events')
@pytest.mark.filterwarnings("ignore:The data contains 'boundary' events")
def test_degenerate(tmp_path):
    """Test some degenerate conditions."""
    # test if .dat file raises an error
    tmp_path = str(tmp_path)
    eeg = io.loadmat(epochs_fname_mat, struct_as_record=False,
                     squeeze_me=True)['EEG']
    eeg.data = 'epochs_fname.dat'
    bad_epochs_fname = op.join(tmp_path, 'test_epochs.set')
    io.savemat(bad_epochs_fname,
               {'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
                        'nbchan': eeg.nbchan, 'data': eeg.data,
                        'epoch': eeg.epoch, 'event': eeg.event,
                        'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
               appendmat=False, oned_as='row')
    shutil.copyfile(op.join(base_dir, 'test_epochs.fdt'),
                    op.join(tmp_path, 'test_epochs.dat'))
    pytest.raises(NotImplementedError, read_epochs_eeglab,
                  bad_epochs_fname)

    # error when montage units incorrect
    with pytest.raises(ValueError, match=r'prefix \+ "m" format'):
        read_epochs_eeglab(epochs_fname_mat, montage_units='mV')

    # warning when head radius too small
    with pytest.warns(RuntimeWarning, match='is above'):
        read_raw_eeglab(raw_fname_chanloc, montage_units='km')

    # warning when head radius too large
    with pytest.warns(RuntimeWarning, match='is below'):
        read_raw_eeglab(raw_fname_chanloc, montage_units='µm')


@pytest.mark.parametrize("fname", [
    raw_fname_mat,
    raw_fname_onefile_mat,
    # We don't test the h5 variants here because they are implicitly tested
    # in test_io_set_raw
])
@pytest.mark.filterwarnings('ignore: Complex objects')
@testing.requires_testing_data
def test_eeglab_annotations(fname):
    """Test reading annotations in EEGLAB files."""
    annotations = read_annotations(fname)
    assert len(annotations) == 154
    assert set(annotations.description) == {'rt', 'square'}
    assert np.all(annotations.duration == 0.)


@testing.requires_testing_data
def test_eeglab_read_annotations():
    """Test annotations onsets are timestamps (+ validate some)."""
    annotations = read_annotations(raw_fname_mat)
    validation_samples = [0, 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
    expected_onset = np.array([1.00, 1.69, 2.08, 4.70, 7.71, 11.30, 17.18,
                               20.20, 26.12, 29.14, 35.25, 44.30, 47.15])
    assert annotations.orig_time is None
    assert_array_almost_equal(annotations.onset[validation_samples],
                              expected_onset, decimal=2)

    # test if event durations are imported correctly
    raw = read_raw_eeglab(raw_fname_event_duration, preload=True,
                          montage_units='dm')
    # file contains 3 annotations with 0.5 s (64 samples) duration each
    assert_allclose(raw.annotations.duration, np.ones(3) * 0.5)


@testing.requires_testing_data
def test_eeglab_event_from_annot():
    """Test all forms of obtaining annotations."""
    raw_fname_mat = op.join(base_dir, 'test_raw.set')
    raw_fname = raw_fname_mat
    event_id = {'rt': 1, 'square': 2}
    raw1 = read_raw_eeglab(input_fname=raw_fname, preload=False)

    annotations = read_annotations(raw_fname)
    assert len(raw1.annotations) == 154
    raw1.set_annotations(annotations)
    events_b, _ = events_from_annotations(raw1, event_id=event_id)
    assert len(events_b) == 154


def _assert_array_allclose_nan(left, right):
    assert_array_equal(np.isnan(left), np.isnan(right))
    assert_allclose(left[~np.isnan(left)], right[~np.isnan(left)], atol=1e-8)


@pytest.fixture(scope='session')
def three_chanpos_fname(tmp_path_factory):
    """Test file with 3 channels to exercise EEGLAB reader.

    File characteristics
       - ch_names: 'F3', 'unknown', 'FPz'
       - 'FPz' has no position information.
       - the rest is aleatory

    Notes from when this code was factorized:
    # test reading file with one event (read old version)
    """
    fname = str(tmp_path_factory.mktemp('data') / 'test_chanpos.set')
    file_conent = dict(EEG={
        'trials': 1, 'nbchan': 3, 'pnts': 3, 'epoch': [], 'event': [],
        'srate': 128, 'times': np.array([0., 0.1, 0.2]),
        'data': np.empty([3, 3]),
        'chanlocs': np.array(
            [(b'F3', 1., 4., 7.),
             (b'unknown', np.nan, np.nan, np.nan),
             (b'FPz', 2., 5., 8.)],
            dtype=[('labels', 'S10'), ('X', 'f8'), ('Y', 'f8'), ('Z', 'f8')]
        )
    })

    io.savemat(file_name=fname, mdict=file_conent, appendmat=False,
               oned_as='row')

    return fname


@testing.requires_testing_data
def test_position_information(three_chanpos_fname):
    """Test reading file with 3 channels - one without position information."""
    nan = np.nan
    EXPECTED_LOCATIONS_FROM_FILE = np.array([
        [-4.,  1.,  7.,  0.,  0.,  0., nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [-5.,  2.,  8.,  0.,  0.,  0., nan, nan, nan, nan, nan, nan],
    ]) * 0.01  # 0.01 is to scale cm to meters

