File: meas_info.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (2925 lines) | stat: -rw-r--r-- 112,419 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
#          Teon Brooks <teon.brooks@gmail.com>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD-3-Clause

from collections import Counter, OrderedDict
from collections.abc import Mapping
import contextlib
from copy import deepcopy
import datetime
from io import BytesIO
import operator
from textwrap import shorten
import string

import numpy as np

from .pick import (channel_type, _get_channel_types,
                   get_channel_type_constants, pick_types, _contains_ch_type)
from .constants import FIFF, _coord_frame_named
from .open import fiff_open
from .tree import dir_tree_find
from .tag import (read_tag, find_tag, _ch_coord_dict, _update_ch_info_named,
                  _rename_list)
from .proj import (_read_proj, _write_proj, _uniquify_projs, _normalize_proj,
                   _proj_equal, Projection)
from .ctf_comp import _read_ctf_comp, write_ctf_comp
from .write import (start_and_end_file, start_block, end_block,
                    write_string, write_dig_points, write_float, write_int,
                    write_coord_trans, write_ch_info, write_name_list,
                    write_julian, write_float_matrix, write_id, DATE_NONE)
from .proc_history import _read_proc_history, _write_proc_history
from ..transforms import (invert_transform, Transform, _coord_frame_name,
                          _ensure_trans, _frame_to_str)
from ..utils import (logger, verbose, warn, object_diff, _validate_type,
                     _stamp_to_dt, _dt_to_stamp, _pl, _is_numeric,
                     _check_option, _on_missing, _check_on_missing, fill_doc,
                     _check_fname, repr_html)
from ._digitization import (_format_dig_points, _dig_kind_proper, DigPoint,
                            _dig_kind_rev, _dig_kind_ints, _read_dig_fif)
from ._digitization import write_dig, _get_data_as_dict_from_dig
from .compensator import get_current_comp
from ..defaults import _handle_default


b = bytes  # alias

_SCALAR_CH_KEYS = ('scanno', 'logno', 'kind', 'range', 'cal', 'coil_type',
                   'unit', 'unit_mul', 'coord_frame')
_ALL_CH_KEYS_SET = set(_SCALAR_CH_KEYS + ('loc', 'ch_name'))
# XXX we need to require these except when doing simplify_info
_MIN_CH_KEYS_SET = set(('kind', 'cal', 'unit', 'loc', 'ch_name'))


def _get_valid_units():
    """Get valid units according to the International System of Units (SI).

    The International System of Units (SI, :footcite:`WikipediaSI`) is the
    default system for describing units in the Brain Imaging Data Structure
    (BIDS). For more information, see the BIDS specification
    :footcite:`BIDSdocs` and the appendix "Units" therein.

    References
    ----------
    .. footbibliography::
    """
    valid_prefix_names = ['yocto', 'zepto', 'atto', 'femto', 'pico', 'nano',
                          'micro', 'milli', 'centi', 'deci', 'deca', 'hecto',
                          'kilo', 'mega', 'giga', 'tera', 'peta', 'exa',
                          'zetta', 'yotta']
    valid_prefix_symbols = ['y', 'z', 'a', 'f', 'p', 'n', u'µ', 'm', 'c', 'd',
                            'da', 'h', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']
    valid_unit_names = ['metre', 'kilogram', 'second', 'ampere', 'kelvin',
                        'mole', 'candela', 'radian', 'steradian', 'hertz',
                        'newton', 'pascal', 'joule', 'watt', 'coulomb', 'volt',
                        'farad', 'ohm', 'siemens', 'weber', 'tesla', 'henry',
                        'degree Celsius', 'lumen', 'lux', 'becquerel', 'gray',
                        'sievert', 'katal']
    valid_unit_symbols = ['m', 'kg', 's', 'A', 'K', 'mol', 'cd', 'rad', 'sr',
                          'Hz', 'N', 'Pa', 'J', 'W', 'C', 'V', 'F', u'Ω', 'S',
                          'Wb', 'T', 'H', u'°C', 'lm', 'lx', 'Bq', 'Gy', 'Sv',
                          'kat']

    # Valid units are all possible combinations of either prefix name or prefix
    # symbol together with either unit name or unit symbol. E.g., nV for
    # nanovolt
    valid_units = []
    valid_units += ([''.join([prefix, unit]) for prefix in valid_prefix_names
                     for unit in valid_unit_names])
    valid_units += ([''.join([prefix, unit]) for prefix in valid_prefix_names
                     for unit in valid_unit_symbols])
    valid_units += ([''.join([prefix, unit]) for prefix in valid_prefix_symbols
                     for unit in valid_unit_names])
    valid_units += ([''.join([prefix, unit]) for prefix in valid_prefix_symbols
                     for unit in valid_unit_symbols])

    # units are also valid without a prefix
    valid_units += valid_unit_names
    valid_units += valid_unit_symbols

    # we also accept "n/a" as a unit, which is the default missing value in
    # BIDS
    valid_units += ["n/a"]

    return tuple(valid_units)


@verbose
def _unique_channel_names(ch_names, max_length=None, verbose=None):
    """Ensure unique channel names."""
    suffixes = tuple(string.ascii_lowercase)
    if max_length is not None:
        ch_names[:] = [name[:max_length] for name in ch_names]
    unique_ids = np.unique(ch_names, return_index=True)[1]
    if len(unique_ids) != len(ch_names):
        dups = {ch_names[x]
                for x in np.setdiff1d(range(len(ch_names)), unique_ids)}
        warn('Channel names are not unique, found duplicates for: '
             '%s. Applying running numbers for duplicates.' % dups)
        for ch_stem in dups:
            overlaps = np.where(np.array(ch_names) == ch_stem)[0]
            # We need an extra character since we append '-'.
            # np.ceil(...) is the maximum number of appended digits.
            if max_length is not None:
                n_keep = (
                    max_length - 1 - int(np.ceil(np.log10(len(overlaps)))))
            else:
                n_keep = np.inf
            n_keep = min(len(ch_stem), n_keep)
            ch_stem = ch_stem[:n_keep]
            for idx, ch_idx in enumerate(overlaps):
                # try idx first, then loop through lower case chars
                for suffix in (idx,) + suffixes:
                    ch_name = ch_stem + '-%s' % suffix
                    if ch_name not in ch_names:
                        break
                if ch_name not in ch_names:
                    ch_names[ch_idx] = ch_name
                else:
                    raise ValueError('Adding a single alphanumeric for a '
                                     'duplicate resulted in another '
                                     'duplicate name %s' % ch_name)
    return ch_names


class MontageMixin(object):
    """Mixin for Montage getting and setting."""

    @fill_doc
    def get_montage(self):
        """Get a DigMontage from instance.

        Returns
        -------
        %(montage)s
        """
        from ..channels.montage import make_dig_montage
        info = self if isinstance(self, Info) else self.info
        if info['dig'] is None:
            return None
        # obtain coord_frame, and landmark coords
        # (nasion, lpa, rpa, hsp, hpi) from DigPoints
        montage_bunch = _get_data_as_dict_from_dig(info['dig'])
        coord_frame = _frame_to_str.get(montage_bunch.coord_frame)

        # get the channel names and chs data structure
        ch_names, chs = info['ch_names'], info['chs']
        picks = pick_types(info, meg=False, eeg=True, seeg=True,
                           ecog=True, dbs=True, fnirs=True, exclude=[])

        # channel positions from dig do not match ch_names one to one,
        # so use loc[:3] instead
        ch_pos = {ch_names[ii]: chs[ii]['loc'][:3] for ii in picks}

        # fNIRS uses multiple channels for the same sensors, we use
        # a private function to format these for dig montage.
        fnirs_picks = pick_types(info, fnirs=True, exclude=[])
        if len(ch_pos) == len(fnirs_picks):
            ch_pos = _get_fnirs_ch_pos(info)
        elif len(fnirs_picks) > 0:
            raise ValueError("MNE does not support getting the montage "
                             "for a mix of fNIRS and other data types. "
                             "Please raise a GitHub issue if you "
                             "require this feature.")

        # create montage
        montage = make_dig_montage(
            ch_pos=ch_pos,
            coord_frame=coord_frame,
            nasion=montage_bunch.nasion,
            lpa=montage_bunch.lpa,
            rpa=montage_bunch.rpa,
            hsp=montage_bunch.hsp,
            hpi=montage_bunch.hpi,
        )
        return montage

    @verbose
    def set_montage(self, montage, match_case=True, match_alias=False,
                    on_missing='raise', verbose=None):
        """Set %(montage_types)s channel positions and digitization points.

        Parameters
        ----------
        %(montage)s
        %(match_case)s
        %(match_alias)s
        %(on_missing_montage)s
        %(verbose)s

        Returns
        -------
        inst : instance of Raw | Epochs | Evoked
            The instance, modified in-place.

        See Also
        --------
        mne.channels.make_standard_montage
        mne.channels.make_dig_montage
        mne.channels.read_custom_montage

        Notes
        -----
        .. warning::
            Only %(montage_types)s channels can have their positions set using
            a montage. Other channel types (e.g., MEG channels) should have
            their positions defined properly using their data reading
            functions.
        """
        # How to set up a montage to old named fif file (walk through example)
        # https://gist.github.com/massich/f6a9f4799f1fbeb8f5e8f8bc7b07d3df

        from ..channels.montage import _set_montage
        info = self if isinstance(self, Info) else self.info
        _set_montage(info, montage, match_case, match_alias, on_missing)
        return self


class ContainsMixin(object):
    """Mixin class for Raw, Evoked, Epochs and Info."""

    def __contains__(self, ch_type):
        """Check channel type membership.

        Parameters
        ----------
        ch_type : str
            Channel type to check for. Can be e.g. 'meg', 'eeg', 'stim', etc.

        Returns
        -------
        in : bool
            Whether or not the instance contains the given channel type.

        Examples
        --------
        Channel type membership can be tested as::

            >>> 'meg' in inst  # doctest: +SKIP
            True
            >>> 'seeg' in inst  # doctest: +SKIP
            False

        """
        info = self if isinstance(self, Info) else self.info
        if ch_type == 'meg':
            has_ch_type = (_contains_ch_type(info, 'mag') or
                           _contains_ch_type(info, 'grad'))
        else:
            has_ch_type = _contains_ch_type(info, ch_type)
        return has_ch_type

    @property
    def compensation_grade(self):
        """The current gradient compensation grade."""
        info = self if isinstance(self, Info) else self.info
        return get_current_comp(info)

    @fill_doc
    def get_channel_types(self, picks=None, unique=False, only_data_chs=False):
        """Get a list of channel type for each channel.

        Parameters
        ----------
        %(picks_all)s
        unique : bool
            Whether to return only unique channel types. Default is ``False``.
        only_data_chs : bool
            Whether to ignore non-data channels. Default is ``False``.

        Returns
        -------
        channel_types : list
            The channel types.
        """
        info = self if isinstance(self, Info) else self.info
        return _get_channel_types(info, picks=picks, unique=unique,
                                  only_data_chs=only_data_chs)


def _format_trans(obj, key):
    try:
        t = obj[key]
    except KeyError:
        pass
    else:
        if t is not None:
            obj[key] = Transform(t['from'], t['to'], t['trans'])


def _check_ch_keys(ch, ci, name='info["chs"]', check_min=True):
    ch_keys = set(ch)
    bad = sorted(ch_keys.difference(_ALL_CH_KEYS_SET))
    if bad:
        raise KeyError(
            f'key{_pl(bad)} errantly present for {name}[{ci}]: {bad}')
    if check_min:
        bad = sorted(_MIN_CH_KEYS_SET.difference(ch_keys))
        if bad:
            raise KeyError(
                f'key{_pl(bad)} missing for {name}[{ci}]: {bad}',)


# As options are added here, test_meas_info.py:test_info_bad should be updated
def _check_bads(bads):
    _validate_type(bads, list, 'bads')
    return bads


def _check_description(description):
    _validate_type(description, (None, str), "info['description']")
    return description


def _check_dev_head_t(dev_head_t):
    _validate_type(dev_head_t, (Transform, None), "info['dev_head_t']")
    if dev_head_t is not None:
        dev_head_t = _ensure_trans(dev_head_t, 'meg', 'head')
    return dev_head_t


def _check_experimenter(experimenter):
    _validate_type(experimenter, (None, str), 'experimenter')
    return experimenter


def _check_line_freq(line_freq):
    _validate_type(line_freq, (None, 'numeric'), 'line_freq')
    line_freq = float(line_freq) if line_freq is not None else line_freq
    return line_freq


def _check_subject_info(subject_info):
    _validate_type(subject_info, (None, dict), 'subject_info')
    return subject_info


def _check_device_info(device_info):
    _validate_type(device_info, (None, dict, ), 'device_info')
    return device_info


def _check_helium_info(helium_info):
    _validate_type(helium_info, (None, dict, ), 'helium_info')
    return helium_info


class Info(dict, MontageMixin, ContainsMixin):
    """Measurement information.

    This data structure behaves like a dictionary. It contains all metadata
    that is available for a recording. However, its keys are restricted to
    those provided by the
    `FIF format specification <https://github.com/mne-tools/fiff-constants>`__,
    so new entries should not be manually added.

    .. note::
        This class should not be instantiated directly via
        ``mne.Info(...)``. Instead, use :func:`mne.create_info` to create
        measurement information from scratch.

    .. warning::
        The only entries that should be manually changed by the user are:
        ``info['bads']``, ``info['description']``, ``info['device_info']``
        ``info['dev_head_t']``, ``info['experimenter']``,
        ``info['helium_info']``, ``info['line_freq']``, ``info['temp']``,
        and ``info['subject_info']``.

