1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
# Authors: Robert Luke <mail@robertluke.net>
#
# License: BSD-3-Clause
import re
import numpy as np
import datetime
from ..base import BaseRaw
from ..meas_info import create_info, _format_dig_points
from ..utils import _mult_cal_one
from ...annotations import Annotations
from ...utils import (logger, verbose, fill_doc, warn, _check_fname,
_import_h5py)
from ..constants import FIFF
from .._digitization import _make_dig_points
from ...transforms import _frame_to_str, apply_trans
from ..nirx.nirx import _convert_fnirs_to_head
from ..._freesurfer import get_mni_fiducials
@fill_doc
def read_raw_snirf(fname, optode_frame="unknown", preload=False, verbose=None):
"""Reader for a continuous wave SNIRF data.
.. note:: This reader supports the .snirf file type only,
not the .jnirs version.
Files with either 3D or 2D locations can be read.
However, we strongly recommend using 3D positions.
If 2D positions are used the behaviour of MNE functions
can not be guaranteed.
Parameters
----------
fname : str
Path to the SNIRF data file.
optode_frame : str
Coordinate frame used for the optode positions. The default is unknown,
in which case the positions are not modified. If a known coordinate
frame is provided (head, meg, mri), then the positions are transformed
in to the Neuromag head coordinate frame (head).
%(preload)s
%(verbose)s
Returns
-------
raw : instance of RawSNIRF
A Raw object containing fNIRS data.
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
return RawSNIRF(fname, optode_frame, preload, verbose)
def _open(fname):
return open(fname, 'r', encoding='latin-1')
@fill_doc
class RawSNIRF(BaseRaw):
"""Raw object from a continuous wave SNIRF file.
Parameters
----------
fname : str
Path to the SNIRF data file.
optode_frame : str
Coordinate frame used for the optode positions. The default is unknown,
in which case the positions are not modified. If a known coordinate
frame is provided (head, meg, mri), then the positions are transformed
in to the Neuromag head coordinate frame (head).
%(preload)s
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
@verbose
def __init__(self, fname, optode_frame="unknown",
preload=False, verbose=None):
# Must be here due to circular import error
from ...preprocessing.nirs import _validate_nirs_info
h5py = _import_h5py()
fname = _check_fname(fname, 'read', True, 'fname')
logger.info('Loading %s' % fname)
with h5py.File(fname, 'r') as dat:
if 'data2' in dat['nirs']:
warn("File contains multiple recordings. "
"MNE does not support this feature. "
"Only the first dataset will be processed.")
manufacturer = _get_metadata_str(dat, "ManufacturerName")
if (optode_frame == "unknown") & (manufacturer == "Gowerlabs"):
optode_frame = "head"
snirf_data_type = np.array(dat.get('nirs/data1/measurementList1'
'/dataType')).item()
if snirf_data_type not in [1, 99999]:
# 1 = Continuous Wave
# 99999 = Processed
raise RuntimeError('MNE only supports reading continuous'
' wave amplitude and processed haemoglobin'
' SNIRF files. Expected type'
' code 1 or 99999 but received type '
f'code {snirf_data_type}')
last_samps = dat.get('/nirs/data1/dataTimeSeries').shape[0] - 1
sampling_rate = _extract_sampling_rate(dat)
if sampling_rate == 0:
warn("Unable to extract sample rate from SNIRF file.")
# Extract wavelengths
fnirs_wavelengths = np.array(dat.get('nirs/probe/wavelengths'))
fnirs_wavelengths = [int(w) for w in fnirs_wavelengths]
if len(fnirs_wavelengths) != 2:
raise RuntimeError(f'The data contains '
f'{len(fnirs_wavelengths)}'
f' wavelengths: {fnirs_wavelengths}. '
f'MNE only supports reading continuous'
' wave amplitude SNIRF files '
'with two wavelengths.')
# Extract channels
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
return [atoi(c) for c in re.split(r'(\d+)', text)]
channels = np.array([name for name in dat['nirs']['data1'].keys()])
channels_idx = np.array(['measurementList' in n for n in channels])
channels = channels[channels_idx]
channels = sorted(channels, key=natural_keys)
# Source and detector labels are optional fields.
# Use S1, S2, S3, etc if not specified.
if 'sourceLabels_disabled' in dat['nirs/probe']:
