File: test_raw.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (887 lines) | stat: -rw-r--r-- 36,397 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
# -*- coding: utf-8 -*-
"""Generic tests that all raw classes should run."""
# Authors: MNE Developers
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD-3-Clause

from contextlib import redirect_stdout
from io import StringIO
import math
import os
from os import path as op
from pathlib import Path
import re

import pytest
import numpy as np
from numpy.testing import (assert_allclose, assert_array_almost_equal,
                           assert_array_equal, assert_array_less)

import mne
from mne import concatenate_raws, create_info, Annotations, pick_types
from mne.datasets import testing
from mne.io import read_raw_fif, RawArray, BaseRaw, Info, _writing_info_hdf5
from mne.io._digitization import _dig_kind_dict
from mne.io.base import _get_scaling
from mne.io.pick import _ELECTRODE_CH_TYPES, _FNIRS_CH_TYPES_SPLIT
from mne.utils import (_TempDir, catch_logging, _raw_annot, _stamp_to_dt,
                       object_diff, check_version, requires_pandas,
                       _import_h5io_funcs)
from mne.io.meas_info import _get_valid_units
from mne.io._digitization import DigPoint
from mne.io.proj import Projection
from mne.io.utils import _mult_cal_one
from mne.io.constants import FIFF

raw_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                    'data', 'test_raw.fif')


def assert_named_constants(info):
    """Assert that info['chs'] has named constants."""
    # for now we just check one
    __tracebackhide__ = True
    r = repr(info['chs'][0])
    for check in ('.*FIFFV_COORD_.*', '.*FIFFV_COIL_.*', '.*FIFF_UNIT_.*',
                  '.*FIFF_UNITM_.*',):
        assert re.match(check, r, re.DOTALL) is not None, (check, r)


def test_orig_units():
    """Test the error handling for original units."""
    # Should work fine
    info = create_info(ch_names=['Cz'], sfreq=100, ch_types='eeg')
    BaseRaw(info, last_samps=[1], orig_units={'Cz': 'nV'})

    # Should complain that channel Cz does not have a corresponding original
    # unit.
    with pytest.raises(ValueError, match='has no associated original unit.'):
        info = create_info(ch_names=['Cz'], sfreq=100, ch_types='eeg')
        BaseRaw(info, last_samps=[1], orig_units={'not_Cz': 'nV'})

    # Test that a non-dict orig_units argument raises a ValueError
    with pytest.raises(ValueError, match='orig_units must be of type dict'):
        info = create_info(ch_names=['Cz'], sfreq=100, ch_types='eeg')
        BaseRaw(info, last_samps=[1], orig_units=True)


def _test_raw_reader(reader, test_preloading=True, test_kwargs=True,
                     boundary_decimal=2, test_scaling=True, test_rank=True,
                     **kwargs):
    """Test reading, writing and slicing of raw classes.

    Parameters
    ----------
    reader : function
        Function to test.
    test_preloading : bool
        Whether not preloading is implemented for the reader. If True, both
        cases and memory mapping to file are tested.
    test_kwargs : dict
        Test _init_kwargs support.
    boundary_decimal : int
        Number of decimals up to which the boundary should match.
    **kwargs :
        Arguments for the reader. Note: Do not use preload as kwarg.
        Use ``test_preloading`` instead.

    Returns
    -------
    raw : instance of Raw
        A preloaded Raw object.
    """
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    montage = None
    if "montage" in kwargs:
        montage = kwargs['montage']
        del kwargs['montage']
    if test_preloading:
        raw = reader(preload=True, **kwargs)
        rep = repr(raw)
        assert rep.count('<') == 1
        assert rep.count('>') == 1
        if montage is not None:
            raw.set_montage(montage)
        # don't assume the first is preloaded
        buffer_fname = op.join(tempdir, 'buffer')
        picks = rng.permutation(np.arange(len(raw.ch_names) - 1))[:10]
        picks = np.append(picks, len(raw.ch_names) - 1)  # test trigger channel
        bnd = min(int(round(raw.buffer_size_sec *
                            raw.info['sfreq'])), raw.n_times)
        slices = [slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd),
                  slice(3, 300), slice(None), slice(1, bnd)]
        if raw.n_times >= 2 * bnd:  # at least two complete blocks
            slices += [slice(bnd, 2 * bnd), slice(bnd, bnd + 1),
                       slice(0, bnd + 100)]
        other_raws = [reader(preload=buffer_fname, **kwargs),
                      reader(preload=False, **kwargs)]
        for sl_time in slices:
            data1, times1 = raw[picks, sl_time]
            for other_raw in other_raws:
                data2, times2 = other_raw[picks, sl_time]
                assert_allclose(
                    data1, data2, err_msg='Data mismatch with preload')
                assert_allclose(times1, times2)

