1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
|
# Authors: Marijn van Vliet <w.m.vanvliet@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD-3-Clause
import numpy as np
from .constants import FIFF
from .meas_info import _check_ch_keys
from .proj import _has_eeg_average_ref_proj, make_eeg_average_ref_proj
from .proj import setup_proj
from .pick import (pick_types, pick_channels, pick_channels_forward,
_ELECTRODE_CH_TYPES)
from .base import BaseRaw
from ..evoked import Evoked
from ..epochs import BaseEpochs
from ..fixes import pinv
from ..utils import (logger, warn, verbose, _validate_type, _check_preload,
_check_option, fill_doc, _on_missing)
from ..defaults import DEFAULTS
def _copy_channel(inst, ch_name, new_ch_name):
"""Add a copy of a channel specified by ch_name.
Input data can be in the form of Raw, Epochs or Evoked.
The instance object is modified inplace.
Parameters
----------
inst : instance of Raw | Epochs | Evoked
Data containing the EEG channels
ch_name : str
Name of the channel to copy.
new_ch_name : str
Name given to the copy of the channel.
Returns
-------
inst : instance of Raw | Epochs | Evoked
The data with a copy of a given channel.
"""
new_inst = inst.copy().pick_channels([ch_name])
new_inst.rename_channels({ch_name: new_ch_name})
inst.add_channels([new_inst], force_update_info=True)
return inst
def _check_before_reference(inst, ref_from, ref_to, ch_type):
"""Prepare instance for referencing."""
# Check to see that data is preloaded
_check_preload(inst, "Applying a reference")
ch_type = _get_ch_type(inst, ch_type)
ch_dict = {**{type_: True for type_ in ch_type},
'meg': False, 'ref_meg': False}
eeg_idx = pick_types(inst.info, **ch_dict)
if ref_to is None:
ref_to = [inst.ch_names[i] for i in eeg_idx]
extra = 'EEG channels found'
else:
extra = 'channels supplied'
if len(ref_to) == 0:
raise ValueError('No %s to apply the reference to' % (extra,))
# After referencing, existing SSPs might not be valid anymore.
projs_to_remove = []
for i, proj in enumerate(inst.info['projs']):
# Remove any average reference projections
if proj['desc'] == 'Average EEG reference' or \
proj['kind'] == FIFF.FIFFV_PROJ_ITEM_EEG_AVREF:
logger.info('Removing existing average EEG reference '
'projection.')
# Don't remove the projection right away, but do this at the end of
# this loop.
projs_to_remove.append(i)
# Inactive SSPs may block re-referencing
elif (not proj['active'] and
len([ch for ch in (ref_from + ref_to)
if ch in proj['data']['col_names']]) > 0):
raise RuntimeError(
'Inactive signal space projection (SSP) operators are '
'present that operate on sensors involved in the desired '
'referencing scheme. These projectors need to be applied '
'using the apply_proj() method function before the desired '
'reference can be set.'
)
for i in projs_to_remove:
del inst.info['projs'][i]
# Need to call setup_proj after changing the projs:
inst._projector, _ = \
setup_proj(inst.info, add_eeg_ref=False, activate=False)
# If the reference touches EEG/ECoG/sEEG/DBS electrodes, note in the
# info that a non-CAR has been applied.
ref_to_channels = pick_channels(inst.ch_names, ref_to, ordered=True)
if len(np.intersect1d(ref_to_channels, eeg_idx)) > 0:
with inst.info._unlock():
inst.info['custom_ref_applied'] = FIFF.FIFFV_MNE_CUSTOM_REF_ON
return ref_to
def _apply_reference(inst, ref_from, ref_to=None, forward=None,
ch_type='auto'):
"""Apply a custom EEG referencing scheme."""
ref_to = _check_before_reference(inst, ref_from, ref_to, ch_type)
# Compute reference
if len(ref_from) > 0:
# this is guaranteed below, but we should avoid the crazy pick_channels
# behavior that [] gives all. Also use ordered=True just to make sure
# that all supplied channels actually exist.
assert len(ref_to) > 0
ref_names = ref_from
ref_from = pick_channels(inst.ch_names, ref_from, ordered=True)
ref_to = pick_channels(inst.ch_names, ref_to, ordered=True)
data = inst._data
ref_data = data[..., ref_from, :].mean(-2, keepdims=True)
data[..., ref_to, :] -= ref_data
ref_data = ref_data[..., 0, :]
# REST
if forward is not None:
# use ch_sel and the given forward
forward = pick_channels_forward(forward, ref_names, ordered=True)
# 1-3. Compute a forward (G) and avg-ref'ed data (done above)
G = forward['sol']['data']
assert G.shape[0] == len(ref_names)
# 4. Compute the forward (G) and average-reference it (Ga):
Ga = G - np.mean(G, axis=0, keepdims=True)
# 5. Compute the Ga_inv by SVD
Ga_inv = pinv(Ga, rtol=1e-6)
# 6. Compute Ra = (G @ Ga_inv) in eq (8) from G and Ga_inv
Ra = G @ Ga_inv
# 7-8. Compute Vp = Ra @ Va; then Vpa=average(Vp)
Vpa = np.mean(Ra @ data[..., ref_from, :], axis=-2, keepdims=True)
data[..., ref_to, :] += Vpa
else:
ref_data = None
return inst, ref_data
@fill_doc
def add_reference_channels(inst, ref_channels, copy=True):
"""Add reference channels to data that consists of all zeros.
Adds reference channels to data that were not included during recording.
This is useful when you need to re-reference your data to different
channels. These added channels will consist of all zeros.
Parameters
----------
inst : instance of Raw | Epochs | Evoked
Instance of Raw or Epochs with EEG channels and reference channel(s).
%(ref_channels)s
copy : bool
Specifies whether the data will be copied (True) or modified in-place
(False). Defaults to True.
Returns
-------
inst : instance of Raw | Epochs | Evoked
Data with added EEG reference channels.
"""
# Check to see that data is preloaded
_check_preload(inst, 'add_reference_channels')
_validate_type(ref_channels, (list, tuple, str), 'ref_channels')
if isinstance(ref_channels, str):
ref_channels = [ref_channels]
for ch in ref_channels:
if ch in inst.info['ch_names']:
raise ValueError("Channel %s already specified in inst." % ch)
# Once CAR is applied (active), don't allow adding channels
if _has_eeg_average_ref_proj(inst.info, check_active=True):
raise RuntimeError('Average reference already applied to data.')
if copy:
inst = inst.copy()
if isinstance(inst, (BaseRaw, Evoked)):
data = inst._data
refs = np.zeros((len(ref_channels), data.shape[1]))
data = np.vstack((data, refs))
inst._data = data
elif isinstance(inst, BaseEpochs):
data = inst._data
x, y, z = data.shape
refs = np.zeros((x * len(ref_channels), z))
data = np.vstack((data.reshape((x * y, z), order='F'), refs))
data = data.reshape(x, y + len(ref_channels), z, order='F')
inst._data = data
else:
raise TypeError("inst should be Raw, Epochs, or Evoked instead of %s."
% type(inst))
nchan = len(inst.info['ch_names'])
# only do this if we actually have digitisation points
if inst.info.get('dig', None) is not None:
# "zeroth" EEG electrode dig points is reference
ref_dig_loc = [dl for dl in inst.info['dig'] if (
dl['kind'] == FIFF.FIFFV_POINT_EEG and
dl['ident'] == 0)]
if len(ref_channels) > 1 or len(ref_dig_loc) != len(ref_channels):
ref_dig_array = np.full(12, np.nan)
warn('The locations of multiple reference channels are ignored.')
else: # n_ref_channels == 1 and a single ref digitization exists
ref_dig_array = np.concatenate((ref_dig_loc[0]['r'],
ref_dig_loc[0]['r'], np.zeros(6)))
# Replace the (possibly new) Ref location for each channel
for idx in pick_types(inst.info, meg=False, eeg=True, exclude=[]):
inst.info['chs'][idx]['loc'][3:6] = ref_dig_loc[0]['r']
else:
# Ideally we'd fall back on getting the location from a montage, but
# locations for non-present channels aren't stored, so location is
# unknown. Users can call set_montage() again if needed.
ref_dig_array = np.full(12, np.nan)
logger.info('Location for this channel is unknown; consider calling '
'set_montage() again if needed.')