        All other entries should be considered read-only, though they can be
        modified by various MNE-Python functions or methods (which have
        safeguards to ensure all fields remain in sync).

    Parameters
    ----------
    *args : list
        Arguments.
    **kwargs : dict
        Keyword arguments.

    Attributes
    ----------
    acq_pars : str | None
        MEG system acquisition parameters.
        See :class:`mne.AcqParserFIF` for details.
    acq_stim : str | None
        MEG system stimulus parameters.
    bads : list of str
        List of bad (noisy/broken) channels, by name. These channels will by
        default be ignored by many processing steps.
    ch_names : list of str
        The names of the channels.
    chs : list of dict
        A list of channel information dictionaries, one per channel.
        See Notes for more information.
    command_line : str
        Contains the command and arguments used to create the source space
        (used for source estimation).
    comps : list of dict
        CTF software gradient compensation data.
        See Notes for more information.
    ctf_head_t : Transform | None
        The transformation from 4D/CTF head coordinates to Neuromag head
        coordinates. This is only present in 4D/CTF data.
    custom_ref_applied : int
        Whether a custom (=other than average) reference has been applied to
        the EEG data. This flag is checked by some algorithms that require an
        average reference to be set.
    description : str | None
        String description of the recording.
    dev_ctf_t : Transform | None
        The transformation from device coordinates to 4D/CTF head coordinates.
        This is only present in 4D/CTF data.
    dev_head_t : Transform | None
        The device to head transformation.
    device_info : dict | None
        Information about the acquisition device. See Notes for details.

        .. versionadded:: 0.19
    dig : list of dict | None
        The Polhemus digitization data in head coordinates.
        See Notes for more information.
    events : list of dict
        Event list, sometimes extracted from the stim channels by Neuromag
        systems. In general this should not be used and
        :func:`mne.find_events` should be used for event processing.
        See Notes for more information.
    experimenter : str | None
        Name of the person that ran the experiment.
    file_id : dict | None
        The FIF globally unique ID. See Notes for more information.
    gantry_angle : float | None
        Tilt angle of the gantry in degrees.
    helium_info : dict | None
        Information about the device helium. See Notes for details.

        .. versionadded:: 0.19
    highpass : float
        Highpass corner frequency in Hertz. Zero indicates a DC recording.
    hpi_meas : list of dict
        HPI measurements that were taken at the start of the recording
        (e.g. coil frequencies).
        See Notes for details.
    hpi_results : list of dict
        Head position indicator (HPI) digitization points and fit information
        (e.g., the resulting transform).
        See Notes for details.
    hpi_subsystem : dict | None
        Information about the HPI subsystem that was used (e.g., event
        channel used for cHPI measurements).
        See Notes for details.
    kit_system_id : int
        Identifies the KIT system.
    line_freq : float | None
        Frequency of the power line in Hertz.
    lowpass : float
        Lowpass corner frequency in Hertz.
        It is automatically set to half the sampling rate if there is
        otherwise no low-pass applied to the data.
    maxshield : bool
        True if active shielding (IAS) was active during recording.
    meas_date : datetime
        The time (UTC) of the recording.

        .. versionchanged:: 0.20
           This is stored as a :class:`~python:datetime.datetime` object
           instead of a tuple of seconds/microseconds.
    meas_file : str | None
        Raw measurement file (used for source estimation).
    meas_id : dict | None
        The ID assigned to this measurement by the acquisition system or
        during file conversion. Follows the same format as ``file_id``.
    mri_file : str | None
        File containing the MRI to head transformation (used for source
        estimation).
    mri_head_t : dict | None
        Transformation from MRI to head coordinates (used for source
        estimation).
    mri_id : dict | None
        MRI unique ID (used for source estimation).
    nchan : int
        Number of channels.
    proc_history : list of dict
        The MaxFilter processing history.
        See Notes for details.
    proj_id : int | None
        ID number of the project the experiment belongs to.
    proj_name : str | None
        Name of the project the experiment belongs to.
    projs : list of Projection
        List of SSP operators that operate on the data.
        See :class:`mne.Projection` for details.
    sfreq : float
        Sampling frequency in Hertz.
    subject_info : dict | None
        Information about the subject.
        See Notes for details.
    temp : object | None
        Can be used to store temporary objects in an Info instance. It will not
        survive an I/O roundtrip.

        .. versionadded:: 0.24
    utc_offset : str
        "UTC offset of related meas_date (sHH:MM).

        .. versionadded:: 0.19
    working_dir : str
        Working directory used when the source space was created (used for
        source estimation).
    xplotter_layout : str
        Layout of the Xplotter (Neuromag system only).

    See Also
    --------
    mne.create_info

    Notes
    -----
    The following parameters have a nested structure.

    * ``chs`` list of dict:

        cal : float
            The calibration factor to bring the channels to physical
            units. Used in product with ``range`` to scale the data read
            from disk.
        ch_name : str
            The channel name.
        coil_type : int
            Coil type, e.g. ``FIFFV_COIL_MEG``.
        coord_frame : int
            The coordinate frame used, e.g. ``FIFFV_COORD_HEAD``.
        kind : int
            The kind of channel, e.g. ``FIFFV_EEG_CH``.
        loc : array, shape (12,)
            Channel location. For MEG this is the position plus the
            normal given by a 3x3 rotation matrix. For EEG this is the
            position followed by reference position (with 6 unused).
            The values are specified in device coordinates for MEG and in
            head coordinates for EEG channels, respectively.
        logno : int
            Logical channel number, conventions in the usage of this
            number vary.
        range : float
            The hardware-oriented part of the calibration factor.
            This should be only applied to the continuous raw data.
            Used in product with ``cal`` to scale data read from disk.
        scanno : int
            Scanning order number, starting from 1.
        unit : int
            The unit to use, e.g. ``FIFF_UNIT_T_M``.
        unit_mul : int
            Unit multipliers, most commonly ``FIFF_UNITM_NONE``.

    * ``comps`` list of dict:

        ctfkind : int
            CTF compensation grade.
        colcals : ndarray
            Column calibrations.
        mat : dict
            A named matrix dictionary (with entries "data", "col_names", etc.)
            containing the compensation matrix.
        rowcals : ndarray
            Row calibrations.
        save_calibrated : bool
            Were the compensation data saved in calibrated form.

    * ``device_info`` dict:

        type : str
            Device type.
        model : str
            Device model.
        serial : str
            Device serial.
        site : str
            Device site.

    * ``dig`` list of dict:

        kind : int
            The kind of channel,
            e.g. ``FIFFV_POINT_EEG``, ``FIFFV_POINT_CARDINAL``.
        r : array, shape (3,)
            3D position in m. and coord_frame.
        ident : int
            Number specifying the identity of the point.
            e.g. ``FIFFV_POINT_NASION`` if kind is ``FIFFV_POINT_CARDINAL``, or
            42 if kind is ``FIFFV_POINT_EEG``.
        coord_frame : int
            The coordinate frame used, e.g. ``FIFFV_COORD_HEAD``.

    * ``events`` list of dict:

        channels : list of int
            Channel indices for the events.
        list : ndarray, shape (n_events * 3,)
            Events in triplets as number of samples, before, after.

    * ``file_id`` dict:

        version : int
            FIF format version, i.e. ``FIFFC_VERSION``.
        machid : ndarray, shape (2,)
            Unique machine ID, usually derived from the MAC address.
        secs : int
            Time in seconds.
        usecs : int
            Time in microseconds.

    * ``helium_info`` dict:

        he_level_raw : float
            Helium level (%) before position correction.
        helium_level : float
            Helium level (%) after position correction.
        orig_file_guid : str
            Original file GUID.
        meas_date : tuple of int
            The helium level meas date.

    * ``hpi_meas`` list of dict:

        creator : str
            Program that did the measurement.
        sfreq : float
            Sample rate.
        nchan : int
            Number of channels used.
        nave : int
            Number of averages used.
        ncoil : int
            Number of coils used.
        first_samp : int
            First sample used.
        last_samp : int
            Last sample used.
        hpi_coils : list of dict
            Coils, containing:

                number: int
                    Coil number
                epoch : ndarray
                    Buffer containing one epoch and channel.
                slopes : ndarray, shape (n_channels,)
                    HPI data.
                corr_coeff : ndarray, shape (n_channels,)
                    HPI curve fit correlations.
                coil_freq : float
                    HPI coil excitation frequency

    * ``hpi_results`` list of dict:

        dig_points : list
            Digitization points (see ``dig`` definition) for the HPI coils.
        order : ndarray, shape (ncoil,)
            The determined digitization order.
        used : ndarray, shape (nused,)
            The indices of the used coils.
        moments : ndarray, shape (ncoil, 3)
            The coil moments.
        goodness : ndarray, shape (ncoil,)
            The goodness of fits.
        good_limit : float
            The goodness of fit limit.
        dist_limit : float
            The distance limit.
        accept : int
            Whether or not the fit was accepted.
        coord_trans : instance of Transformation
            The resulting MEG<->head transformation.

    * ``hpi_subsystem`` dict:

        ncoil : int
            The number of coils.
        event_channel : str
            The event channel used to encode cHPI status (e.g., STI201).
        hpi_coils : list of ndarray
            List of length ``ncoil``, each 4-element ndarray contains the
            event bits used on the event channel to indicate cHPI status
            (using the first element of these arrays is typically
            sufficient).

    * ``mri_id`` dict:

        version : int
            FIF format version, i.e. ``FIFFC_VERSION``.
        machid : ndarray, shape (2,)
            Unique machine ID, usually derived from the MAC address.
        secs : int
            Time in seconds.
        usecs : int
            Time in microseconds.

    * ``proc_history`` list of dict:

        block_id : dict
            See ``id`` above.
        date : ndarray, shape (2,)
            2-element tuple of seconds and microseconds.
        experimenter : str
            Name of the person who ran the program.
        creator : str
            Program that did the processing.
        max_info : dict
            Maxwel filtering info, can contain:

                sss_info : dict
                    SSS processing information.
                max_st
                    tSSS processing information.
                sss_ctc : dict
                    Cross-talk processing information.
                sss_cal : dict
                    Fine-calibration information.
        smartshield : dict
            MaxShield information. This dictionary is (always?) empty,
            but its presence implies that MaxShield was used during
            acquisition.

    * ``subject_info`` dict:

        id : int
            Integer subject identifier.
        his_id : str
            String subject identifier.
        last_name : str
            Last name.
        first_name : str
            First name.
        middle_name : str
            Middle name.
        birthday : tuple of int
            Birthday in (year, month, day) format.
        sex : int
            Subject sex (0=unknown, 1=male, 2=female).
        hand : int
            Handedness (1=right, 2=left, 3=ambidextrous).
        weight : float
            Weight in kilograms.
        height : float
            Height in meters.
    """

    _attributes = {
        'acq_pars': 'acq_pars cannot be set directly. '
                    'See mne.AcqParserFIF() for details.',
        'acq_stim': 'acq_stim cannot be set directly.',
        'bads': _check_bads,
        'ch_names': 'ch_names cannot be set directly. '
                    'Please use methods inst.add_channels(), '
                    'inst.drop_channels(), inst.pick_channels(), '
                    'inst.rename_channels(), inst.reorder_channels() '
                    'and inst.set_channel_types() instead.',
        'chs': 'chs cannot be set directly. '
               'Please use methods inst.add_channels(), '
               'inst.drop_channels(), inst.pick_channels(), '
               'inst.rename_channels(), inst.reorder_channels() '
               'and inst.set_channel_types() instead.',
        'command_line': 'command_line cannot be set directly.',
        'comps': 'comps cannot be set directly. '
                 'Please use method Raw.apply_gradient_compensation() '
                 'instead.',
        'ctf_head_t': 'ctf_head_t cannot be set directly.',
        'custom_ref_applied': 'custom_ref_applied cannot be set directly. '
                              'Please use method inst.set_eeg_reference() '
                              'instead.',
        'description': _check_description,
        'dev_ctf_t': 'dev_ctf_t cannot be set directly.',
        'dev_head_t': _check_dev_head_t,
        'device_info': _check_device_info,
        'dig': 'dig cannot be set directly. '
               'Please use method inst.set_montage() instead.',
        'events': 'events cannot be set directly.',
        'experimenter': _check_experimenter,
        'file_id': 'file_id cannot be set directly.',
        'gantry_angle': 'gantry_angle cannot be set directly.',
        'helium_info': _check_helium_info,
        'highpass': 'highpass cannot be set directly. '
                    'Please use method inst.filter() instead.',
        'hpi_meas': 'hpi_meas can not be set directly.',
        'hpi_results': 'hpi_results cannot be set directly.',
        'hpi_subsystem': 'hpi_subsystem cannot be set directly.',
        'kit_system_id': 'kit_system_id cannot be set directly.',
        'line_freq': _check_line_freq,
        'lowpass': 'lowpass cannot be set directly. '
                   'Please use method inst.filter() instead.',
        'maxshield': 'maxshield cannot be set directly.',
        'meas_date': 'meas_date cannot be set directly. '
                     'Please use method inst.set_meas_date() instead.',
        'meas_file': 'meas_file cannot be set directly.',
        'meas_id': 'meas_id cannot be set directly.',
        'mri_file': 'mri_file cannot be set directly.',
        'mri_head_t': 'mri_head_t cannot be set directly.',
        'mri_id': 'mri_id cannot be set directly.',
        'nchan': 'nchan cannot be set directly. '
                 'Please use methods inst.add_channels(), '
                 'inst.drop_channels(), and inst.pick_channels() instead.',
        'proc_history': 'proc_history cannot be set directly.',
        'proj_id': 'proj_id cannot be set directly.',
        'proj_name': 'proj_name cannot be set directly.',
        'projs': 'projs cannot be set directly. '
                 'Please use methods inst.add_proj() and inst.del_proj() '
                 'instead.',
        'sfreq': 'sfreq cannot be set directly. '
                 'Please use method inst.resample() instead.',
        'subject_info': _check_subject_info,
        'temp': lambda x: x,
        'utc_offset': 'utc_offset cannot be set directly.',
        'working_dir': 'working_dir cannot be set directly.',
        'xplotter_layout': 'xplotter_layout cannot be set directly.'
    }

