1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
"""Coordinate Point Extractor for KIT system."""
# Author: Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD-3-Clause
from collections import OrderedDict
from os import SEEK_CUR, path as op
import pickle
import re
import numpy as np
from .constants import KIT, FIFF
from .._digitization import _make_dig_points
from ...transforms import (Transform, apply_trans, get_ras_to_neuromag_trans,
als_ras_trans)
from ...utils import warn, _check_option
INT32 = '<i4'
FLOAT64 = '<f8'
def read_mrk(fname):
r"""Marker Point Extraction in MEG space directly from sqd.
Parameters
----------
fname : str
Absolute path to Marker file.
File formats allowed: \*.sqd, \*.mrk, \*.txt, \*.pickled.
Returns
-------
mrk_points : ndarray, shape (n_points, 3)
Marker points in MEG space [m].
"""
from .kit import _read_dirs
ext = op.splitext(fname)[-1]
if ext in ('.sqd', '.mrk'):
with open(fname, 'rb', buffering=0) as fid:
dirs = _read_dirs(fid)
fid.seek(dirs[KIT.DIR_INDEX_COREG]['offset'])
# skips match_done, meg_to_mri and mri_to_meg
fid.seek(KIT.INT + (2 * KIT.DOUBLE * 16), SEEK_CUR)
mrk_count = np.fromfile(fid, INT32, 1)[0]
pts = []
for _ in range(mrk_count):
# mri_type, meg_type, mri_done, meg_done
_, _, _, meg_done = np.fromfile(fid, INT32, 4)
_, meg_pts = np.fromfile(fid, FLOAT64, 6).reshape(2, 3)
if meg_done:
pts.append(meg_pts)
mrk_points = np.array(pts)
elif ext == '.txt':
mrk_points = _read_dig_kit(fname, unit='m')
elif ext == '.pickled':
with open(fname, 'rb') as fid:
food = pickle.load(fid)
try:
mrk_points = food['mrk']
except Exception:
err = ("%r does not contain marker points." % fname)
raise ValueError(err)
else:
raise ValueError('KIT marker file must be *.sqd, *.mrk, *.txt or '
'*.pickled, *%s is not supported.' % ext)
# check output
mrk_points = np.asarray(mrk_points)
if mrk_points.shape != (5, 3):
err = ("%r is no marker file, shape is "
"%s" % (fname, mrk_points.shape))
raise ValueError(err)
return mrk_points
def read_sns(fname):
"""Sensor coordinate extraction in MEG space.
Parameters
----------
fname : str
Absolute path to sensor definition file.
Returns
-------
locs : numpy.array, shape = (n_points, 3)
Sensor coil location.
"""
p = re.compile(r'\d,[A-Za-z]*,([\.\-0-9]+),' +
r'([\.\-0-9]+),([\.\-0-9]+),' +
r'([\.\-0-9]+),([\.\-0-9]+)')
with open(fname) as fid:
locs = np.array(p.findall(fid.read()), dtype=float)
return locs
def _set_dig_kit(mrk, elp, hsp, eeg):
"""Add landmark points and head shape data to the KIT instance.
Digitizer data (elp and hsp) are represented in [mm] in the Polhemus
ALS coordinate system. This is converted to [m].
Parameters
----------
mrk : None | str | array_like, shape (5, 3)
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
elp : None | str | array_like, shape (8, 3)
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : None | str | array, shape (n_points, 3)
Digitizer head shape points, or path to head shape file. If more
than 10`000 points are in the head shape, they are automatically
decimated.
eeg : dict
Ordered dict of EEG dig points.
Returns
-------
dig_points : list
List of digitizer points for info['dig'].
dev_head_t : Transform
A dictionary describing the device-head transformation.
hpi_results : list
The hpi results.
"""
from ...coreg import fit_matched_points, _decimate_points
if isinstance(hsp, str):
hsp = _read_dig_kit(hsp)
n_pts = len(hsp)
if n_pts > KIT.DIG_POINTS:
hsp = _decimate_points(hsp, res=0.005)
n_new = len(hsp)
warn("The selected head shape contained {n_in} points, which is "
"more than recommended ({n_rec}), and was automatically "
"downsampled to {n_new} points. The preferred way to "
"downsample is using FastScan.".format(
n_in=n_pts, n_rec=KIT.DIG_POINTS, n_new=n_new))
if isinstance(elp, str):
elp_points = _read_dig_kit(elp)
if len(elp_points) != 8:
raise ValueError("File %r should contain 8 points; got shape "
"%s." % (elp, elp_points.shape))
elp = elp_points
elif len(elp) not in (6, 7, 8):
raise ValueError("ELP should contain 6 ~ 8 points; got shape "
"%s." % (elp.shape,))
if isinstance(mrk, str):
mrk = read_mrk(mrk)
mrk = apply_trans(als_ras_trans, mrk)
nasion, lpa, rpa = elp[:3]
nmtrans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
elp = apply_trans(nmtrans, elp)
hsp = apply_trans(nmtrans, hsp)
eeg = OrderedDict((k, apply_trans(nmtrans, p)) for k, p in eeg.items())
# device head transform
trans = fit_matched_points(tgt_pts=elp[3:], src_pts=mrk, out='trans')
nasion, lpa, rpa = elp[:3]
elp = elp[3:]
dig_points = _make_dig_points(nasion, lpa, rpa, elp, hsp, dig_ch_pos=eeg)
dev_head_t = Transform('meg', 'head', trans)
hpi_results = [dict(dig_points=[
dict(ident=ci, r=r, kind=FIFF.FIFFV_POINT_HPI,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN)
for ci, r in enumerate(mrk)], coord_trans=dev_head_t)]
return dig_points, dev_head_t, hpi_results
def _read_dig_kit(fname, unit='auto'):
# Read dig points from a file and return ndarray, using FastSCAN for .txt
from ...channels.montage import (
read_polhemus_fastscan, read_dig_polhemus_isotrak, read_custom_montage,
_check_dig_shape)
assert unit in ('auto', 'm', 'mm')
_, ext = op.splitext(fname)
_check_option('file extension', ext[1:], ('hsp', 'elp', 'mat', 'txt'))
if ext == '.txt':
unit = 'mm' if unit == 'auto' else unit
out = read_polhemus_fastscan(fname, unit=unit,
on_header_missing='ignore')
elif ext in ('.hsp', '.elp'):
unit = 'm' if unit == 'auto' else unit
mon = read_dig_polhemus_isotrak(fname, unit=unit)
if fname.endswith('.hsp'):
dig = [d['r'] for d in mon.dig
if d['kind'] != FIFF.FIFFV_POINT_CARDINAL]
else:
dig = [d['r'] for d in mon.dig]
if dig and \
mon.dig[0]['kind'] == FIFF.FIFFV_POINT_CARDINAL and \
mon.dig[0]['ident'] == FIFF.FIFFV_POINT_LPA:
# LPA, Nasion, RPA -> NLR
dig[:3] = [dig[1], dig[0], dig[2]]
out = np.array(dig, float)
else:
assert ext == '.mat'
out = np.array([d['r'] for d in read_custom_montage(fname).dig])
_check_dig_shape(out)
return out
|