File: coreg.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (212 lines) | stat: -rw-r--r-- 7,386 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""Coordinate Point Extractor for KIT system."""

# Author: Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD-3-Clause

from collections import OrderedDict
from os import SEEK_CUR, path as op
import pickle
import re

import numpy as np

from .constants import KIT, FIFF
from .._digitization import _make_dig_points
from ...transforms import (Transform, apply_trans, get_ras_to_neuromag_trans,
                           als_ras_trans)
from ...utils import warn, _check_option


INT32 = '<i4'
FLOAT64 = '<f8'


def read_mrk(fname):
    r"""Marker Point Extraction in MEG space directly from sqd.

    Parameters
    ----------
    fname : str
        Absolute path to Marker file.
        File formats allowed: \*.sqd, \*.mrk, \*.txt, \*.pickled.

    Returns
    -------
    mrk_points : ndarray, shape (n_points, 3)
        Marker points in MEG space [m].
    """
    from .kit import _read_dirs
    ext = op.splitext(fname)[-1]
    if ext in ('.sqd', '.mrk'):
        with open(fname, 'rb', buffering=0) as fid:
            dirs = _read_dirs(fid)
            fid.seek(dirs[KIT.DIR_INDEX_COREG]['offset'])
            # skips match_done, meg_to_mri and mri_to_meg
            fid.seek(KIT.INT + (2 * KIT.DOUBLE * 16), SEEK_CUR)
            mrk_count = np.fromfile(fid, INT32, 1)[0]
            pts = []
            for _ in range(mrk_count):
                # mri_type, meg_type, mri_done, meg_done
                _, _, _, meg_done = np.fromfile(fid, INT32, 4)
                _, meg_pts = np.fromfile(fid, FLOAT64, 6).reshape(2, 3)
                if meg_done:
                    pts.append(meg_pts)
            mrk_points = np.array(pts)
    elif ext == '.txt':
        mrk_points = _read_dig_kit(fname, unit='m')
    elif ext == '.pickled':
        with open(fname, 'rb') as fid:
            food = pickle.load(fid)
        try:
            mrk_points = food['mrk']
        except Exception:
            err = ("%r does not contain marker points." % fname)
            raise ValueError(err)
    else:
        raise ValueError('KIT marker file must be *.sqd, *.mrk, *.txt or '
                         '*.pickled, *%s is not supported.' % ext)

    # check output
    mrk_points = np.asarray(mrk_points)
    if mrk_points.shape != (5, 3):
        err = ("%r is no marker file, shape is "
               "%s" % (fname, mrk_points.shape))
        raise ValueError(err)
    return mrk_points


def read_sns(fname):
    """Sensor coordinate extraction in MEG space.

    Parameters
    ----------
    fname : str
        Absolute path to sensor definition file.

    Returns
    -------
    locs : numpy.array, shape = (n_points, 3)
        Sensor coil location.
    """
    p = re.compile(r'\d,[A-Za-z]*,([\.\-0-9]+),' +
                   r'([\.\-0-9]+),([\.\-0-9]+),' +
                   r'([\.\-0-9]+),([\.\-0-9]+)')
    with open(fname) as fid:
        locs = np.array(p.findall(fid.read()), dtype=float)
    return locs


def _set_dig_kit(mrk, elp, hsp, eeg):
    """Add landmark points and head shape data to the KIT instance.

    Digitizer data (elp and hsp) are represented in [mm] in the Polhemus
    ALS coordinate system. This is converted to [m].

    Parameters
    ----------
    mrk : None | str | array_like, shape (5, 3)
        Marker points representing the location of the marker coils with
        respect to the MEG Sensors, or path to a marker file.
    elp : None | str | array_like, shape (8, 3)
        Digitizer points representing the location of the fiducials and the
        marker coils with respect to the digitized head shape, or path to a
        file containing these points.
    hsp : None | str | array, shape (n_points, 3)
        Digitizer head shape points, or path to head shape file. If more
        than 10`000 points are in the head shape, they are automatically
        decimated.
    eeg : dict
        Ordered dict of EEG dig points.