    def __init__(self, *args, **kwargs):
        self._unlocked = True
        super().__init__(*args, **kwargs)
        # Deal with h5io writing things as dict
        for key in ('dev_head_t', 'ctf_head_t', 'dev_ctf_t'):
            _format_trans(self, key)
        for res in self.get('hpi_results', []):
            _format_trans(res, 'coord_trans')
        if self.get('dig', None) is not None and len(self['dig']):
            if isinstance(self['dig'], dict):  # needs to be unpacked
                self['dig'] = _dict_unpack(self['dig'], _DIG_CAST)
            if not isinstance(self['dig'][0], DigPoint):
                self['dig'] = _format_dig_points(self['dig'])
        if isinstance(self.get('chs', None), dict):
            self['chs']['ch_name'] = [str(x) for x in np.char.decode(
                self['chs']['ch_name'], encoding='utf8')]
            self['chs'] = _dict_unpack(self['chs'], _CH_CAST)
        for pi, proj in enumerate(self.get('projs', [])):
            if not isinstance(proj, Projection):
                self['projs'][pi] = Projection(**proj)
        # Old files could have meas_date as tuple instead of datetime
        try:
            meas_date = self['meas_date']
        except KeyError:
            pass
        else:
            self['meas_date'] = _ensure_meas_date_none_or_dt(meas_date)
        self._unlocked = False

    def __getstate__(self):
        """Get state (for pickling)."""
        return {'_unlocked': self._unlocked}

    def __setstate__(self, state):
        """Set state (for pickling)."""
        self._unlocked = state['_unlocked']

    def __setitem__(self, key, val):
        """Attribute setter."""
        # During unpickling, the _unlocked attribute has not been set, so
        # let __setstate__ do it later and act unlocked now
        unlocked = getattr(self, '_unlocked', True)
        if key in self._attributes:
            if isinstance(self._attributes[key], str):
                if not unlocked:
                    raise RuntimeError(self._attributes[key])
            else:
                val = self._attributes[key](val)  # attribute checker function
        else:
            raise RuntimeError(
                f"Info does not support directly setting the key {repr(key)}. "
                "You can set info['temp'] to store temporary objects in an "
                "Info instance, but these will not survive an I/O round-trip.")
        super().__setitem__(key, val)

    def update(self, other=None, **kwargs):
        """Update method using __setitem__()."""
        iterable = other.items() if isinstance(other, Mapping) else other
        if other is not None:
            for key, val in iterable:
                self[key] = val
        for key, val in kwargs.items():
            self[key] = val

    @contextlib.contextmanager
    def _unlock(self, *, update_redundant=False, check_after=False):
        """Context manager unlocking access to attributes."""
        # needed for nested _unlock()
        state = self._unlocked if hasattr(self, '_unlocked') else False

        self._unlocked = True
        try:
            yield
        except Exception:
            raise
        else:
            if update_redundant:
                self._update_redundant()
            if check_after:
                self._check_consistency()
        finally:
            self._unlocked = state

    def copy(self):
        """Copy the instance.

        Returns
        -------
        info : instance of Info
            The copied info.
        """
        return deepcopy(self)

    def normalize_proj(self):
        """(Re-)Normalize projection vectors after subselection.

        Applying projection after sub-selecting a set of channels that
        were originally used to compute the original projection vectors
        can be dangerous (e.g., if few channels remain, most power was
        in channels that are no longer picked, etc.). By default, mne
        will emit a warning when this is done.

        This function will re-normalize projectors to use only the
        remaining channels, thus avoiding that warning. Only use this
        function if you're confident that the projection vectors still
        adequately capture the original signal of interest.
        """
        _normalize_proj(self)

    def __repr__(self):
        """Summarize info instead of printing all."""
        MAX_WIDTH = 68
        strs = ['<Info | %s non-empty values']
        non_empty = 0
        titles = _handle_default('titles')
        for k, v in self.items():
            if k == 'ch_names':
                if v:
                    entr = shorten(', '.join(v), MAX_WIDTH, placeholder=' ...')
                else:
                    entr = '[]'  # always show
                    non_empty -= 1  # don't count as non-empty
            elif k == 'bads':
                if v:
                    entr = '{} items ('.format(len(v))
                    entr += ', '.join(v)
                    entr = shorten(entr, MAX_WIDTH, placeholder=' ...') + ')'
                else:
                    entr = '[]'  # always show
                    non_empty -= 1  # don't count as non-empty
            elif k == 'projs':
                if v:
                    entr = ', '.join(p['desc'] + ': o%s' %
                                     {0: 'ff', 1: 'n'}[p['active']] for p in v)
                    entr = shorten(entr, MAX_WIDTH, placeholder=' ...')
                else:
                    entr = '[]'  # always show projs
                    non_empty -= 1  # don't count as non-empty
            elif k == 'meas_date':
                if v is None:
                    entr = 'unspecified'
                else:
                    entr = v.strftime('%Y-%m-%d %H:%M:%S %Z')
            elif k == 'kit_system_id' and v is not None:
                from .kit.constants import KIT_SYSNAMES
                entr = '%i (%s)' % (v, KIT_SYSNAMES.get(v, 'unknown'))
            elif k == 'dig' and v is not None:
                counts = Counter(d['kind'] for d in v)
                counts = ['%d %s' % (counts[ii],
                                     _dig_kind_proper[_dig_kind_rev[ii]])
                          for ii in _dig_kind_ints if ii in counts]
                counts = (' (%s)' % (', '.join(counts))) if len(counts) else ''
                entr = '%d item%s%s' % (len(v), _pl(len(v)), counts)
            elif isinstance(v, Transform):
                # show entry only for non-identity transform
                if not np.allclose(v["trans"], np.eye(v["trans"].shape[0])):
                    frame1 = _coord_frame_name(v['from'])
                    frame2 = _coord_frame_name(v['to'])
                    entr = '%s -> %s transform' % (frame1, frame2)
                else:
                    entr = ''
            elif k in ['sfreq', 'lowpass', 'highpass']:
                entr = '{:.1f} Hz'.format(v)
            elif isinstance(v, str):
                entr = shorten(v, MAX_WIDTH, placeholder=' ...')
            elif k == 'chs':
                # TODO someday we should refactor with _repr_html_ with
                # bad vs good
                ch_types = [channel_type(self, idx) for idx in range(len(v))]
                ch_counts = Counter(ch_types)
                entr = ', '.join(
                    f'{count} {titles.get(ch_type, ch_type.upper())}'
                    for ch_type, count in ch_counts.items())
            elif k == 'custom_ref_applied':
                entr = str(bool(v))
                if not v:
                    non_empty -= 1  # don't count if 0
            else:
                try:
                    this_len = len(v)
                except TypeError:
                    entr = '{}'.format(v) if v is not None else ''
                else:
                    if this_len > 0:
                        entr = ('%d item%s (%s)' % (this_len, _pl(this_len),
                                                    type(v).__name__))
                    else:
                        entr = ''
            if entr != '':
                non_empty += 1
                strs.append('%s: %s' % (k, entr))
        st = '\n '.join(sorted(strs))
        st += '\n>'
        st %= non_empty
        return st

    def __deepcopy__(self, memodict):
        """Make a deepcopy."""
        result = Info.__new__(Info)
        result._unlocked = True
        for k, v in self.items():
            # chs is roughly half the time but most are immutable
            if k == 'chs':
                # dict shallow copy is fast, so use it then overwrite
                result[k] = list()
                for ch in v:
                    ch = ch.copy()  # shallow
                    ch['loc'] = ch['loc'].copy()
                    result[k].append(ch)
            elif k == 'ch_names':
                # we know it's list of str, shallow okay and saves ~100 µs
                result[k] = v.copy()
            elif k == 'hpi_meas':
                hms = list()
                for hm in v:
                    hm = hm.copy()
                    # the only mutable thing here is some entries in coils
                    hm['hpi_coils'] = [coil.copy() for coil in hm['hpi_coils']]
                    # There is a *tiny* risk here that someone could write
                    # raw.info['hpi_meas'][0]['hpi_coils'][1]['epoch'] = ...
                    # and assume that info.copy() will make an actual copy,
                    # but copying these entries has a 2x slowdown penalty so
                    # probably not worth it for such a deep corner case:
                    # for coil in hpi_coils:
                    #     for key in ('epoch', 'slopes', 'corr_coeff'):
                    #         coil[key] = coil[key].copy()
                    hms.append(hm)
                result[k] = hms
            else:
                result[k] = deepcopy(v, memodict)
        result._unlocked = False
        return result

    def _check_consistency(self, prepend_error=''):
        """Do some self-consistency checks and datatype tweaks."""
        missing = [bad for bad in self['bads'] if bad not in self['ch_names']]
        if len(missing) > 0:
            msg = '%sbad channel(s) %s marked do not exist in info'
            raise RuntimeError(msg % (prepend_error, missing,))
        meas_date = self.get('meas_date')
        if meas_date is not None:
            if (not isinstance(self['meas_date'], datetime.datetime) or
                    self['meas_date'].tzinfo is None or
                    self['meas_date'].tzinfo is not datetime.timezone.utc):
                raise RuntimeError('%sinfo["meas_date"] must be a datetime '
                                   'object in UTC or None, got %r'
                                   % (prepend_error, repr(self['meas_date']),))

        chs = [ch['ch_name'] for ch in self['chs']]
        if len(self['ch_names']) != len(chs) or any(
                ch_1 != ch_2 for ch_1, ch_2 in zip(self['ch_names'], chs)) or \
                self['nchan'] != len(chs):
            raise RuntimeError('%sinfo channel name inconsistency detected, '
                               'please notify mne-python developers'
                               % (prepend_error,))

        # make sure we have the proper datatypes
        with self._unlock():
            for key in ('sfreq', 'highpass', 'lowpass'):
                if self.get(key) is not None:
                    self[key] = float(self[key])

        for pi, proj in enumerate(self.get('projs', [])):
            _validate_type(proj, Projection, f'info["projs"][{pi}]')
            for key in ('kind', 'active', 'desc', 'data', 'explained_var'):
                if key not in proj:
                    raise RuntimeError(f'Projection incomplete, missing {key}')

        # Ensure info['chs'] has immutable entries (copies much faster)
        for ci, ch in enumerate(self['chs']):
            _check_ch_keys(ch, ci)
            ch_name = ch['ch_name']
            if not isinstance(ch_name, str):
                raise TypeError(
                    'Bad info: info["chs"][%d]["ch_name"] is not a string, '
                    'got type %s' % (ci, type(ch_name)))
            for key in _SCALAR_CH_KEYS:
                val = ch.get(key, 1)
                if not _is_numeric(val):
                    raise TypeError(
                        'Bad info: info["chs"][%d][%r] = %s is type %s, must '
                        'be float or int' % (ci, key, val, type(val)))
            loc = ch['loc']
            if not (isinstance(loc, np.ndarray) and loc.shape == (12,)):
                raise TypeError(
                    'Bad info: info["chs"][%d]["loc"] must be ndarray with '
                    '12 elements, got %r' % (ci, loc))

        # make sure channel names are unique
        with self._unlock():
            self['ch_names'] = _unique_channel_names(self['ch_names'])
            for idx, ch_name in enumerate(self['ch_names']):
                self['chs'][idx]['ch_name'] = ch_name

    def _update_redundant(self):
        """Update the redundant entries."""
        with self._unlock():
            self['ch_names'] = [ch['ch_name'] for ch in self['chs']]
            self['nchan'] = len(self['chs'])

    @property
    def ch_names(self):
        return self['ch_names']

    def _get_chs_for_repr(self):
        titles = _handle_default('titles')

        # good channels
        channels = {}
        ch_types = [channel_type(self, idx) for idx in range(len(self['chs']))]
        ch_counts = Counter(ch_types)
        for ch_type, count in ch_counts.items():
            if ch_type == 'meg':
                channels['mag'] = len(pick_types(self, meg='mag'))
                channels['grad'] = len(pick_types(self, meg='grad'))
            elif ch_type == 'eog':
                pick_eog = pick_types(self, eog=True)
                eog = ', '.join(
                    np.array(self['ch_names'])[pick_eog])
            elif ch_type == 'ecg':
                pick_ecg = pick_types(self, ecg=True)
                ecg = ', '.join(
                    np.array(self['ch_names'])[pick_ecg])
            channels[ch_type] = count

        good_channels = ', '.join(
            [f'{v} {titles.get(k, k.upper())}' for k, v in channels.items()])

        if 'ecg' not in channels.keys():
            ecg = 'Not available'
        if 'eog' not in channels.keys():
            eog = 'Not available'

        # bad channels
        if len(self['bads']) > 0:
            bad_channels = ', '.join(self['bads'])
        else:
            bad_channels = 'None'

        return good_channels, bad_channels, ecg, eog

    @repr_html
    def _repr_html_(self, caption=None):
        """Summarize info for HTML representation."""
        from ..html_templates import repr_templates_env
        if isinstance(caption, str):
            html = f'<h4>{caption}</h4>'
        else:
            html = ''

        good_channels, bad_channels, ecg, eog = self._get_chs_for_repr()

        # TODO
        # Most of the following checks are to ensure that we get a proper repr
        # for Forward['info'] (and probably others like
        # InverseOperator['info']??), which doesn't seem to follow our standard
        # Info structure used elsewhere.
        # Proposed solution for a future refactoring:
        # Forward['info'] should get its own Info subclass (with respective
        # repr).