for ch in ref_channels:
chan_info = {'ch_name': ch,
'coil_type': FIFF.FIFFV_COIL_EEG,
'kind': FIFF.FIFFV_EEG_CH,
'logno': nchan + 1,
'scanno': nchan + 1,
'cal': 1,
'range': 1.,
'unit_mul': 0.,
'unit': FIFF.FIFF_UNIT_V,
'coord_frame': FIFF.FIFFV_COORD_HEAD,
'loc': ref_dig_array}
inst.info['chs'].append(chan_info)
inst.info._update_redundant()
range_ = np.arange(1, len(ref_channels) + 1)
if isinstance(inst, BaseRaw):
inst._cals = np.hstack((inst._cals, [1] * len(ref_channels)))
for pi, picks in enumerate(inst._read_picks):
inst._read_picks[pi] = np.concatenate(
[picks, np.max(picks) + range_])
elif isinstance(inst, BaseEpochs):
picks = inst.picks
inst.picks = np.concatenate(
[picks, np.max(picks) + range_])
inst.info._check_consistency()
set_eeg_reference(inst, ref_channels=ref_channels, copy=False,
verbose=False)
return inst
_ref_dict = {
FIFF.FIFFV_MNE_CUSTOM_REF_ON: 'on',
FIFF.FIFFV_MNE_CUSTOM_REF_OFF: 'off',
FIFF.FIFFV_MNE_CUSTOM_REF_CSD: 'CSD',
}
def _check_can_reref(inst):
_validate_type(inst, (BaseRaw, BaseEpochs, Evoked), "Instance")
current_custom = inst.info['custom_ref_applied']
if current_custom not in (FIFF.FIFFV_MNE_CUSTOM_REF_ON,
FIFF.FIFFV_MNE_CUSTOM_REF_OFF):
raise RuntimeError('Cannot set new reference on data with custom '
'reference type %r' % (_ref_dict[current_custom],))
@verbose
def set_eeg_reference(inst, ref_channels='average', copy=True,
projection=False, ch_type='auto', forward=None,
*, joint=False, verbose=None):
"""Specify which reference to use for EEG data.
Use this function to explicitly specify the desired reference for EEG.
This can be either an existing electrode or a new virtual channel.
This function will re-reference the data according to the desired
reference.
Note that it is also possible to re-reference the signal using a
Laplacian (LAP) "reference-free" transformation using the
:func:`.compute_current_source_density` function.
Parameters
----------
inst : instance of Raw | Epochs | Evoked
Instance of Raw or Epochs with EEG channels and reference channel(s).
%(ref_channels_set_eeg_reference)s
copy : bool
Specifies whether the data will be copied (True) or modified in-place
(False). Defaults to True.
%(projection_set_eeg_reference)s
%(ch_type_set_eeg_reference)s
%(forward_set_eeg_reference)s
%(joint_set_eeg_reference)s
%(verbose)s
Returns
-------
inst : instance of Raw | Epochs | Evoked
Data with EEG channels re-referenced. If ``ref_channels='average'`` and
``projection=True`` a projection will be added instead of directly
re-referencing the data.
ref_data : array
Array of reference data subtracted from EEG channels. This will be
``None`` if ``projection=True`` or ``ref_channels='REST'``.
%(set_eeg_reference_see_also_notes)s
"""
from ..forward import Forward
_check_can_reref(inst)
ch_type = _get_ch_type(inst, ch_type)
if projection: # average reference projector
if ref_channels != 'average':
raise ValueError('Setting projection=True is only supported for '
'ref_channels="average", got %r.'
% (ref_channels,))
# We need verbose='error' here in case we add projs sequentially
if _has_eeg_average_ref_proj(
inst.info, ch_type=ch_type, verbose='error'):
warn('An average reference projection was already added. The data '
'has been left untouched.')
else:
# Creating an average reference may fail. In this case, make
# sure that the custom_ref_applied flag is left untouched.
custom_ref_applied = inst.info['custom_ref_applied']
try:
with inst.info._unlock():
inst.info['custom_ref_applied'] = \
FIFF.FIFFV_MNE_CUSTOM_REF_OFF
if joint:
inst.add_proj(
make_eeg_average_ref_proj(
inst.info, ch_type=ch_type, activate=False))
else:
for this_ch_type in ch_type:
inst.add_proj(
make_eeg_average_ref_proj(
inst.info, ch_type=this_ch_type,
activate=False))
except Exception:
with inst.info._unlock():
inst.info['custom_ref_applied'] = custom_ref_applied
raise
# If the data has been preloaded, projections will no
# longer be automatically applied.
if inst.preload:
logger.info('Average reference projection was added, '
'but has not been applied yet. Use the '
'apply_proj method to apply it.')