    Returns
    -------
    dig_points : list
        List of digitizer points for info['dig'].
    dev_head_t : Transform
        A dictionary describing the device-head transformation.
    hpi_results : list
        The hpi results.
    """
    from ...coreg import fit_matched_points, _decimate_points

    if isinstance(hsp, str):
        hsp = _read_dig_kit(hsp)
    n_pts = len(hsp)
    if n_pts > KIT.DIG_POINTS:
        hsp = _decimate_points(hsp, res=0.005)
        n_new = len(hsp)
        warn("The selected head shape contained {n_in} points, which is "
             "more than recommended ({n_rec}), and was automatically "
             "downsampled to {n_new} points. The preferred way to "
             "downsample is using FastScan.".format(
                 n_in=n_pts, n_rec=KIT.DIG_POINTS, n_new=n_new))

    if isinstance(elp, str):
        elp_points = _read_dig_kit(elp)
        if len(elp_points) != 8:
            raise ValueError("File %r should contain 8 points; got shape "
                             "%s." % (elp, elp_points.shape))
        elp = elp_points
    elif len(elp) not in (6, 7, 8):
        raise ValueError("ELP should contain 6 ~ 8 points; got shape "
                         "%s." % (elp.shape,))
    if isinstance(mrk, str):
        mrk = read_mrk(mrk)

    mrk = apply_trans(als_ras_trans, mrk)

    nasion, lpa, rpa = elp[:3]
    nmtrans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
    elp = apply_trans(nmtrans, elp)
    hsp = apply_trans(nmtrans, hsp)
    eeg = OrderedDict((k, apply_trans(nmtrans, p)) for k, p in eeg.items())

    # device head transform
    trans = fit_matched_points(tgt_pts=elp[3:], src_pts=mrk, out='trans')

    nasion, lpa, rpa = elp[:3]
    elp = elp[3:]

    dig_points = _make_dig_points(nasion, lpa, rpa, elp, hsp, dig_ch_pos=eeg)
    dev_head_t = Transform('meg', 'head', trans)

    hpi_results = [dict(dig_points=[
        dict(ident=ci, r=r, kind=FIFF.FIFFV_POINT_HPI,
             coord_frame=FIFF.FIFFV_COORD_UNKNOWN)
        for ci, r in enumerate(mrk)], coord_trans=dev_head_t)]

    return dig_points, dev_head_t, hpi_results


def _read_dig_kit(fname, unit='auto'):
    # Read dig points from a file and return ndarray, using FastSCAN for .txt
    from ...channels.montage import (
        read_polhemus_fastscan, read_dig_polhemus_isotrak, read_custom_montage,
        _check_dig_shape)
    assert unit in ('auto', 'm', 'mm')
    _, ext = op.splitext(fname)
    _check_option('file extension', ext[1:], ('hsp', 'elp', 'mat', 'txt'))
    if ext == '.txt':
        unit = 'mm' if unit == 'auto' else unit
        out = read_polhemus_fastscan(fname, unit=unit,
                                     on_header_missing='ignore')
    elif ext in ('.hsp', '.elp'):
        unit = 'm' if unit == 'auto' else unit
        mon = read_dig_polhemus_isotrak(fname, unit=unit)
        if fname.endswith('.hsp'):
            dig = [d['r'] for d in mon.dig
                   if d['kind'] != FIFF.FIFFV_POINT_CARDINAL]
        else:
            dig = [d['r'] for d in mon.dig]
            if dig and \
                    mon.dig[0]['kind'] == FIFF.FIFFV_POINT_CARDINAL and \
                    mon.dig[0]['ident'] == FIFF.FIFFV_POINT_LPA:
                # LPA, Nasion, RPA -> NLR
                dig[:3] = [dig[1], dig[0], dig[2]]
        out = np.array(dig, float)
    else:
        assert ext == '.mat'
        out = np.array([d['r'] for d in read_custom_montage(fname).dig])
    _check_dig_shape(out)
    return out