        # meas date
        meas_date = self.get('meas_date')
        if meas_date is not None:
            meas_date = meas_date.strftime("%B %d, %Y  %H:%M:%S") + ' GMT'

        projs = self.get('projs')
        if projs:
            projs = [
                f'{p["desc"]} : {"on" if p["active"] else "off"}'
                for p in self['projs']
            ]
        else:
            projs = None

        info_template = repr_templates_env.get_template('info.html.jinja')
        return html + info_template.render(
            caption=caption,
            meas_date=meas_date,
            projs=projs,
            ecg=ecg,
            eog=eog,
            good_channels=good_channels,
            bad_channels=bad_channels,
            dig=self.get('dig'),
            subject_info=self.get('subject_info'),
            lowpass=self.get('lowpass'),
            highpass=self.get('highpass'),
            sfreq=self.get('sfreq'),
            experimenter=self.get('experimenter'),
        )


def _simplify_info(info):
    """Return a simplified info structure to speed up picking."""
    chs = [{key: ch[key]
            for key in ('ch_name', 'kind', 'unit', 'coil_type', 'loc', 'cal')}
           for ch in info['chs']]
    sub_info = Info(chs=chs, bads=info['bads'], comps=info['comps'],
                    projs=info['projs'],
                    custom_ref_applied=info['custom_ref_applied'])
    sub_info._update_redundant()
    return sub_info


@verbose
def read_fiducials(fname, verbose=None):
    """Read fiducials from a fiff file.

    Parameters
    ----------
    fname : path-like
        The filename to read.
    %(verbose)s

    Returns
    -------
    pts : list of dict
        List of digitizer points (each point in a dict).
    coord_frame : int
        The coordinate frame of the points (one of
        ``mne.io.constants.FIFF.FIFFV_COORD_...``).
    """
    fname = _check_fname(
        fname=fname,
        overwrite='read',
        must_exist=True
    )
    fid, tree, _ = fiff_open(fname)
    with fid:
        isotrak = dir_tree_find(tree, FIFF.FIFFB_ISOTRAK)
        isotrak = isotrak[0]
        pts = []
        coord_frame = FIFF.FIFFV_COORD_HEAD
        for k in range(isotrak['nent']):
            kind = isotrak['directory'][k].kind
            pos = isotrak['directory'][k].pos
            if kind == FIFF.FIFF_DIG_POINT:
                tag = read_tag(fid, pos)
                pts.append(DigPoint(tag.data))
            elif kind == FIFF.FIFF_MNE_COORD_FRAME:
                tag = read_tag(fid, pos)
                coord_frame = tag.data[0]
                coord_frame = _coord_frame_named.get(coord_frame, coord_frame)

    # coord_frame is not stored in the tag
    for pt in pts:
        pt['coord_frame'] = coord_frame

    return pts, coord_frame


@verbose
def write_fiducials(fname, pts, coord_frame='unknown', *, overwrite=False,
                    verbose=None):
    """Write fiducials to a fiff file.

    Parameters
    ----------
    fname : path-like
        Destination file name.
    pts : iterator of dict
        Iterator through digitizer points. Each point is a dictionary with
        the keys 'kind', 'ident' and 'r'.
    coord_frame : str | int
        The coordinate frame of the points. If a string, must be one of
        ``'meg'``, ``'mri'``, ``'mri_voxel'``, ``'head'``,
        ``'mri_tal'``, ``'ras'``, ``'fs_tal'``, ``'ctf_head'``,
        ``'ctf_meg'``, and ``'unknown'``
        If an integer, must be one of the constants defined as
        ``mne.io.constants.FIFF.FIFFV_COORD_...``.
    %(overwrite)s

        .. versionadded:: 1.0
    %(verbose)s
    """
    write_dig(fname, pts, coord_frame, overwrite=overwrite)


@verbose
def read_info(fname, verbose=None):
    """Read measurement info from a file.

    Parameters
    ----------
    fname : str
        File name.
    %(verbose)s

    Returns
    -------
    %(info_not_none)s
    """
    f, tree, _ = fiff_open(fname)
    with f as fid:
        info = read_meas_info(fid, tree)[0]
    return info


def read_bad_channels(fid, node):
    """Read bad channels.

    Parameters
    ----------
    fid : file
        The file descriptor.
    node : dict
        The node of the FIF tree that contains info on the bad channels.

    Returns
    -------
    bads : list
        A list of bad channel's names.
    """
    return _read_bad_channels(fid, node)


def _read_bad_channels(fid, node, ch_names_mapping):
    ch_names_mapping = {} if ch_names_mapping is None else ch_names_mapping
    nodes = dir_tree_find(node, FIFF.FIFFB_MNE_BAD_CHANNELS)

    bads = []
    if len(nodes) > 0:
        for node in nodes:
            tag = find_tag(fid, node, FIFF.FIFF_MNE_CH_NAME_LIST)
            if tag is not None and tag.data is not None:
                bads = tag.data.split(':')
    bads[:] = _rename_list(bads, ch_names_mapping)
    return bads


@verbose
def read_meas_info(fid, tree, clean_bads=False, verbose=None):
    """Read the measurement info.

    Parameters
    ----------
    fid : file
        Open file descriptor.
    tree : tree
        FIF tree structure.
    clean_bads : bool
        If True, clean info['bads'] before running consistency check.
        Should only be needed for old files where we did not check bads
        before saving.
    %(verbose)s

    Returns
    -------
    %(info_not_none)s
    meas : dict
        Node in tree that contains the info.
    """
    #   Find the desired blocks
    meas = dir_tree_find(tree, FIFF.FIFFB_MEAS)
    if len(meas) == 0:
        raise ValueError('Could not find measurement data')
    if len(meas) > 1:
        raise ValueError('Cannot read more that 1 measurement data')
    meas = meas[0]

    meas_info = dir_tree_find(meas, FIFF.FIFFB_MEAS_INFO)
    if len(meas_info) == 0:
        raise ValueError('Could not find measurement info')
    if len(meas_info) > 1:
        raise ValueError('Cannot read more that 1 measurement info')
    meas_info = meas_info[0]

    #   Read measurement info
    dev_head_t = None
    ctf_head_t = None
    dev_ctf_t = None
    meas_date = None
    utc_offset = None
    highpass = None
    lowpass = None
    nchan = None
    sfreq = None
    chs = []
    experimenter = None
    description = None
    proj_id = None
    proj_name = None
    line_freq = None
    gantry_angle = None
    custom_ref_applied = FIFF.FIFFV_MNE_CUSTOM_REF_OFF
    xplotter_layout = None
    kit_system_id = None
    for k in range(meas_info['nent']):
        kind = meas_info['directory'][k].kind
        pos = meas_info['directory'][k].pos
        if kind == FIFF.FIFF_NCHAN:
            tag = read_tag(fid, pos)
            nchan = int(tag.data)
        elif kind == FIFF.FIFF_SFREQ:
            tag = read_tag(fid, pos)
            sfreq = float(tag.data)
        elif kind == FIFF.FIFF_CH_INFO:
            tag = read_tag(fid, pos)
            chs.append(tag.data)
        elif kind == FIFF.FIFF_LOWPASS:
            tag = read_tag(fid, pos)
            if not np.isnan(tag.data):
                lowpass = float(tag.data)
        elif kind == FIFF.FIFF_HIGHPASS:
            tag = read_tag(fid, pos)
            if not np.isnan(tag.data):
                highpass = float(tag.data)
        elif kind == FIFF.FIFF_MEAS_DATE:
            tag = read_tag(fid, pos)
            meas_date = tuple(tag.data)
            if len(meas_date) == 1:  # can happen from old C conversions
                meas_date = (meas_date[0], 0)
        elif kind == FIFF.FIFF_UTC_OFFSET:
            tag = read_tag(fid, pos)
            utc_offset = str(tag.data)
        elif kind == FIFF.FIFF_COORD_TRANS:
            tag = read_tag(fid, pos)
            cand = tag.data

            if cand['from'] == FIFF.FIFFV_COORD_DEVICE and \
                    cand['to'] == FIFF.FIFFV_COORD_HEAD:
                dev_head_t = cand
            elif cand['from'] == FIFF.FIFFV_COORD_HEAD and \
                    cand['to'] == FIFF.FIFFV_COORD_DEVICE:
                # this reversal can happen with BabyMEG data
                dev_head_t = invert_transform(cand)
            elif cand['from'] == FIFF.FIFFV_MNE_COORD_CTF_HEAD and \
                    cand['to'] == FIFF.FIFFV_COORD_HEAD:
                ctf_head_t = cand
            elif cand['from'] == FIFF.FIFFV_MNE_COORD_CTF_DEVICE and \
                    cand['to'] == FIFF.FIFFV_MNE_COORD_CTF_HEAD:
                dev_ctf_t = cand
        elif kind == FIFF.FIFF_EXPERIMENTER:
            tag = read_tag(fid, pos)
            experimenter = tag.data
        elif kind == FIFF.FIFF_DESCRIPTION:
            tag = read_tag(fid, pos)
            description = tag.data
        elif kind == FIFF.FIFF_PROJ_ID:
            tag = read_tag(fid, pos)
            proj_id = tag.data
        elif kind == FIFF.FIFF_PROJ_NAME:
            tag = read_tag(fid, pos)
            proj_name = tag.data
        elif kind == FIFF.FIFF_LINE_FREQ:
            tag = read_tag(fid, pos)
            line_freq = float(tag.data)
        elif kind == FIFF.FIFF_GANTRY_ANGLE:
            tag = read_tag(fid, pos)
            gantry_angle = float(tag.data)
        elif kind in [FIFF.FIFF_MNE_CUSTOM_REF, 236]:  # 236 used before v0.11
            tag = read_tag(fid, pos)
            custom_ref_applied = int(tag.data)
        elif kind == FIFF.FIFF_XPLOTTER_LAYOUT:
            tag = read_tag(fid, pos)
            xplotter_layout = str(tag.data)
        elif kind == FIFF.FIFF_MNE_KIT_SYSTEM_ID:
            tag = read_tag(fid, pos)
            kit_system_id = int(tag.data)
    ch_names_mapping = _read_extended_ch_info(chs, meas_info, fid)

    # Check that we have everything we need
    if nchan is None:
        raise ValueError('Number of channels is not defined')

    if sfreq is None:
        raise ValueError('Sampling frequency is not defined')

    if len(chs) == 0:
        raise ValueError('Channel information not defined')

    if len(chs) != nchan:
        raise ValueError('Incorrect number of channel definitions found')

    if dev_head_t is None or ctf_head_t is None:
        hpi_result = dir_tree_find(meas_info, FIFF.FIFFB_HPI_RESULT)
        if len(hpi_result) == 1:
            hpi_result = hpi_result[0]
            for k in range(hpi_result['nent']):
                kind = hpi_result['directory'][k].kind
                pos = hpi_result['directory'][k].pos
                if kind == FIFF.FIFF_COORD_TRANS:
                    tag = read_tag(fid, pos)
                    cand = tag.data
                    if (cand['from'] == FIFF.FIFFV_COORD_DEVICE and
                            cand['to'] == FIFF.FIFFV_COORD_HEAD and
                            dev_head_t is None):
                        dev_head_t = cand
                    elif (cand['from'] == FIFF.FIFFV_MNE_COORD_CTF_HEAD and
                          cand['to'] == FIFF.FIFFV_COORD_HEAD and
                          ctf_head_t is None):
                        ctf_head_t = cand

    #   Locate the Polhemus data
    dig = _read_dig_fif(fid, meas_info)

    #   Locate the acquisition information
    acqpars = dir_tree_find(meas_info, FIFF.FIFFB_DACQ_PARS)
    acq_pars = None
    acq_stim = None
    if len(acqpars) == 1:
        acqpars = acqpars[0]
        for k in range(acqpars['nent']):
            kind = acqpars['directory'][k].kind
            pos = acqpars['directory'][k].pos
            if kind == FIFF.FIFF_DACQ_PARS:
                tag = read_tag(fid, pos)
                acq_pars = tag.data
            elif kind == FIFF.FIFF_DACQ_STIM:
                tag = read_tag(fid, pos)
                acq_stim = tag.data

    #   Load the SSP data
    projs = _read_proj(
        fid, meas_info, ch_names_mapping=ch_names_mapping)

    #   Load the CTF compensation data
    comps = _read_ctf_comp(
        fid, meas_info, chs, ch_names_mapping=ch_names_mapping)

    #   Load the bad channel list
    bads = _read_bad_channels(
        fid, meas_info, ch_names_mapping=ch_names_mapping)

    #
    #   Put the data together
    #
    info = Info(file_id=tree['id'])
    info._unlocked = True

    #   Locate events list
    events = dir_tree_find(meas_info, FIFF.FIFFB_EVENTS)
    evs = list()
    for event in events:
        ev = dict()
        for k in range(event['nent']):
            kind = event['directory'][k].kind
            pos = event['directory'][k].pos
            if kind == FIFF.FIFF_EVENT_CHANNELS:
                ev['channels'] = read_tag(fid, pos).data
            elif kind == FIFF.FIFF_EVENT_LIST:
                ev['list'] = read_tag(fid, pos).data
        evs.append(ev)
    info['events'] = evs