return inst, None
del projection # not used anymore
inst = inst.copy() if copy else inst
ch_dict = {**{type_: True for type_ in ch_type},
'meg': False, 'ref_meg': False}
ch_sel = [inst.ch_names[i] for i in pick_types(inst.info, **ch_dict)]
if ref_channels == 'REST':
_validate_type(forward, Forward, 'forward when ref_channels="REST"')
else:
forward = None # signal to _apply_reference not to do REST
if ref_channels in ('average', 'REST'):
logger.info(f'Applying {ref_channels} reference.')
ref_channels = ch_sel
if ref_channels == []:
logger.info('EEG data marked as already having the desired reference.')
else:
logger.info(
'Applying a custom '
f"{tuple(DEFAULTS['titles'][type_] for type_ in ch_type)} "
'reference.')
return _apply_reference(inst, ref_channels, ch_sel, forward,
ch_type=ch_type)
def _get_ch_type(inst, ch_type):
_validate_type(ch_type, (str, list, tuple), 'ch_type')
valid_ch_types = ('auto',) + _ELECTRODE_CH_TYPES
if isinstance(ch_type, str):
_check_option('ch_type', ch_type, valid_ch_types)
if ch_type != 'auto':
ch_type = [ch_type]
elif isinstance(ch_type, (list, tuple)):
for type_ in ch_type:
_validate_type(type_, str, 'ch_type')
_check_option('ch_type', type_, valid_ch_types[1:])
ch_type = list(ch_type)
# if ch_type is 'auto', search through list to find first reasonable
# reference-able channel type.
if ch_type == 'auto':
for type_ in _ELECTRODE_CH_TYPES:
if type_ in inst:
ch_type = [type_]
logger.info('%s channel type selected for '
're-referencing' % DEFAULTS['titles'][type_])
break
# if auto comes up empty, or the user specifies a bad ch_type.
else:
raise ValueError('No EEG, ECoG, sEEG or DBS channels found '
'to rereference.')
return ch_type
@verbose
def set_bipolar_reference(inst, anode, cathode, ch_name=None, ch_info=None,
drop_refs=True, copy=True, on_bad="warn",
verbose=None):
"""Re-reference selected channels using a bipolar referencing scheme.
A bipolar reference takes the difference between two channels (the anode
minus the cathode) and adds it as a new virtual channel. The original
channels will be dropped by default.
Multiple anodes and cathodes can be specified, in which case multiple
virtual channels will be created. The 1st cathode will be subtracted
from the 1st anode, the 2nd cathode from the 2nd anode, etc.
By default, the virtual channels will be annotated with channel-info and
-location of the anodes and coil types will be set to EEG_BIPOLAR.
Parameters
----------
inst : instance of Raw | Epochs | Evoked
Data containing the unreferenced channels.
anode : str | list of str
The name(s) of the channel(s) to use as anode in the bipolar reference.
cathode : str | list of str
The name(s) of the channel(s) to use as cathode in the bipolar
reference.
ch_name : str | list of str | None
The channel name(s) for the virtual channel(s) containing the resulting
signal. By default, bipolar channels are named after the anode and
cathode, but it is recommended to supply a more meaningful name.
ch_info : dict | list of dict | None
This parameter can be used to supply a dictionary (or a dictionary for
each bipolar channel) containing channel information to merge in,
overwriting the default values. Defaults to None.
drop_refs : bool
Whether to drop the anode/cathode channels from the instance.
copy : bool
Whether to operate on a copy of the data (True) or modify it in-place
(False). Defaults to True.
on_bad : str
If a bipolar channel is created from a bad anode or a bad cathode, mne
warns if on_bad="warns", raises ValueError if on_bad="raise", and does
nothing if on_bad="ignore". For "warn" and "ignore", the new bipolar
channel will be marked as bad. Defaults to on_bad="warns".
%(verbose)s
Returns
-------
inst : instance of Raw | Epochs | Evoked
Data with the specified channels re-referenced.
See Also
--------
set_eeg_reference : Convenience function for creating an EEG reference.
Notes
-----
1. If the anodes contain any EEG channels, this function removes
any pre-existing average reference projections.
2. During source localization, the EEG signal should have an average
reference.