# This is disabled as
# MNE-Python does not currently support custom source names.
# Instead, sources must be integer values.
sources = np.array(dat.get('nirs/probe/sourceLabels'))
sources = [s.decode('UTF-8') for s in sources]
else:
sources = np.unique([_correct_shape(np.array(dat.get(
'nirs/data1/' + c + '/sourceIndex')))[0]
for c in channels])
sources = [f"S{int(s)}" for s in sources]
if 'detectorLabels_disabled' in dat['nirs/probe']:
# This is disabled as
# MNE-Python does not currently support custom detector names.
# Instead, detector must be integer values.
detectors = np.array(dat.get('nirs/probe/detectorLabels'))
detectors = [d.decode('UTF-8') for d in detectors]
else:
detectors = np.unique([_correct_shape(np.array(dat.get(
'nirs/data1/' + c + '/detectorIndex')))[0]
for c in channels])
detectors = [f"D{int(d)}" for d in detectors]
# Extract source and detector locations
# 3D positions are optional in SNIRF,
# but highly recommended in MNE.
if ('detectorPos3D' in dat['nirs/probe']) &\
('sourcePos3D' in dat['nirs/probe']):
# If 3D positions are available they are used even if 2D exists
detPos3D = np.array(dat.get('nirs/probe/detectorPos3D'))
srcPos3D = np.array(dat.get('nirs/probe/sourcePos3D'))
elif ('detectorPos2D' in dat['nirs/probe']) &\
('sourcePos2D' in dat['nirs/probe']):
warn('The data only contains 2D location information for the '
'optode positions. '
'It is highly recommended that data is used '
'which contains 3D location information for the '
'optode positions. With only 2D locations it can not be '
'guaranteed that MNE functions will behave correctly '
'and produce accurate results. If it is not possible to '
'include 3D positions in your data, please consider '
'using the set_montage() function.')
detPos2D = np.array(dat.get('nirs/probe/detectorPos2D'))
srcPos2D = np.array(dat.get('nirs/probe/sourcePos2D'))
# Set the third dimension to zero. See gh#9308
detPos3D = np.append(detPos2D,
np.zeros((detPos2D.shape[0], 1)), axis=1)
srcPos3D = np.append(srcPos2D,
np.zeros((srcPos2D.shape[0], 1)), axis=1)
else:
raise RuntimeError('No optode location information is '
'provided. MNE requires at least 2D '
'location information')
assert len(sources) == srcPos3D.shape[0]
assert len(detectors) == detPos3D.shape[0]
chnames = []
ch_types = []
for chan in channels:
src_idx = int(_correct_shape(np.array(dat.get('nirs/data1/' +
chan + '/sourceIndex')))[0])
det_idx = int(_correct_shape(np.array(dat.get('nirs/data1/' +
chan + '/detectorIndex')))[0])
if snirf_data_type == 1:
wve_idx = int(_correct_shape(np.array(
dat.get('nirs/data1/' + chan +
'/wavelengthIndex')))[0])
ch_name = sources[src_idx - 1] + '_' +\
detectors[det_idx - 1] + ' ' +\
str(fnirs_wavelengths[wve_idx - 1])
chnames.append(ch_name)
ch_types.append('fnirs_cw_amplitude')
elif snirf_data_type == 99999:
dt_id = _correct_shape(
np.array(dat.get('nirs/data1/' + chan +
'/dataTypeLabel')))[0].decode('UTF-8')
# Convert between SNIRF processed names and MNE type names
dt_id = dt_id.lower().replace("dod", "fnirs_od")
ch_name = sources[src_idx - 1] + '_' + \
detectors[det_idx - 1]
if dt_id == "fnirs_od":
wve_idx = int(_correct_shape(np.array(
dat.get('nirs/data1/' + chan +
'/wavelengthIndex')))[0])
suffix = ' ' + str(fnirs_wavelengths[wve_idx - 1])
else:
suffix = ' ' + dt_id.lower()
ch_name = ch_name + suffix
chnames.append(ch_name)
ch_types.append(dt_id)
# Create mne structure
info = create_info(chnames,
sampling_rate,
ch_types=ch_types)
subject_info = {}
names = np.array(dat.get('nirs/metaDataTags/SubjectID'))
subject_info['first_name'] = \
_correct_shape(names)[0].decode('UTF-8')