    EXPECTED_LOCATIONS_FROM_MONTAGE = np.array([
        [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
    ])

    raw = read_raw_eeglab(input_fname=three_chanpos_fname, preload=True,
                          montage_units='cm')
    assert_array_equal(np.array([ch['loc'] for ch in raw.info['chs']]),
                       EXPECTED_LOCATIONS_FROM_FILE)

    # To accommodate the new behavior so that:
    # read_raw_eeglab(.. montage=montage) and raw.set_montage(montage)
    # behaves the same we need to flush the montage. otherwise we get
    # a mix of what is in montage and in the file
    raw = read_raw_eeglab(
        input_fname=three_chanpos_fname,
        preload=True, montage_units='cm',
    ).set_montage(None)  # Flush the montage builtin within input_fname

    _assert_array_allclose_nan(np.array([ch['loc'] for ch in raw.info['chs']]),
                               EXPECTED_LOCATIONS_FROM_MONTAGE)


@testing.requires_testing_data
def test_io_set_raw_2021():
    """Test reading new default file format (no EEG struct)."""
    assert "EEG" not in io.loadmat(raw_fname_2021)
    _test_raw_reader(reader=read_raw_eeglab, input_fname=raw_fname_2021,
                     test_preloading=False, preload=True)


@testing.requires_testing_data
def test_read_single_epoch():
    """Test reading raw set file as an Epochs instance."""
    with pytest.raises(ValueError, match='trials less than 2'):
        read_epochs_eeglab(raw_fname_mat)


@testing.requires_testing_data
def test_get_montage_info_with_ch_type():
    """Test that the channel types are properly returned."""
    mat = _readmat(raw_fname_onefile_mat)
    n = len(mat['EEG']['chanlocs']['labels'])
    mat['EEG']['chanlocs']['type'] = ['eeg'] * (n - 2) + ['eog'] + ['stim']
    mat['EEG']['chanlocs'] = _dol_to_lod(mat['EEG']['chanlocs'])
    mat['EEG'] = Bunch(**mat['EEG'])
    ch_names, ch_types, montage = _get_montage_information(mat['EEG'], False)
    assert len(ch_names) == len(ch_types) == n
    assert ch_types == ['eeg'] * (n - 2) + ['eog'] + ['stim']
    assert montage is None

    # test unknown type warning
    mat = _readmat(raw_fname_onefile_mat)
    n = len(mat['EEG']['chanlocs']['labels'])
    mat['EEG']['chanlocs']['type'] = ['eeg'] * (n - 2) + ['eog'] + ['unknown']
    mat['EEG']['chanlocs'] = _dol_to_lod(mat['EEG']['chanlocs'])
    mat['EEG'] = Bunch(**mat['EEG'])
    with pytest.warns(RuntimeWarning, match='Unknown types found'):
        ch_names, ch_types, montage = \
            _get_montage_information(mat['EEG'], False)


@testing.requires_testing_data
@pytest.mark.parametrize('has_type', (True, False))
def test_fidsposition_information(monkeypatch, has_type):
    """Test reading file with 3 fiducial locations."""
    if not has_type:
        def get_bad_information(eeg, get_pos, scale_units=1.):
            del eeg.chaninfo['nodatchans']['type']
            return _get_montage_information(eeg, get_pos,
                                            scale_units=scale_units)

        monkeypatch.setattr(mne.io.eeglab.eeglab, '_get_montage_information',
                            get_bad_information)
    raw = read_raw_eeglab(raw_fname_chanloc_fids, montage_units='cm')
    montage = raw.get_montage()
    pos = montage.get_positions()
    n_eeg = 129
    if not has_type:
        # These should now be estimated from the data
        assert_allclose(pos['nasion'], [0, 0.0997, 0], atol=1e-4)
        assert_allclose(pos['lpa'], -pos['nasion'][[1, 0, 0]])
        assert_allclose(pos['rpa'], pos['nasion'][[1, 0, 0]])
    assert pos['nasion'] is not None
    assert pos['lpa'] is not None
    assert pos['rpa'] is not None
    assert len(pos['nasion']) == 3
    assert len(pos['lpa']) == 3
    assert len(pos['rpa']) == 3
    assert len(raw.info['dig']) == n_eeg + 3