    #   Locate HPI result
    hpi_results = dir_tree_find(meas_info, FIFF.FIFFB_HPI_RESULT)
    hrs = list()
    for hpi_result in hpi_results:
        hr = dict()
        hr['dig_points'] = []
        for k in range(hpi_result['nent']):
            kind = hpi_result['directory'][k].kind
            pos = hpi_result['directory'][k].pos
            if kind == FIFF.FIFF_DIG_POINT:
                hr['dig_points'].append(read_tag(fid, pos).data)
            elif kind == FIFF.FIFF_HPI_DIGITIZATION_ORDER:
                hr['order'] = read_tag(fid, pos).data
            elif kind == FIFF.FIFF_HPI_COILS_USED:
                hr['used'] = read_tag(fid, pos).data
            elif kind == FIFF.FIFF_HPI_COIL_MOMENTS:
                hr['moments'] = read_tag(fid, pos).data
            elif kind == FIFF.FIFF_HPI_FIT_GOODNESS:
                hr['goodness'] = read_tag(fid, pos).data
            elif kind == FIFF.FIFF_HPI_FIT_GOOD_LIMIT:
                hr['good_limit'] = float(read_tag(fid, pos).data)
            elif kind == FIFF.FIFF_HPI_FIT_DIST_LIMIT:
                hr['dist_limit'] = float(read_tag(fid, pos).data)
            elif kind == FIFF.FIFF_HPI_FIT_ACCEPT:
                hr['accept'] = int(read_tag(fid, pos).data)
            elif kind == FIFF.FIFF_COORD_TRANS:
                hr['coord_trans'] = read_tag(fid, pos).data
        hrs.append(hr)
    info['hpi_results'] = hrs

    #   Locate HPI Measurement
    hpi_meass = dir_tree_find(meas_info, FIFF.FIFFB_HPI_MEAS)
    hms = list()
    for hpi_meas in hpi_meass:
        hm = dict()
        for k in range(hpi_meas['nent']):
            kind = hpi_meas['directory'][k].kind
            pos = hpi_meas['directory'][k].pos
            if kind == FIFF.FIFF_CREATOR:
                hm['creator'] = str(read_tag(fid, pos).data)
            elif kind == FIFF.FIFF_SFREQ:
                hm['sfreq'] = float(read_tag(fid, pos).data)
            elif kind == FIFF.FIFF_NCHAN:
                hm['nchan'] = int(read_tag(fid, pos).data)
            elif kind == FIFF.FIFF_NAVE:
                hm['nave'] = int(read_tag(fid, pos).data)
            elif kind == FIFF.FIFF_HPI_NCOIL:
                hm['ncoil'] = int(read_tag(fid, pos).data)
            elif kind == FIFF.FIFF_FIRST_SAMPLE:
                hm['first_samp'] = int(read_tag(fid, pos).data)
            elif kind == FIFF.FIFF_LAST_SAMPLE:
                hm['last_samp'] = int(read_tag(fid, pos).data)
        hpi_coils = dir_tree_find(hpi_meas, FIFF.FIFFB_HPI_COIL)
        hcs = []
        for hpi_coil in hpi_coils:
            hc = dict()
            for k in range(hpi_coil['nent']):
                kind = hpi_coil['directory'][k].kind
                pos = hpi_coil['directory'][k].pos
                if kind == FIFF.FIFF_HPI_COIL_NO:
                    hc['number'] = int(read_tag(fid, pos).data)
                elif kind == FIFF.FIFF_EPOCH:
                    hc['epoch'] = read_tag(fid, pos).data
                    hc['epoch'].flags.writeable = False
                elif kind == FIFF.FIFF_HPI_SLOPES:
                    hc['slopes'] = read_tag(fid, pos).data
                    hc['slopes'].flags.writeable = False
                elif kind == FIFF.FIFF_HPI_CORR_COEFF:
                    hc['corr_coeff'] = read_tag(fid, pos).data
                    hc['corr_coeff'].flags.writeable = False
                elif kind == FIFF.FIFF_HPI_COIL_FREQ:
                    hc['coil_freq'] = float(read_tag(fid, pos).data)
            hcs.append(hc)
        hm['hpi_coils'] = hcs
        hms.append(hm)
    info['hpi_meas'] = hms
    del hms

    subject_info = dir_tree_find(meas_info, FIFF.FIFFB_SUBJECT)
    si = None
    if len(subject_info) == 1:
        subject_info = subject_info[0]
        si = dict()
        for k in range(subject_info['nent']):
            kind = subject_info['directory'][k].kind
            pos = subject_info['directory'][k].pos
            if kind == FIFF.FIFF_SUBJ_ID:
                tag = read_tag(fid, pos)
                si['id'] = int(tag.data)
            elif kind == FIFF.FIFF_SUBJ_HIS_ID:
                tag = read_tag(fid, pos)
                si['his_id'] = str(tag.data)
            elif kind == FIFF.FIFF_SUBJ_LAST_NAME:
                tag = read_tag(fid, pos)
                si['last_name'] = str(tag.data)
            elif kind == FIFF.FIFF_SUBJ_FIRST_NAME:
                tag = read_tag(fid, pos)
                si['first_name'] = str(tag.data)
            elif kind == FIFF.FIFF_SUBJ_MIDDLE_NAME:
                tag = read_tag(fid, pos)
                si['middle_name'] = str(tag.data)
            elif kind == FIFF.FIFF_SUBJ_BIRTH_DAY:
                try:
                    tag = read_tag(fid, pos)
                except OverflowError:
                    warn('Encountered an error while trying to read the '
                         'birthday from the input data. No birthday will be '
                         'set. Please check the integrity of the birthday '
                         'information in the input data.')
                    continue
                si['birthday'] = tag.data
            elif kind == FIFF.FIFF_SUBJ_SEX:
                tag = read_tag(fid, pos)
                si['sex'] = int(tag.data)
            elif kind == FIFF.FIFF_SUBJ_HAND:
                tag = read_tag(fid, pos)
                si['hand'] = int(tag.data)
            elif kind == FIFF.FIFF_SUBJ_WEIGHT:
                tag = read_tag(fid, pos)
                si['weight'] = tag.data
            elif kind == FIFF.FIFF_SUBJ_HEIGHT:
                tag = read_tag(fid, pos)
                si['height'] = tag.data
    info['subject_info'] = si
    del si

    device_info = dir_tree_find(meas_info, FIFF.FIFFB_DEVICE)
    di = None
    if len(device_info) == 1:
        device_info = device_info[0]
        di = dict()
        for k in range(device_info['nent']):
            kind = device_info['directory'][k].kind
            pos = device_info['directory'][k].pos
            if kind == FIFF.FIFF_DEVICE_TYPE:
                tag = read_tag(fid, pos)
                di['type'] = str(tag.data)
            elif kind == FIFF.FIFF_DEVICE_MODEL:
                tag = read_tag(fid, pos)
                di['model'] = str(tag.data)
            elif kind == FIFF.FIFF_DEVICE_SERIAL:
                tag = read_tag(fid, pos)
                di['serial'] = str(tag.data)
            elif kind == FIFF.FIFF_DEVICE_SITE:
                tag = read_tag(fid, pos)
                di['site'] = str(tag.data)
    info['device_info'] = di
    del di

    helium_info = dir_tree_find(meas_info, FIFF.FIFFB_HELIUM)
    hi = None
    if len(helium_info) == 1:
        helium_info = helium_info[0]
        hi = dict()
        for k in range(helium_info['nent']):
            kind = helium_info['directory'][k].kind
            pos = helium_info['directory'][k].pos
            if kind == FIFF.FIFF_HE_LEVEL_RAW:
                tag = read_tag(fid, pos)
                hi['he_level_raw'] = float(tag.data)
            elif kind == FIFF.FIFF_HELIUM_LEVEL:
                tag = read_tag(fid, pos)
                hi['helium_level'] = float(tag.data)
            elif kind == FIFF.FIFF_ORIG_FILE_GUID:
                tag = read_tag(fid, pos)
                hi['orig_file_guid'] = str(tag.data)
            elif kind == FIFF.FIFF_MEAS_DATE:
                tag = read_tag(fid, pos)
                hi['meas_date'] = tuple(int(t) for t in tag.data)
    info['helium_info'] = hi
    del hi

    hpi_subsystem = dir_tree_find(meas_info, FIFF.FIFFB_HPI_SUBSYSTEM)
    hs = None
    if len(hpi_subsystem) == 1:
        hpi_subsystem = hpi_subsystem[0]
        hs = dict()
        for k in range(hpi_subsystem['nent']):
            kind = hpi_subsystem['directory'][k].kind
            pos = hpi_subsystem['directory'][k].pos
            if kind == FIFF.FIFF_HPI_NCOIL:
                tag = read_tag(fid, pos)
                hs['ncoil'] = int(tag.data)
            elif kind == FIFF.FIFF_EVENT_CHANNEL:
                tag = read_tag(fid, pos)
                hs['event_channel'] = str(tag.data)
            hpi_coils = dir_tree_find(hpi_subsystem, FIFF.FIFFB_HPI_COIL)
            hc = []
            for coil in hpi_coils:
                this_coil = dict()
                for j in range(coil['nent']):
                    kind = coil['directory'][j].kind
                    pos = coil['directory'][j].pos
                    if kind == FIFF.FIFF_EVENT_BITS:
                        tag = read_tag(fid, pos)
                        this_coil['event_bits'] = np.array(tag.data)
                hc.append(this_coil)
            hs['hpi_coils'] = hc
    info['hpi_subsystem'] = hs

    #   Read processing history
    info['proc_history'] = _read_proc_history(fid, tree)

    #  Make the most appropriate selection for the measurement id
    if meas_info['parent_id'] is None:
        if meas_info['id'] is None:
            if meas['id'] is None:
                if meas['parent_id'] is None:
                    info['meas_id'] = info['file_id']
                else:
                    info['meas_id'] = meas['parent_id']
            else:
                info['meas_id'] = meas['id']
        else:
            info['meas_id'] = meas_info['id']
    else:
        info['meas_id'] = meas_info['parent_id']
    info['experimenter'] = experimenter
    info['description'] = description
    info['proj_id'] = proj_id
    info['proj_name'] = proj_name
    if meas_date is None:
        meas_date = (info['meas_id']['secs'], info['meas_id']['usecs'])
    info['meas_date'] = _ensure_meas_date_none_or_dt(meas_date)
    info['utc_offset'] = utc_offset

    info['sfreq'] = sfreq
    info['highpass'] = highpass if highpass is not None else 0.
    info['lowpass'] = lowpass if lowpass is not None else info['sfreq'] / 2.0
    info['line_freq'] = line_freq
    info['gantry_angle'] = gantry_angle

    #   Add the channel information and make a list of channel names
    #   for convenience
    info['chs'] = chs

    #
    #   Add the coordinate transformations
    #
    info['dev_head_t'] = dev_head_t
    info['ctf_head_t'] = ctf_head_t
    info['dev_ctf_t'] = dev_ctf_t
    if dev_head_t is not None and ctf_head_t is not None and dev_ctf_t is None:
        from ..transforms import Transform
        head_ctf_trans = np.linalg.inv(ctf_head_t['trans'])
        dev_ctf_trans = np.dot(head_ctf_trans, info['dev_head_t']['trans'])
        info['dev_ctf_t'] = Transform('meg', 'ctf_head', dev_ctf_trans)

    #   All kinds of auxliary stuff
    info['dig'] = _format_dig_points(dig)
    info['bads'] = bads
    info._update_redundant()
    if clean_bads:
        info['bads'] = [b for b in bads if b in info['ch_names']]
    info['projs'] = projs
    info['comps'] = comps
    info['acq_pars'] = acq_pars
    info['acq_stim'] = acq_stim
    info['custom_ref_applied'] = custom_ref_applied
    info['xplotter_layout'] = xplotter_layout
    info['kit_system_id'] = kit_system_id
    info._check_consistency()
    info._unlocked = False
    return info, meas


def _read_extended_ch_info(chs, parent, fid):
    ch_infos = dir_tree_find(parent, FIFF.FIFFB_CH_INFO)
    if len(ch_infos) == 0:
        return
    _check_option('length of channel infos', len(ch_infos), [len(chs)])
    logger.info('    Reading extended channel information')

    # Here we assume that ``remap`` is in the same order as the channels
    # themselves, which is hopefully safe enough.
    ch_names_mapping = dict()
    for new, ch in zip(ch_infos, chs):
        for k in range(new['nent']):
            kind = new['directory'][k].kind
            try:
                key, cast = _CH_READ_MAP[kind]
            except KeyError:
                # This shouldn't happen if we're up to date with the FIFF
                # spec
                warn(f'Discarding extra channel information kind {kind}')
                continue
            assert key in ch
            data = read_tag(fid, new['directory'][k].pos).data
            if data is not None:
                data = cast(data)
                if key == 'ch_name':
                    ch_names_mapping[ch[key]] = data
                ch[key] = data
        _update_ch_info_named(ch)
    # we need to return ch_names_mapping so that we can also rename the
    # bad channels
    return ch_names_mapping


def _rename_comps(comps, ch_names_mapping):
    if not (comps and ch_names_mapping):
        return
    for comp in comps:
        data = comp['data']
        for key in ('row_names', 'col_names'):
            data[key][:] = _rename_list(data[key], ch_names_mapping)


def _ensure_meas_date_none_or_dt(meas_date):
    if meas_date is None or np.array_equal(meas_date, DATE_NONE):
        meas_date = None
    elif not isinstance(meas_date, datetime.datetime):
        meas_date = _stamp_to_dt(meas_date)
    return meas_date


def _check_dates(info, prepend_error=''):
    """Check dates before writing as fif files.

