File: general.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (175 lines) | stat: -rw-r--r-- 6,393 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- coding: utf-8 -*-
#
# License: BSD-3-Clause

import os
from xml.dom.minidom import parse
import re

import numpy as np

from ...utils import _pl


def _extract(tags, filepath=None, obj=None):
    """Extract info from XML."""
    if obj is not None:
        fileobj = obj
    elif filepath is not None:
        fileobj = parse(filepath)
    else:
        raise ValueError('There is not object or file to extract data')
    infoxml = dict()
    for tag in tags:
        value = fileobj.getElementsByTagName(tag)
        infoxml[tag] = []
        for i in range(len(value)):
            infoxml[tag].append(value[i].firstChild.data)
    return infoxml


def _get_gains(filepath):
    """Parse gains."""
    file_obj = parse(filepath)
    objects = file_obj.getElementsByTagName('calibration')
    gains = dict()
    for ob in objects:
        value = ob.getElementsByTagName('type')
        if value[0].firstChild.data == 'GCAL':
            data_g = _extract(['ch'], obj=ob)['ch']
            gains.update(gcal=np.asarray(data_g, dtype=np.float64))
        elif value[0].firstChild.data == 'ICAL':
            data_g = _extract(['ch'], obj=ob)['ch']
            gains.update(ical=np.asarray(data_g, dtype=np.float64))
    return gains


def _get_ep_info(filepath):
    """Get epoch info."""
    epochfile = filepath + '/epochs.xml'
    epochlist = parse(epochfile)
    epochs = epochlist.getElementsByTagName('epoch')
    keys = ('first_samps', 'last_samps', 'first_blocks', 'last_blocks')
    epoch_info = {key: list() for key in keys}
    for epoch in epochs:
        ep_begin = int(epoch.getElementsByTagName('beginTime')[0]
                       .firstChild.data)
        ep_end = int(epoch.getElementsByTagName('endTime')[0].firstChild.data)
        first_block = int(epoch.getElementsByTagName('firstBlock')[0]
                          .firstChild.data)
        last_block = int(epoch.getElementsByTagName('lastBlock')[0]
                         .firstChild.data)
        epoch_info['first_samps'].append(ep_begin)
        epoch_info['last_samps'].append(ep_end)
        epoch_info['first_blocks'].append(first_block)
        epoch_info['last_blocks'].append(last_block)
    # Don't turn into ndarray here, keep native int because it can deal with
    # huge numbers (could use np.uint64 but it's more work)
    return epoch_info


def _get_blocks(filepath):
    """Get info from meta data blocks."""
    binfile = os.path.join(filepath)
    n_blocks = 0
    samples_block = []
    header_sizes = []
    n_channels = []
    sfreq = []
    # Meta data consists of:
    # * 1 byte of flag (1 for meta data, 0 for data)
    # * 1 byte of header size
    # * 1 byte of block size
    # * 1 byte of n_channels
    # * n_channels bytes of offsets
    # * n_channels bytes of sigfreqs?
    with open(binfile, 'rb') as fid:
        fid.seek(0, 2)  # go to end of file
        file_length = fid.tell()
        block_size = file_length
        fid.seek(0)
        position = 0
        while position < file_length:
            block = _block_r(fid)
            if block is None:
                samples_block.append(samples_block[n_blocks - 1])
                n_blocks += 1
                fid.seek(block_size, 1)
                position = fid.tell()
                continue
            block_size = block['block_size']
            header_size = block['header_size']
            header_sizes.append(header_size)
            samples_block.append(block['nsamples'])
            n_blocks += 1
            fid.seek(block_size, 1)
            sfreq.append(block['sfreq'])
            n_channels.append(block['nc'])
            position = fid.tell()

    if any([n != n_channels[0] for n in n_channels]):
        raise RuntimeError("All the blocks don't have the same amount of "
                           "channels.")
    if any([f != sfreq[0] for f in sfreq]):
        raise RuntimeError("All the blocks don't have the same sampling "
                           "frequency.")
    if len(samples_block) < 1:
        raise RuntimeError("There seems to be no data")
    samples_block = np.array(samples_block)
    signal_blocks = dict(n_channels=n_channels[0], sfreq=sfreq[0],
                         n_blocks=n_blocks, samples_block=samples_block,
                         header_sizes=header_sizes)
    return signal_blocks


def _get_signalfname(filepath):
    """Get filenames."""
    listfiles = os.listdir(filepath)
    binfiles = list(f for f in listfiles if 'signal' in f and
                    f[-4:] == '.bin' and f[0] != '.')
    all_files = {}
    infofiles = list()
    for binfile in binfiles:
        bin_num_str = re.search(r'\d+', binfile).group()
        infofile = 'info' + bin_num_str + '.xml'
        infofiles.append(infofile)
        infobjfile = os.path.join(filepath, infofile)
        infobj = parse(infobjfile)
        if len(infobj.getElementsByTagName('EEG')):
            signal_type = 'EEG'
        elif len(infobj.getElementsByTagName('PNSData')):
            signal_type = 'PNS'
        all_files[signal_type] = {
            'signal': 'signal{}.bin'.format(bin_num_str),
            'info': infofile}
    if 'EEG' not in all_files:
        raise FileNotFoundError(
            'Could not find any EEG data in the %d file%s found in %s:\n%s'
            % (len(infofiles), _pl(infofiles), filepath, '\n'.join(infofiles)))
    return all_files


def _block_r(fid):
    """Read meta data."""
    if np.fromfile(fid, dtype=np.dtype('i4'), count=1)[0] != 1:  # not metadata
        return None
    header_size = np.fromfile(fid, dtype=np.dtype('i4'), count=1)[0]
    block_size = np.fromfile(fid, dtype=np.dtype('i4'), count=1)[0]
    hl = int(block_size / 4)
    nc = np.fromfile(fid, dtype=np.dtype('i4'), count=1)[0]
    nsamples = int(hl / nc)
    np.fromfile(fid, dtype=np.dtype('i4'), count=nc)  # sigoffset
    sigfreq = np.fromfile(fid, dtype=np.dtype('i4'), count=nc)
    depth = sigfreq[0] & 0xFF
    if depth != 32:
        raise ValueError('I do not know how to read this MFF (depth != 32)')
    sfreq = sigfreq[0] >> 8
    count = int(header_size / 4 - (4 + 2 * nc))
    np.fromfile(fid, dtype=np.dtype('i4'), count=count)  # sigoffset
    block = dict(nc=nc,
                 hl=hl,
                 nsamples=nsamples,
                 block_size=block_size,
                 header_size=header_size,
                 sfreq=sfreq)
    return block