3. The data must be preloaded.
.. versionadded:: 0.9.0
"""
from .meas_info import create_info
from ..io import RawArray
from ..epochs import EpochsArray
from ..evoked import EvokedArray
_check_can_reref(inst)
if not isinstance(anode, list):
anode = [anode]
if not isinstance(cathode, list):
cathode = [cathode]
if len(anode) != len(cathode):
raise ValueError('Number of anodes (got %d) must equal the number '
'of cathodes (got %d).' % (len(anode), len(cathode)))
if ch_name is None:
ch_name = [f'{a}-{c}' for (a, c) in zip(anode, cathode)]
elif not isinstance(ch_name, list):
ch_name = [ch_name]
if len(ch_name) != len(anode):
raise ValueError('Number of channel names must equal the number of '
'anodes/cathodes (got %d).' % len(ch_name))
# Check for duplicate channel names (it is allowed to give the name of the
# anode or cathode channel, as they will be replaced).
for ch, a, c in zip(ch_name, anode, cathode):
if ch not in [a, c] and ch in inst.ch_names:
raise ValueError('There is already a channel named "%s", please '
'specify a different name for the bipolar '
'channel using the ch_name parameter.' % ch)
if ch_info is None:
ch_info = [{} for _ in anode]
elif not isinstance(ch_info, list):
ch_info = [ch_info]
if len(ch_info) != len(anode):
raise ValueError('Number of channel info dictionaries must equal the '
'number of anodes/cathodes.')
if copy:
inst = inst.copy()
anode = _check_before_reference(inst, ref_from=cathode,
ref_to=anode, ch_type='auto')
# Create bipolar reference channels by multiplying the data
# (channels x time) with a matrix (n_virtual_channels x channels)
# and add them to the instance.
multiplier = np.zeros((len(anode), len(inst.ch_names)))
for idx, (a, c) in enumerate(zip(anode, cathode)):
multiplier[idx, inst.ch_names.index(a)] = 1
multiplier[idx, inst.ch_names.index(c)] = -1
ref_info = create_info(ch_names=ch_name, sfreq=inst.info['sfreq'],
ch_types=inst.get_channel_types(picks=anode))
# Update "chs" in Reference-Info.
for ch_idx, (an, info) in enumerate(zip(anode, ch_info)):
_check_ch_keys(info, ch_idx, name='ch_info', check_min=False)
an_idx = inst.ch_names.index(an)
# Copy everything from anode (except ch_name).
an_chs = {k: v for k, v in inst.info['chs'][an_idx].items()
if k != 'ch_name'}
ref_info['chs'][ch_idx].update(an_chs)
# Set coil-type to bipolar.
ref_info['chs'][ch_idx]['coil_type'] = FIFF.FIFFV_COIL_EEG_BIPOLAR
# Update with info from ch_info-parameter.
ref_info['chs'][ch_idx].update(info)
# Set other info-keys from original instance.
pick_info = {k: v for k, v in inst.info.items() if k not in
['chs', 'ch_names', 'bads', 'nchan', 'sfreq']}
with ref_info._unlock():
ref_info.update(pick_info)
# Rereferencing of data.
ref_data = multiplier @ inst._data
if isinstance(inst, BaseRaw):
ref_inst = RawArray(ref_data, ref_info, first_samp=inst.first_samp,
copy=None)
elif isinstance(inst, BaseEpochs):
ref_inst = EpochsArray(ref_data, ref_info, events=inst.events,
tmin=inst.tmin, event_id=inst.event_id,
metadata=inst.metadata)
else:
ref_inst = EvokedArray(ref_data, ref_info, tmin=inst.tmin,
comment=inst.comment, nave=inst.nave,
kind='average')
# Add referenced instance to original instance.
inst.add_channels([ref_inst], force_update_info=True)
# Handle bad channels.
bad_bipolar_chs = []
for ch_idx, (a, c) in enumerate(zip(anode, cathode)):
if a in inst.info['bads'] or c in inst.info['bads']:
bad_bipolar_chs.append(ch_name[ch_idx])
# Add warnings if bad channels are present.
if bad_bipolar_chs:
msg = f'Bipolar channels are based on bad channels: {bad_bipolar_chs}.'
_on_missing(on_bad, msg)
inst.info['bads'] += bad_bipolar_chs
added_channels = ', '.join([name for name in ch_name])
logger.info(f'Added the following bipolar channels:\n{added_channels}')
for attr_name in ['picks', '_projector']:
setattr(inst, attr_name, None)
# Drop remaining channels.
if drop_refs:
drop_channels = list((set(anode) | set(cathode)) & set(inst.ch_names))
inst.drop_channels(drop_channels)
return inst
|