    It's needed because of the limited integer precision
    of the fix standard.
    """
    for key in ('file_id', 'meas_id'):
        value = info.get(key)
        if value is not None:
            assert 'msecs' not in value
            for key_2 in ('secs', 'usecs'):
                if (value[key_2] < np.iinfo('>i4').min or
                        value[key_2] > np.iinfo('>i4').max):
                    raise RuntimeError('%sinfo[%s][%s] must be between '
                                       '"%r" and "%r", got "%r"'
                                       % (prepend_error, key, key_2,
                                          np.iinfo('>i4').min,
                                          np.iinfo('>i4').max,
                                          value[key_2]),)

    meas_date = info.get('meas_date')
    if meas_date is None:
        return

    meas_date_stamp = _dt_to_stamp(meas_date)
    if (meas_date_stamp[0] < np.iinfo('>i4').min or
            meas_date_stamp[0] > np.iinfo('>i4').max):
        raise RuntimeError(
            '%sinfo["meas_date"] seconds must be between "%r" '
            'and "%r", got "%r"'
            % (prepend_error, (np.iinfo('>i4').min, 0),
               (np.iinfo('>i4').max, 0), meas_date_stamp[0],))


@fill_doc
def write_meas_info(fid, info, data_type=None, reset_range=True):
    """Write measurement info into a file id (from a fif file).

    Parameters
    ----------
    fid : file
        Open file descriptor.
    %(info_not_none)s
    data_type : int
        The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT),
        5 (FIFFT_DOUBLE), or 16 (FIFFT_DAU_PACK16) for
        raw data.
    reset_range : bool
        If True, info['chs'][k]['range'] will be set to unity.

    Notes
    -----
    Tags are written in a particular order for compatibility with maxfilter.
    """
    info._check_consistency()
    _check_dates(info)

    # Measurement info
    start_block(fid, FIFF.FIFFB_MEAS_INFO)

    # Add measurement id
    if info['meas_id'] is not None:
        write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id'])

    for event in info['events']:
        start_block(fid, FIFF.FIFFB_EVENTS)
        if event.get('channels') is not None:
            write_int(fid, FIFF.FIFF_EVENT_CHANNELS, event['channels'])
        if event.get('list') is not None:
            write_int(fid, FIFF.FIFF_EVENT_LIST, event['list'])
        end_block(fid, FIFF.FIFFB_EVENTS)

    #   HPI Result
    for hpi_result in info['hpi_results']:
        start_block(fid, FIFF.FIFFB_HPI_RESULT)
        write_dig_points(fid, hpi_result['dig_points'])
        if 'order' in hpi_result:
            write_int(fid, FIFF.FIFF_HPI_DIGITIZATION_ORDER,
                      hpi_result['order'])
        if 'used' in hpi_result:
            write_int(fid, FIFF.FIFF_HPI_COILS_USED, hpi_result['used'])
        if 'moments' in hpi_result:
            write_float_matrix(fid, FIFF.FIFF_HPI_COIL_MOMENTS,
                               hpi_result['moments'])
        if 'goodness' in hpi_result:
            write_float(fid, FIFF.FIFF_HPI_FIT_GOODNESS,
                        hpi_result['goodness'])
        if 'good_limit' in hpi_result:
            write_float(fid, FIFF.FIFF_HPI_FIT_GOOD_LIMIT,
                        hpi_result['good_limit'])
        if 'dist_limit' in hpi_result:
            write_float(fid, FIFF.FIFF_HPI_FIT_DIST_LIMIT,
                        hpi_result['dist_limit'])
        if 'accept' in hpi_result:
            write_int(fid, FIFF.FIFF_HPI_FIT_ACCEPT, hpi_result['accept'])
        if 'coord_trans' in hpi_result:
            write_coord_trans(fid, hpi_result['coord_trans'])
        end_block(fid, FIFF.FIFFB_HPI_RESULT)

    #   HPI Measurement
    for hpi_meas in info['hpi_meas']:
        start_block(fid, FIFF.FIFFB_HPI_MEAS)
        if hpi_meas.get('creator') is not None:
            write_string(fid, FIFF.FIFF_CREATOR, hpi_meas['creator'])
        if hpi_meas.get('sfreq') is not None:
            write_float(fid, FIFF.FIFF_SFREQ, hpi_meas['sfreq'])
        if hpi_meas.get('nchan') is not None:
            write_int(fid, FIFF.FIFF_NCHAN, hpi_meas['nchan'])
        if hpi_meas.get('nave') is not None:
            write_int(fid, FIFF.FIFF_NAVE, hpi_meas['nave'])
        if hpi_meas.get('ncoil') is not None:
            write_int(fid, FIFF.FIFF_HPI_NCOIL, hpi_meas['ncoil'])
        if hpi_meas.get('first_samp') is not None:
            write_int(fid, FIFF.FIFF_FIRST_SAMPLE, hpi_meas['first_samp'])
        if hpi_meas.get('last_samp') is not None:
            write_int(fid, FIFF.FIFF_LAST_SAMPLE, hpi_meas['last_samp'])
        for hpi_coil in hpi_meas['hpi_coils']:
            start_block(fid, FIFF.FIFFB_HPI_COIL)
            if hpi_coil.get('number') is not None:
                write_int(fid, FIFF.FIFF_HPI_COIL_NO, hpi_coil['number'])
            if hpi_coil.get('epoch') is not None:
                write_float_matrix(fid, FIFF.FIFF_EPOCH, hpi_coil['epoch'])
            if hpi_coil.get('slopes') is not None:
                write_float(fid, FIFF.FIFF_HPI_SLOPES, hpi_coil['slopes'])
            if hpi_coil.get('corr_coeff') is not None:
                write_float(fid, FIFF.FIFF_HPI_CORR_COEFF,
                            hpi_coil['corr_coeff'])
            if hpi_coil.get('coil_freq') is not None:
                write_float(fid, FIFF.FIFF_HPI_COIL_FREQ,
                            hpi_coil['coil_freq'])
            end_block(fid, FIFF.FIFFB_HPI_COIL)
        end_block(fid, FIFF.FIFFB_HPI_MEAS)

    #   Polhemus data
    write_dig_points(fid, info['dig'], block=True)

    #   megacq parameters
    if info['acq_pars'] is not None or info['acq_stim'] is not None:
        start_block(fid, FIFF.FIFFB_DACQ_PARS)
        if info['acq_pars'] is not None:
            write_string(fid, FIFF.FIFF_DACQ_PARS, info['acq_pars'])

        if info['acq_stim'] is not None:
            write_string(fid, FIFF.FIFF_DACQ_STIM, info['acq_stim'])

        end_block(fid, FIFF.FIFFB_DACQ_PARS)

    #   Coordinate transformations if the HPI result block was not there
    if info['dev_head_t'] is not None:
        write_coord_trans(fid, info['dev_head_t'])

    if info['ctf_head_t'] is not None:
        write_coord_trans(fid, info['ctf_head_t'])

    if info['dev_ctf_t'] is not None:
        write_coord_trans(fid, info['dev_ctf_t'])

    #   Projectors
    ch_names_mapping = _make_ch_names_mapping(info['chs'])
    _write_proj(fid, info['projs'], ch_names_mapping=ch_names_mapping)

    #   Bad channels
    if len(info['bads']) > 0:
        bads = _rename_list(info['bads'], ch_names_mapping)
        start_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS)
        write_name_list(fid, FIFF.FIFF_MNE_CH_NAME_LIST, bads)
        end_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS)

    #   General
    if info.get('experimenter') is not None:
        write_string(fid, FIFF.FIFF_EXPERIMENTER, info['experimenter'])
    if info.get('description') is not None:
        write_string(fid, FIFF.FIFF_DESCRIPTION, info['description'])
    if info.get('proj_id') is not None:
        write_int(fid, FIFF.FIFF_PROJ_ID, info['proj_id'])
    if info.get('proj_name') is not None:
        write_string(fid, FIFF.FIFF_PROJ_NAME, info['proj_name'])
    if info.get('meas_date') is not None:
        write_int(fid, FIFF.FIFF_MEAS_DATE, _dt_to_stamp(info['meas_date']))
    if info.get('utc_offset') is not None:
        write_string(fid, FIFF.FIFF_UTC_OFFSET, info['utc_offset'])
    write_int(fid, FIFF.FIFF_NCHAN, info['nchan'])
    write_float(fid, FIFF.FIFF_SFREQ, info['sfreq'])
    if info['lowpass'] is not None:
        write_float(fid, FIFF.FIFF_LOWPASS, info['lowpass'])
    if info['highpass'] is not None:
        write_float(fid, FIFF.FIFF_HIGHPASS, info['highpass'])
    if info.get('line_freq') is not None:
        write_float(fid, FIFF.FIFF_LINE_FREQ, info['line_freq'])
    if info.get('gantry_angle') is not None:
        write_float(fid, FIFF.FIFF_GANTRY_ANGLE, info['gantry_angle'])
    if data_type is not None:
        write_int(fid, FIFF.FIFF_DATA_PACK, data_type)
    if info.get('custom_ref_applied'):
        write_int(fid, FIFF.FIFF_MNE_CUSTOM_REF, info['custom_ref_applied'])
    if info.get('xplotter_layout'):
        write_string(fid, FIFF.FIFF_XPLOTTER_LAYOUT, info['xplotter_layout'])

    #  Channel information
    _write_ch_infos(fid, info['chs'], reset_range, ch_names_mapping)

    # Subject information
    if info.get('subject_info') is not None:
        start_block(fid, FIFF.FIFFB_SUBJECT)
        si = info['subject_info']
        if si.get('id') is not None:
            write_int(fid, FIFF.FIFF_SUBJ_ID, si['id'])
        if si.get('his_id') is not None:
            write_string(fid, FIFF.FIFF_SUBJ_HIS_ID, si['his_id'])
        if si.get('last_name') is not None:
            write_string(fid, FIFF.FIFF_SUBJ_LAST_NAME, si['last_name'])
        if si.get('first_name') is not None:
            write_string(fid, FIFF.FIFF_SUBJ_FIRST_NAME, si['first_name'])
        if si.get('middle_name') is not None:
            write_string(fid, FIFF.FIFF_SUBJ_MIDDLE_NAME, si['middle_name'])
        if si.get('birthday') is not None:
            write_julian(fid, FIFF.FIFF_SUBJ_BIRTH_DAY, si['birthday'])
        if si.get('sex') is not None:
            write_int(fid, FIFF.FIFF_SUBJ_SEX, si['sex'])
        if si.get('hand') is not None:
            write_int(fid, FIFF.FIFF_SUBJ_HAND, si['hand'])
        if si.get('weight') is not None:
            write_float(fid, FIFF.FIFF_SUBJ_WEIGHT, si['weight'])
        if si.get('height') is not None:
            write_float(fid, FIFF.FIFF_SUBJ_HEIGHT, si['height'])
        end_block(fid, FIFF.FIFFB_SUBJECT)
        del si

    if info.get('device_info') is not None:
        start_block(fid, FIFF.FIFFB_DEVICE)
        di = info['device_info']
        write_string(fid, FIFF.FIFF_DEVICE_TYPE, di['type'])
        for key in ('model', 'serial', 'site'):
            if di.get(key) is not None:
                write_string(fid, getattr(FIFF, 'FIFF_DEVICE_' + key.upper()),
                             di[key])
        end_block(fid, FIFF.FIFFB_DEVICE)
        del di

    if info.get('helium_info') is not None:
        start_block(fid, FIFF.FIFFB_HELIUM)
        hi = info['helium_info']
        if hi.get('he_level_raw') is not None:
            write_float(fid, FIFF.FIFF_HE_LEVEL_RAW, hi['he_level_raw'])
        if hi.get('helium_level') is not None:
            write_float(fid, FIFF.FIFF_HELIUM_LEVEL, hi['helium_level'])
        if hi.get('orig_file_guid') is not None:
            write_string(fid, FIFF.FIFF_ORIG_FILE_GUID, hi['orig_file_guid'])
        write_int(fid, FIFF.FIFF_MEAS_DATE, hi['meas_date'])
        end_block(fid, FIFF.FIFFB_HELIUM)
        del hi

    if info.get('hpi_subsystem') is not None:
        hs = info['hpi_subsystem']
        start_block(fid, FIFF.FIFFB_HPI_SUBSYSTEM)
        if hs.get('ncoil') is not None:
            write_int(fid, FIFF.FIFF_HPI_NCOIL, hs['ncoil'])
        if hs.get('event_channel') is not None:
            write_string(fid, FIFF.FIFF_EVENT_CHANNEL, hs['event_channel'])
        if hs.get('hpi_coils') is not None:
            for coil in hs['hpi_coils']:
                start_block(fid, FIFF.FIFFB_HPI_COIL)
                if coil.get('event_bits') is not None:
                    write_int(fid, FIFF.FIFF_EVENT_BITS,
                              coil['event_bits'])
                end_block(fid, FIFF.FIFFB_HPI_COIL)
        end_block(fid, FIFF.FIFFB_HPI_SUBSYSTEM)
        del hs

    #   CTF compensation info
    comps = info['comps']
    if ch_names_mapping:
        comps = deepcopy(comps)
        _rename_comps(comps, ch_names_mapping)
    write_ctf_comp(fid, comps)

    #   KIT system ID
    if info.get('kit_system_id') is not None:
        write_int(fid, FIFF.FIFF_MNE_KIT_SYSTEM_ID, info['kit_system_id'])

    end_block(fid, FIFF.FIFFB_MEAS_INFO)

    #   Processing history
    _write_proc_history(fid, info)


@fill_doc
def write_info(fname, info, data_type=None, reset_range=True):
    """Write measurement info in fif file.