# Read non standard (but allowed) custom metadata tags
if 'lastName' in dat.get('nirs/metaDataTags/'):
ln = dat.get('/nirs/metaDataTags/lastName')[0].decode('UTF-8')
subject_info['last_name'] = ln
if 'middleName' in dat.get('nirs/metaDataTags/'):
m = dat.get('/nirs/metaDataTags/middleName')[0].decode('UTF-8')
subject_info['middle_name'] = m
if 'sex' in dat.get('nirs/metaDataTags/'):
s = dat.get('/nirs/metaDataTags/sex')[0].decode('UTF-8')
if s in {'M', 'Male', '1', 'm'}:
subject_info['sex'] = FIFF.FIFFV_SUBJ_SEX_MALE
elif s in {'F', 'Female', '2', 'f'}:
subject_info['sex'] = FIFF.FIFFV_SUBJ_SEX_FEMALE
elif s in {'0', 'u'}:
subject_info['sex'] = FIFF.FIFFV_SUBJ_SEX_UNKNOWN
# End non standard name reading
# Update info
info.update(subject_info=subject_info)
length_unit = _get_metadata_str(dat, "LengthUnit")
length_scaling = _get_lengthunit_scaling(length_unit)
srcPos3D /= length_scaling
detPos3D /= length_scaling
if optode_frame in ["mri", "meg"]:
# These are all in MNI or MEG coordinates, so let's transform
# them to the Neuromag head coordinate frame
srcPos3D, detPos3D, _, head_t = _convert_fnirs_to_head(
'fsaverage', optode_frame, 'head', srcPos3D, detPos3D, [])
else:
head_t = np.eye(4)
if optode_frame in ["head", "mri", "meg"]:
# Then the transformation to head was performed above
coord_frame = FIFF.FIFFV_COORD_HEAD
elif 'MNE_coordFrame' in dat.get('nirs/metaDataTags/'):
coord_frame = int(dat.get('/nirs/metaDataTags/MNE_coordFrame')
[0])
else:
coord_frame = FIFF.FIFFV_COORD_UNKNOWN
for idx, chan in enumerate(channels):
src_idx = int(_correct_shape(np.array(dat.get('nirs/data1/' +
chan + '/sourceIndex')))[0])
det_idx = int(_correct_shape(np.array(dat.get('nirs/data1/' +
chan + '/detectorIndex')))[0])
info['chs'][idx]['loc'][3:6] = srcPos3D[src_idx - 1, :]
info['chs'][idx]['loc'][6:9] = detPos3D[det_idx - 1, :]
# Store channel as mid point
midpoint = (info['chs'][idx]['loc'][3:6] +
info['chs'][idx]['loc'][6:9]) / 2
info['chs'][idx]['loc'][0:3] = midpoint
info['chs'][idx]['coord_frame'] = coord_frame
if (snirf_data_type in [1]) or \
((snirf_data_type == 99999) and
(ch_types[idx] == "fnirs_od")):
wve_idx = int(_correct_shape(np.array(dat.get(
'nirs/data1/' + chan + '/wavelengthIndex')))[0])
info['chs'][idx]['loc'][9] = fnirs_wavelengths[wve_idx - 1]
if 'landmarkPos3D' in dat.get('nirs/probe/'):
diglocs = np.array(dat.get('/nirs/probe/landmarkPos3D'))
diglocs /= length_scaling
digname = np.array(dat.get('/nirs/probe/landmarkLabels'))
nasion, lpa, rpa, hpi = None, None, None, None
extra_ps = dict()
for idx, dign in enumerate(digname):
dign = dign.lower()
if dign in [b'lpa', b'al']:
lpa = diglocs[idx, :3]
elif dign in [b'nasion']:
nasion = diglocs[idx, :3]
elif dign in [b'rpa', b'ar']:
rpa = diglocs[idx, :3]
else:
extra_ps[f'EEG{len(extra_ps) + 1:03d}'] = \
diglocs[idx, :3]
add_missing_fiducials = (
coord_frame == FIFF.FIFFV_COORD_HEAD and
lpa is None and rpa is None and nasion is None
)
dig = _make_dig_points(
nasion=nasion, lpa=lpa, rpa=rpa, hpi=hpi,
dig_ch_pos=extra_ps,
coord_frame=_frame_to_str[coord_frame],
add_missing_fiducials=add_missing_fiducials)
else:
ch_locs = [info['chs'][idx]['loc'][0:3]
for idx in range(len(channels))]
# Set up digitization
dig = get_mni_fiducials('fsaverage', verbose=False)
for fid in dig:
fid['r'] = apply_trans(head_t, fid['r'])
fid['coord_frame'] = FIFF.FIFFV_COORD_HEAD
for ii, ch_loc in enumerate(ch_locs, 1):
dig.append(dict(
kind=FIFF.FIFFV_POINT_EEG, # misnomer prob okay
r=ch_loc,
ident=ii,
coord_frame=FIFF.FIFFV_COORD_HEAD,
))
dig = _format_dig_points(dig)
del head_t
with info._unlock():
info['dig'] = dig
str_date = _correct_shape(np.array((dat.get(
'/nirs/metaDataTags/MeasurementDate'))))[0].decode('UTF-8')