        # test projection vs cals and data units
        other_raw = reader(preload=False, **kwargs)
        other_raw.del_proj()
        eeg = meg = fnirs = False
        if 'eeg' in raw:
            eeg, atol = True, 1e-18
        elif 'grad' in raw:
            meg, atol = 'grad', 1e-24
        elif 'mag' in raw:
            meg, atol = 'mag', 1e-24
        elif 'hbo' in raw:
            fnirs, atol = 'hbo', 1e-10
        elif 'hbr' in raw:
            fnirs, atol = 'hbr', 1e-10
        else:
            assert 'fnirs_cw_amplitude' in raw, 'New channel type necessary?'
            fnirs, atol = 'fnirs_cw_amplitude', 1e-10
        picks = pick_types(
            other_raw.info, meg=meg, eeg=eeg, fnirs=fnirs)
        col_names = [other_raw.ch_names[pick] for pick in picks]
        proj = np.ones((1, len(picks)))
        proj /= np.sqrt(proj.shape[1])
        proj = Projection(
            data=dict(data=proj, nrow=1, row_names=None,
                      col_names=col_names, ncol=len(picks)),
            active=False)
        assert len(other_raw.info['projs']) == 0
        other_raw.add_proj(proj)
        assert len(other_raw.info['projs']) == 1
        # Orders of projector application, data loading, and reordering
        # equivalent:
        # 1. load->apply->get
        data_load_apply_get = \
            other_raw.copy().load_data().apply_proj().get_data(picks)
        # 2. apply->get (and don't allow apply->pick)
        apply = other_raw.copy().apply_proj()
        data_apply_get = apply.get_data(picks)
        data_apply_get_0 = apply.get_data(picks[0])[0]
        with pytest.raises(RuntimeError, match='loaded'):
            apply.copy().pick(picks[0]).get_data()
        # 3. apply->load->get
        data_apply_load_get = apply.copy().load_data().get_data(picks)
        data_apply_load_get_0, data_apply_load_get_1 = \
            apply.copy().load_data().pick(picks[:2]).get_data()
        # 4. reorder->apply->load->get
        all_picks = np.arange(len(other_raw.ch_names))
        reord = np.concatenate((
            picks[1::2],
            picks[0::2],
            np.setdiff1d(all_picks, picks)))
        rev = np.argsort(reord)
        assert_array_equal(reord[rev], all_picks)
        assert_array_equal(rev[reord], all_picks)
        reorder = other_raw.copy().pick(reord)
        assert reorder.ch_names == [other_raw.ch_names[r] for r in reord]
        assert reorder.ch_names[0] == other_raw.ch_names[picks[1]]
        assert_allclose(reorder.get_data([0]), other_raw.get_data(picks[1]))
        reorder_apply = reorder.copy().apply_proj()
        assert reorder_apply.ch_names == reorder.ch_names
        assert reorder_apply.ch_names[0] == apply.ch_names[picks[1]]
        assert_allclose(reorder_apply.get_data([0]), apply.get_data(picks[1]),
                        atol=1e-18)
        data_reorder_apply_load_get = \
            reorder_apply.load_data().get_data(rev[:len(picks)])
        data_reorder_apply_load_get_1 = \
            reorder_apply.copy().load_data().pick([0]).get_data()[0]
        assert reorder_apply.ch_names[0] == apply.ch_names[picks[1]]
        assert (data_load_apply_get.shape ==
                data_apply_get.shape ==
                data_apply_load_get.shape ==
                data_reorder_apply_load_get.shape)
        del apply
        # first check that our data are (probably) in the right units
        data = data_load_apply_get.copy()
        data = data - np.mean(data, axis=1, keepdims=True)  # can be offsets
        np.abs(data, out=data)
        if test_scaling:
            maxval = atol * 1e16
            assert_array_less(data, maxval)
            minval = atol * 1e6
            assert_array_less(minval, np.median(data))
        else:
            atol = 1e-7 * np.median(data)  # 1e-7 * MAD
        # ranks should all be reduced by 1
        if test_rank == 'less':
            cmp = np.less
        elif test_rank is False:
            cmp = None
        else:  # anything else is like True or 'equal'
            assert test_rank is True or test_rank == 'equal', test_rank
            cmp = np.equal
        rank_load_apply_get = np.linalg.matrix_rank(data_load_apply_get)
        rank_apply_get = np.linalg.matrix_rank(data_apply_get)
        rank_apply_load_get = np.linalg.matrix_rank(data_apply_load_get)
        if cmp is not None:
            assert cmp(rank_load_apply_get, len(col_names) - 1)
            assert cmp(rank_apply_get, len(col_names) - 1)
            assert cmp(rank_apply_load_get, len(col_names) - 1)
        # and they should all match
        t_kw = dict(
            atol=atol, err_msg='before != after, likely _mult_cal_one prob')
        assert_allclose(data_apply_get[0], data_apply_get_0, **t_kw)
        assert_allclose(data_apply_load_get_1,
                        data_reorder_apply_load_get_1, **t_kw)
        assert_allclose(data_load_apply_get[0], data_apply_load_get_0, **t_kw)
        assert_allclose(data_load_apply_get, data_apply_get, **t_kw)
        assert_allclose(data_load_apply_get, data_apply_load_get, **t_kw)
        if 'eeg' in raw:
            other_raw.del_proj()
            direct = \
                other_raw.copy().load_data().set_eeg_reference().get_data()
            other_raw.set_eeg_reference(projection=True)
            assert len(other_raw.info['projs']) == 1
            this_proj = other_raw.info['projs'][0]['data']
            assert this_proj['col_names'] == col_names
            assert this_proj['data'].shape == proj['data']['data'].shape
            assert_allclose(
                np.linalg.norm(proj['data']['data']), 1., atol=1e-6)
            assert_allclose(
                np.linalg.norm(this_proj['data']), 1., atol=1e-6)
            assert_allclose(this_proj['data'], proj['data']['data'])
            proj = other_raw.apply_proj().get_data()
            assert_allclose(proj[picks], data_load_apply_get, atol=1e-10)
            assert_allclose(proj, direct, atol=1e-10, err_msg=t_kw['err_msg'])
    else:
        raw = reader(**kwargs)
    n_samp = len(raw.times)
    assert_named_constants(raw.info)
    # smoke test for gh #9743
    ids = [id(ch['loc']) for ch in raw.info['chs']]
    assert len(set(ids)) == len(ids)