    Parameters
    ----------
    fname : str
        The name of the file. Should end by -info.fif.
    %(info_not_none)s
    data_type : int
        The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT),
        5 (FIFFT_DOUBLE), or 16 (FIFFT_DAU_PACK16) for
        raw data.
    reset_range : bool
        If True, info['chs'][k]['range'] will be set to unity.
    """
    with start_and_end_file(fname) as fid:
        start_block(fid, FIFF.FIFFB_MEAS)
        write_meas_info(fid, info, data_type, reset_range)
        end_block(fid, FIFF.FIFFB_MEAS)


@verbose
def _merge_info_values(infos, key, verbose=None):
    """Merge things together.

    Fork for {'dict', 'list', 'array', 'other'}
    and consider cases where one or all are of the same type.

    Does special things for "projs", "bads", and "meas_date".
    """
    values = [d[key] for d in infos]
    msg = ("Don't know how to merge '%s'. Make sure values are "
           "compatible, got types:\n    %s"
           % (key, [type(v) for v in values]))

    def _flatten(lists):
        return [item for sublist in lists for item in sublist]

    def _check_isinstance(values, kind, func):
        return func([isinstance(v, kind) for v in values])

    def _where_isinstance(values, kind):
        """Get indices of instances."""
        return np.where([isinstance(v, type) for v in values])[0]

    # list
    if _check_isinstance(values, list, all):
        lists = (d[key] for d in infos)
        if key == 'projs':
            return _uniquify_projs(_flatten(lists))
        elif key == 'bads':
            return sorted(set(_flatten(lists)))
        else:
            return _flatten(lists)
    elif _check_isinstance(values, list, any):
        idx = _where_isinstance(values, list)
        if len(idx) == 1:
            return values[int(idx)]
        elif len(idx) > 1:
            lists = (d[key] for d in infos if isinstance(d[key], list))
            return _flatten(lists)
    # dict
    elif _check_isinstance(values, dict, all):
        is_qual = all(object_diff(values[0], v) == '' for v in values[1:])
        if is_qual:
            return values[0]
        else:
            RuntimeError(msg)
    elif _check_isinstance(values, dict, any):
        idx = _where_isinstance(values, dict)
        if len(idx) == 1:
            return values[int(idx)]
        elif len(idx) > 1:
            raise RuntimeError(msg)
    # ndarray
    elif _check_isinstance(values, np.ndarray, all) or \
            _check_isinstance(values, tuple, all):
        is_qual = all(np.array_equal(values[0], x) for x in values[1:])
        if is_qual:
            return values[0]
        elif key == 'meas_date':
            logger.info('Found multiple entries for %s. '
                        'Setting value to `None`' % key)
            return None
        else:
            raise RuntimeError(msg)
    elif _check_isinstance(values, (np.ndarray, tuple), any):
        idx = _where_isinstance(values, np.ndarray)
        if len(idx) == 1:
            return values[int(idx)]
        elif len(idx) > 1:
            raise RuntimeError(msg)
    # other
    else:
        unique_values = set(values)
        if len(unique_values) == 1:
            return list(values)[0]
        elif isinstance(list(unique_values)[0], BytesIO):
            logger.info('Found multiple StringIO instances. '
                        'Setting value to `None`')
            return None
        elif isinstance(list(unique_values)[0], str):
            logger.info('Found multiple filenames. '
                        'Setting value to `None`')
            return None
        else:
            raise RuntimeError(msg)


@verbose
def _merge_info(infos, force_update_to_first=False, verbose=None):
    """Merge multiple measurement info dictionaries.

     - Fields that are present in only one info object will be used in the
       merged info.
     - Fields that are present in multiple info objects and are the same
       will be used in the merged info.
     - Fields that are present in multiple info objects and are different
       will result in a None value in the merged info.
     - Channels will be concatenated. If multiple info objects contain
       channels with the same name, an exception is raised.

    Parameters
    ----------
    infos | list of instance of Info
        Info objects to merge into one info object.
    force_update_to_first : bool
        If True, force the fields for objects in `info` will be updated
        to match those in the first item. Use at your own risk, as this
        may overwrite important metadata.
    %(verbose)s

    Returns
    -------
    info : instance of Info
        The merged info object.
    """
    for info in infos:
        info._check_consistency()
    if force_update_to_first is True:
        infos = deepcopy(infos)
        _force_update_info(infos[0], infos[1:])
    info = Info()
    info._unlocked = True
    info['chs'] = []
    for this_info in infos:
        info['chs'].extend(this_info['chs'])
    info._update_redundant()
    duplicates = {ch for ch in info['ch_names']
                  if info['ch_names'].count(ch) > 1}
    if len(duplicates) > 0:
        msg = ("The following channels are present in more than one input "
               "measurement info objects: %s" % list(duplicates))
        raise ValueError(msg)

    transforms = ['ctf_head_t', 'dev_head_t', 'dev_ctf_t']
    for trans_name in transforms:
        trans = [i[trans_name] for i in infos if i[trans_name]]
        if len(trans) == 0:
            info[trans_name] = None
        elif len(trans) == 1:
            info[trans_name] = trans[0]
        elif all(np.all(trans[0]['trans'] == x['trans']) and
                 trans[0]['from'] == x['from'] and
                 trans[0]['to'] == x['to']
                 for x in trans[1:]):
            info[trans_name] = trans[0]
        else:
            msg = ("Measurement infos provide mutually inconsistent %s" %
                   trans_name)
            raise ValueError(msg)

    # KIT system-IDs
    kit_sys_ids = [i['kit_system_id'] for i in infos if i['kit_system_id']]
    if len(kit_sys_ids) == 0:
        info['kit_system_id'] = None
    elif len(set(kit_sys_ids)) == 1:
        info['kit_system_id'] = kit_sys_ids[0]
    else:
        raise ValueError("Trying to merge channels from different KIT systems")

    # hpi infos and digitization data:
    fields = ['hpi_results', 'hpi_meas', 'dig']
    for k in fields:
        values = [i[k] for i in infos if i[k]]
        if len(values) == 0:
            info[k] = []
        elif len(values) == 1:
            info[k] = values[0]
        elif all(object_diff(values[0], v) == '' for v in values[1:]):
            info[k] = values[0]
        else:
            msg = ("Measurement infos are inconsistent for %s" % k)
            raise ValueError(msg)

    # other fields
    other_fields = ['acq_pars', 'acq_stim', 'bads',
                    'comps', 'custom_ref_applied', 'description',
                    'experimenter', 'file_id', 'highpass', 'utc_offset',
                    'hpi_subsystem', 'events', 'device_info', 'helium_info',
                    'line_freq', 'lowpass', 'meas_id',
                    'proj_id', 'proj_name', 'projs', 'sfreq', 'gantry_angle',
                    'subject_info', 'sfreq', 'xplotter_layout', 'proc_history']

    for k in other_fields:
        info[k] = _merge_info_values(infos, k)

    info['meas_date'] = infos[0]['meas_date']
    info._unlocked = False

    return info


@verbose
def create_info(ch_names, sfreq, ch_types='misc', verbose=None):
    """Create a basic Info instance suitable for use with create_raw.

    Parameters
    ----------
    ch_names : list of str | int
        Channel names. If an int, a list of channel names will be created
        from ``range(ch_names)``.
    sfreq : float
        Sample rate of the data.
    ch_types : list of str | str
        Channel types, default is ``'misc'`` which is not a
        :term:`data channel <data channels>`.
        Currently supported fields are 'ecg', 'bio', 'stim', 'eog', 'misc',
        'seeg', 'dbs', 'ecog', 'mag', 'eeg', 'ref_meg', 'grad', 'emg', 'hbr'
        or 'hbo'. If str, then all channels are assumed to be of the same type.
    %(verbose)s

    Returns
    -------
    %(info_not_none)s

    Notes
    -----
    The info dictionary will be sparsely populated to enable functionality
    within the rest of the package. Advanced functionality such as source
    localization can only be obtained through substantial, proper
    modifications of the info structure (not recommended).

    Note that the MEG device-to-head transform ``info['dev_head_t']`` will
    be initialized to the identity transform.

    Proper units of measure:

    * V: eeg, eog, seeg, dbs, emg, ecg, bio, ecog
    * T: mag
    * T/m: grad
    * M: hbo, hbr
    * Am: dipole
    * AU: misc
    """
    try:
        ch_names = operator.index(ch_names)  # int-like
    except TypeError:
        pass
    else:
        ch_names = list(np.arange(ch_names).astype(str))
    _validate_type(ch_names, (list, tuple), "ch_names",
                   ("list, tuple, or int"))
    sfreq = float(sfreq)
    if sfreq <= 0:
        raise ValueError('sfreq must be positive')
    nchan = len(ch_names)
    if isinstance(ch_types, str):
        ch_types = [ch_types] * nchan
    ch_types = np.atleast_1d(np.array(ch_types, np.str_))
    if ch_types.ndim != 1 or len(ch_types) != nchan:
        raise ValueError('ch_types and ch_names must be the same length '
                         '(%s != %s) for ch_types=%s'
                         % (len(ch_types), nchan, ch_types))
    info = _empty_info(sfreq)
    ch_types_dict = get_channel_type_constants(include_defaults=True)
    for ci, (ch_name, ch_type) in enumerate(zip(ch_names, ch_types)):
        _validate_type(ch_name, 'str', "each entry in ch_names")
        _validate_type(ch_type, 'str', "each entry in ch_types")
        if ch_type not in ch_types_dict:
            raise KeyError(f'kind must be one of {list(ch_types_dict)}, '
                           f'not {ch_type}')
        this_ch_dict = ch_types_dict[ch_type]
        kind = this_ch_dict['kind']
        # handle chpi, where kind is a *list* of FIFF constants:
        kind = kind[0] if isinstance(kind, (list, tuple)) else kind
        # mirror what tag.py does here
        coord_frame = _ch_coord_dict.get(kind, FIFF.FIFFV_COORD_UNKNOWN)
        coil_type = this_ch_dict.get('coil_type', FIFF.FIFFV_COIL_NONE)
        unit = this_ch_dict.get('unit', FIFF.FIFF_UNIT_NONE)
        chan_info = dict(loc=np.full(12, np.nan),
                         unit_mul=FIFF.FIFF_UNITM_NONE, range=1., cal=1.,
                         kind=kind, coil_type=coil_type, unit=unit,
                         coord_frame=coord_frame, ch_name=str(ch_name),
                         scanno=ci + 1, logno=ci + 1)
        info['chs'].append(chan_info)

    info._update_redundant()
    info._check_consistency()
    info._unlocked = False
    return info


RAW_INFO_FIELDS = (
    'acq_pars', 'acq_stim', 'bads', 'ch_names', 'chs',
    'comps', 'ctf_head_t', 'custom_ref_applied', 'description', 'dev_ctf_t',
    'dev_head_t', 'dig', 'experimenter', 'events', 'utc_offset', 'device_info',
    'file_id', 'highpass', 'hpi_meas', 'hpi_results', 'helium_info',
    'hpi_subsystem', 'kit_system_id', 'line_freq', 'lowpass', 'meas_date',
    'meas_id', 'nchan', 'proj_id', 'proj_name', 'projs', 'sfreq',
    'subject_info', 'xplotter_layout', 'proc_history', 'gantry_angle',
)


def _empty_info(sfreq):
    """Create an empty info dictionary."""
    _none_keys = (
        'acq_pars', 'acq_stim', 'ctf_head_t', 'description',
        'dev_ctf_t', 'dig', 'experimenter', 'utc_offset', 'device_info',
        'file_id', 'highpass', 'hpi_subsystem', 'kit_system_id', 'helium_info',
        'line_freq', 'lowpass', 'meas_date', 'meas_id', 'proj_id', 'proj_name',
        'subject_info', 'xplotter_layout', 'gantry_angle',
    )
    _list_keys = ('bads', 'chs', 'comps', 'events', 'hpi_meas', 'hpi_results',
                  'projs', 'proc_history')
    info = Info()
    info._unlocked = True
    for k in _none_keys:
        info[k] = None
    for k in _list_keys:
        info[k] = list()
    info['custom_ref_applied'] = FIFF.FIFFV_MNE_CUSTOM_REF_OFF
    info['highpass'] = 0.
    info['sfreq'] = float(sfreq)
    info['lowpass'] = info['sfreq'] / 2.
    info['dev_head_t'] = Transform('meg', 'head')
    info._update_redundant()
    info._check_consistency()
    return info


def _force_update_info(info_base, info_target):
    """Update target info objects with values from info base.

    Note that values in info_target will be overwritten by those in info_base.
    This will overwrite all fields except for: 'chs', 'ch_names', 'nchan'.

    Parameters
    ----------
    info_base : mne.Info
        The Info object you want to use for overwriting values
        in target Info objects.
    info_target : mne.Info | list of mne.Info
        The Info object(s) you wish to overwrite using info_base. These objects
        will be modified in-place.
    """
    exclude_keys = ['chs', 'ch_names', 'nchan']
    info_target = np.atleast_1d(info_target).ravel()
    all_infos = np.hstack([info_base, info_target])
    for ii in all_infos:
        if not isinstance(ii, Info):
            raise ValueError('Inputs must be of type Info. '
                             'Found type %s' % type(ii))
    for key, val in info_base.items():
        if key in exclude_keys:
            continue
        for i_targ in info_target:
            with i_targ._unlock():
                i_targ[key] = val


def _add_timedelta_to_stamp(meas_date_stamp, delta_t):
    """Add a timedelta to a meas_date tuple."""
    if meas_date_stamp is not None:
        meas_date_stamp = _dt_to_stamp(_stamp_to_dt(meas_date_stamp) + delta_t)
    return meas_date_stamp


@verbose
def anonymize_info(info, daysback=None, keep_his=False, verbose=None):
    """Anonymize measurement information in place.