str_time = _correct_shape(np.array((dat.get(
'/nirs/metaDataTags/MeasurementTime'))))[0].decode('UTF-8')
str_datetime = str_date + str_time
# Several formats have been observed so we try each in turn
for dt_code in ['%Y-%m-%d%H:%M:%SZ',
'%Y-%m-%d%H:%M:%S']:
try:
meas_date = datetime.datetime.strptime(
str_datetime, dt_code)
except ValueError:
pass
else:
break
else:
warn("Extraction of measurement date from SNIRF file failed. "
"The date is being set to January 1st, 2000, "
f"instead of {str_datetime}")
meas_date = datetime.datetime(2000, 1, 1, 0, 0, 0)
meas_date = meas_date.replace(tzinfo=datetime.timezone.utc)
with info._unlock():
info['meas_date'] = meas_date
if 'DateOfBirth' in dat.get('nirs/metaDataTags/'):
str_birth = np.array((dat.get('/nirs/metaDataTags/'
'DateOfBirth')))[0].decode()
birth_matched = re.fullmatch(r'(\d+)-(\d+)-(\d+)', str_birth)
if birth_matched is not None:
birthday = (int(birth_matched.groups()[0]),
int(birth_matched.groups()[1]),
int(birth_matched.groups()[2]))
with info._unlock():
info["subject_info"]['birthday'] = birthday
super(RawSNIRF, self).__init__(info, preload, filenames=[fname],
last_samps=[last_samps],
verbose=verbose)
# Extract annotations
annot = Annotations([], [], [])
for key in dat['nirs']:
if 'stim' in key:
data = np.atleast_2d(np.array(
dat.get('/nirs/' + key + '/data')))
if data.size > 0:
desc = _correct_shape(np.array(dat.get(
'/nirs/' + key + '/name')))[0]
annot.append(data[:, 0], 1.0, desc.decode('UTF-8'))
self.set_annotations(annot, emit_warning=False)
# Validate that the fNIRS info is correctly formatted
_validate_nirs_info(self.info)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a segment of data from a file."""
import h5py
with h5py.File(self._filenames[0], 'r') as dat:
one = dat['/nirs/data1/dataTimeSeries'][start:stop].T
_mult_cal_one(data, one, idx, cals, mult)
# Helper function for when the numpy array has shape (), i.e. just one element.
def _correct_shape(arr):
if arr.shape == ():
arr = arr[np.newaxis]
return arr
def _get_timeunit_scaling(time_unit):
"""MNE expects time in seconds, return required scaling."""
scalings = {'ms': 1000, 's': 1, 'unknown': 1}
if time_unit in scalings:
return scalings[time_unit]
else:
raise RuntimeError(f'The time unit {time_unit} is not supported by '
'MNE. Please report this error as a GitHub '
'issue to inform the developers.')
def _get_lengthunit_scaling(length_unit):
"""MNE expects distance in m, return required scaling."""
scalings = {'m': 1, 'cm': 100, 'mm': 1000}
if length_unit in scalings:
return scalings[length_unit]
else:
raise RuntimeError(f'The length unit {length_unit} is not supported '
'by MNE. Please report this error as a GitHub '
'issue to inform the developers.')
def _extract_sampling_rate(dat):
"""Extract the sample rate from the time field."""
time_data = np.array(dat.get('nirs/data1/time'))
sampling_rate = 0
if len(time_data) == 2:
# specified as onset, samplerate
sampling_rate = 1. / (time_data[1] - time_data[0])
else:
# specified as time points
fs_diff = np.around(np.diff(time_data), decimals=4)
if len(np.unique(fs_diff)) == 1:
# Uniformly sampled data
sampling_rate = 1. / np.unique(fs_diff)
else:
warn("MNE does not currently support reading "
"SNIRF files with non-uniform sampled data.")
time_unit = _get_metadata_str(dat, "TimeUnit")
time_unit_scaling = _get_timeunit_scaling(time_unit)
sampling_rate *= time_unit_scaling
return sampling_rate
def _get_metadata_str(dat, field):
if field not in np.array(dat.get('nirs/metaDataTags')):
return None
data = dat.get(f'/nirs/metaDataTags/{field}')
data = _correct_shape(np.array(data))
data = str(data[0], 'utf-8')
return data
|