    .. warning:: If ``info`` is part of an object like
                 :class:`raw.info <mne.io.Raw>`, you should directly use
                 the method :meth:`raw.anonymize() <mne.io.Raw.anonymize>`
                 to ensure that all parts of the data are anonymized and
                 stay synchronized (e.g.,
                 :class:`raw.annotations <mne.Annotations>`).

    Parameters
    ----------
    %(info_not_none)s
    %(daysback_anonymize_info)s
    %(keep_his_anonymize_info)s
    %(verbose)s

    Returns
    -------
    info : instance of Info
        The anonymized measurement information.

    Notes
    -----
    %(anonymize_info_notes)s
    """
    _validate_type(info, 'info', "self")

    default_anon_dos = datetime.datetime(2000, 1, 1, 0, 0, 0,
                                         tzinfo=datetime.timezone.utc)
    default_str = "mne_anonymize"
    default_subject_id = 0
    default_sex = 0
    default_desc = ("Anonymized using a time shift"
                    " to preserve age at acquisition")

    none_meas_date = info['meas_date'] is None

    if none_meas_date:
        if daysback is not None:
            warn('Input info has "meas_date" set to None. '
                 'Removing all information from time/date structures, '
                 '*NOT* performing any time shifts!')
    else:
        # compute timeshift delta
        if daysback is None:
            delta_t = info['meas_date'] - default_anon_dos
        else:
            delta_t = datetime.timedelta(days=daysback)
        with info._unlock():
            info['meas_date'] = info['meas_date'] - delta_t

    # file_id and meas_id
    for key in ('file_id', 'meas_id'):
        value = info.get(key)
        if value is not None:
            assert 'msecs' not in value
            if (none_meas_date or
                    ((value['secs'], value['usecs']) == DATE_NONE)):
                # Don't try to shift backwards in time when no measurement
                # date is available or when file_id is already a place holder
                tmp = DATE_NONE
            else:
                tmp = _add_timedelta_to_stamp(
                    (value['secs'], value['usecs']), -delta_t)
            value['secs'] = tmp[0]
            value['usecs'] = tmp[1]
            # The following copy is needed for a test CTF dataset
            # otherwise value['machid'][:] = 0 would suffice
            _tmp = value['machid'].copy()
            _tmp[:] = 0
            value['machid'] = _tmp

    # subject info
    subject_info = info.get('subject_info')
    if subject_info is not None:
        if subject_info.get('id') is not None:
            subject_info['id'] = default_subject_id
        if keep_his:
            logger.info('Not fully anonymizing info - keeping '
                        'his_id, sex, and hand info')
        else:
            if subject_info.get('his_id') is not None:
                subject_info['his_id'] = str(default_subject_id)
            if subject_info.get('sex') is not None:
                subject_info['sex'] = default_sex
            if subject_info.get('hand') is not None:
                del subject_info['hand']  # there's no "unknown" setting

        for key in ('last_name', 'first_name', 'middle_name'):
            if subject_info.get(key) is not None:
                subject_info[key] = default_str

        # anonymize the subject birthday
        if none_meas_date:
            subject_info.pop('birthday', None)
        elif subject_info.get('birthday') is not None:
            dob = datetime.datetime(subject_info['birthday'][0],
                                    subject_info['birthday'][1],
                                    subject_info['birthday'][2])
            dob -= delta_t
            subject_info['birthday'] = dob.year, dob.month, dob.day

        for key in ('weight', 'height'):
            if subject_info.get(key) is not None:
                subject_info[key] = 0

    info['experimenter'] = default_str
    info['description'] = default_desc
    with info._unlock():
        if info['proj_id'] is not None:
            info['proj_id'] = np.zeros_like(info['proj_id'])
        if info['proj_name'] is not None:
            info['proj_name'] = default_str
        if info['utc_offset'] is not None:
            info['utc_offset'] = None

    proc_hist = info.get('proc_history')
    if proc_hist is not None:
        for record in proc_hist:
            record['block_id']['machid'][:] = 0
            record['experimenter'] = default_str
            if none_meas_date:
                record['block_id']['secs'] = DATE_NONE[0]
                record['block_id']['usecs'] = DATE_NONE[1]
                record['date'] = DATE_NONE
            else:
                this_t0 = (record['block_id']['secs'],
                           record['block_id']['usecs'])
                this_t1 = _add_timedelta_to_stamp(
                    this_t0, -delta_t)
                record['block_id']['secs'] = this_t1[0]
                record['block_id']['usecs'] = this_t1[1]
                record['date'] = _add_timedelta_to_stamp(
                    record['date'], -delta_t)

    hi = info.get('helium_info')
    if hi is not None:
        if hi.get('orig_file_guid') is not None:
            hi['orig_file_guid'] = default_str
        if none_meas_date and hi.get('meas_date') is not None:
            hi['meas_date'] = DATE_NONE
        elif hi.get('meas_date') is not None:
            hi['meas_date'] = _add_timedelta_to_stamp(
                hi['meas_date'], -delta_t)

    di = info.get('device_info')
    if di is not None:
        for k in ('serial', 'site'):
            if di.get(k) is not None:
                di[k] = default_str

    err_mesg = ('anonymize_info generated an inconsistent info object. '
                'Underlying Error:\n')
    info._check_consistency(prepend_error=err_mesg)
    err_mesg = ('anonymize_info generated an inconsistent info object. '
                'daysback parameter was too large. '
                'Underlying Error:\n')
    _check_dates(info, prepend_error=err_mesg)

    return info


@fill_doc
def _bad_chans_comp(info, ch_names):
    """Check if channel names are consistent with current compensation status.

    Parameters
    ----------
    %(info_not_none)s

    ch_names : list of str
        The channel names to check.

    Returns
    -------
    status : bool
        True if compensation is *currently* in use but some compensation
            channels are not included in picks

        False if compensation is *currently* not being used
            or if compensation is being used and all compensation channels
            in info and included in picks.

    missing_ch_names: array-like of str, shape (n_missing,)
        The names of compensation channels not included in picks.
        Returns [] if no channels are missing.

    """
    if 'comps' not in info:
        # should this be thought of as a bug?
        return False, []

    # only include compensation channels that would affect selected channels
    ch_names_s = set(ch_names)
    comp_names = []
    for comp in info['comps']:
        if len(ch_names_s.intersection(comp['data']['row_names'])) > 0:
            comp_names.extend(comp['data']['col_names'])
    comp_names = sorted(set(comp_names))

    missing_ch_names = sorted(set(comp_names).difference(ch_names))

    if get_current_comp(info) != 0 and len(missing_ch_names) > 0:
        return True, missing_ch_names

    return False, missing_ch_names


_DIG_CAST = dict(
    kind=int, ident=int, r=lambda x: x, coord_frame=int)
# key -> const, cast, write
_CH_INFO_MAP = OrderedDict(
    scanno=(FIFF.FIFF_CH_SCAN_NO, int, write_int),
    logno=(FIFF.FIFF_CH_LOGICAL_NO, int, write_int),
    kind=(FIFF.FIFF_CH_KIND, int, write_int),
    range=(FIFF.FIFF_CH_RANGE, float, write_float),
    cal=(FIFF.FIFF_CH_CAL, float, write_float),
    coil_type=(FIFF.FIFF_CH_COIL_TYPE, int, write_int),
    loc=(FIFF.FIFF_CH_LOC, lambda x: x, write_float),
    unit=(FIFF.FIFF_CH_UNIT, int, write_int),
    unit_mul=(FIFF.FIFF_CH_UNIT_MUL, int, write_int),
    ch_name=(FIFF.FIFF_CH_DACQ_NAME, str, write_string),
    coord_frame=(FIFF.FIFF_CH_COORD_FRAME, int, write_int),
)
# key -> cast
_CH_CAST = OrderedDict((key, val[1]) for key, val in _CH_INFO_MAP.items())
# const -> key, cast
_CH_READ_MAP = OrderedDict((val[0], (key, val[1]))
                           for key, val in _CH_INFO_MAP.items())


@contextlib.contextmanager
def _writing_info_hdf5(info):
    # Make info writing faster by packing chs and dig into numpy arrays
    orig_dig = info.get('dig', None)
    orig_chs = info['chs']
    with info._unlock():
        try:
            if orig_dig is not None and len(orig_dig) > 0:
                info['dig'] = _dict_pack(info['dig'], _DIG_CAST)
            info['chs'] = _dict_pack(info['chs'], _CH_CAST)
            info['chs']['ch_name'] = np.char.encode(
                info['chs']['ch_name'], encoding='utf8')
            yield
        finally:
            if orig_dig is not None:
                info['dig'] = orig_dig
            info['chs'] = orig_chs


def _dict_pack(obj, casts):
    # pack a list of dict into dict of array
    return {key: np.array([o[key] for o in obj]) for key in casts}


def _dict_unpack(obj, casts):
    # unpack a dict of array into a list of dict
    n = len(obj[list(casts)[0]])
    return [{key: cast(obj[key][ii]) for key, cast in casts.items()}
            for ii in range(n)]


def _make_ch_names_mapping(chs):
    orig_ch_names = [c['ch_name'] for c in chs]
    ch_names = orig_ch_names.copy()
    _unique_channel_names(ch_names, max_length=15, verbose='error')
    ch_names_mapping = dict()
    if orig_ch_names != ch_names:
        ch_names_mapping.update(zip(orig_ch_names, ch_names))
    return ch_names_mapping


def _write_ch_infos(fid, chs, reset_range, ch_names_mapping):
    ch_names_mapping = dict() if ch_names_mapping is None else ch_names_mapping
    for k, c in enumerate(chs):
        #   Scan numbers may have been messed up
        c = c.copy()
        c['ch_name'] = ch_names_mapping.get(c['ch_name'], c['ch_name'])
        assert len(c['ch_name']) <= 15
        c['scanno'] = k + 1
        # for float/double, the "range" param is unnecessary
        if reset_range:
            c['range'] = 1.0
        write_ch_info(fid, c)
    # only write new-style channel information if necessary
    if len(ch_names_mapping):
        logger.info(
            '    Writing channel names to FIF truncated to 15 characters '
            'with remapping')
        for ch in chs:
            start_block(fid, FIFF.FIFFB_CH_INFO)
            assert set(ch) == set(_CH_INFO_MAP)
            for (key, (const, _, write)) in _CH_INFO_MAP.items():
                write(fid, const, ch[key])
            end_block(fid, FIFF.FIFFB_CH_INFO)


def _ensure_infos_match(info1, info2, name, *, on_mismatch='raise'):
    """Check if infos match.

    Parameters
    ----------
    info1, info2 : instance of Info
        The infos to compare.
    name : str
        The name of the object appearing in the error message of the comparison
        fails.
    on_mismatch : 'raise' | 'warn' | 'ignore'
        What to do in case of a mismatch of ``dev_head_t`` between ``info1``
        and ``info2``.
    """
    _check_on_missing(on_missing=on_mismatch, name='on_mismatch')

    info1._check_consistency()
    info2._check_consistency()

    if info1['nchan'] != info2['nchan']:
        raise ValueError(f'{name}.info[\'nchan\'] must match')
    if set(info1['bads']) != set(info2['bads']):
        raise ValueError(f'{name}.info[\'bads\'] must match')
    if info1['sfreq'] != info2['sfreq']:
        raise ValueError(f'{name}.info[\'sfreq\'] must match')
    if set(info1['ch_names']) != set(info2['ch_names']):
        raise ValueError(f'{name}.info[\'ch_names\'] must match')
    if len(info2['projs']) != len(info1['projs']):
        raise ValueError(f'SSP projectors in {name} must be the same')
    if any(not _proj_equal(p1, p2) for p1, p2 in
           zip(info2['projs'], info1['projs'])):
        raise ValueError(f'SSP projectors in {name} must be the same')
    if (info1['dev_head_t'] is None) != (info2['dev_head_t'] is None) or \
            (info1['dev_head_t'] is not None and not
             np.allclose(info1['dev_head_t']['trans'],
                         info2['dev_head_t']['trans'], rtol=1e-6)):
        msg = (f"{name}.info['dev_head_t'] differs. The "
               f"instances probably come from different runs, and "
               f"are therefore associated with different head "
               f"positions. Manually change info['dev_head_t'] to "
               f"avoid this message but beware that this means the "
               f"MEG sensors will not be properly spatially aligned. "
               f"See mne.preprocessing.maxwell_filter to realign the "
               f"runs to a common head position.")
        _on_missing(on_missing=on_mismatch, msg=msg,
                    name='on_mismatch')


def _get_fnirs_ch_pos(info):
    """Return positions of each fNIRS optode.

    fNIRS uses two types of optodes, sources and detectors.
    There can be multiple connections between each source
    and detector at different wavelengths. This function
    returns the location of each source and detector.
    """
    from ..preprocessing.nirs import _fnirs_optode_names, _optode_position
    srcs, dets = _fnirs_optode_names(info)
    ch_pos = {}
    for optode in [*srcs, *dets]:
        ch_pos[optode] = _optode_position(info, optode)
    return ch_pos