    full_data = raw._data
    assert raw.__class__.__name__ in repr(raw)  # to test repr
    assert raw.info.__class__.__name__ in repr(raw.info)
    assert isinstance(raw.info['dig'], (type(None), list))
    data_max = full_data.max()
    data_min = full_data.min()
    # these limits could be relaxed if we actually find data with
    # huge values (in SI units)
    assert data_max < 1e5
    assert data_min > -1e5
    if isinstance(raw.info['dig'], list):
        for di, d in enumerate(raw.info['dig']):
            assert isinstance(d, DigPoint), (di, d)

    # gh-5604
    meas_date = raw.info['meas_date']
    assert meas_date is None or meas_date >= _stamp_to_dt((0, 0))

    # test repr_html
    assert 'Good channels' in raw.info._repr_html_()

    # test resetting raw
    if test_kwargs:
        raw2 = reader(**raw._init_kwargs)
        assert set(raw.info.keys()) == set(raw2.info.keys())
        assert_array_equal(raw.times, raw2.times)

    # Test saving and reading
    out_fname = op.join(tempdir, 'test_raw.fif')
    raw = concatenate_raws([raw])
    raw.save(out_fname, tmax=raw.times[-1], overwrite=True, buffer_size_sec=1)

    # Test saving with not correct extension
    out_fname_h5 = op.join(tempdir, 'test_raw.h5')
    with pytest.raises(IOError, match='raw must end with .fif or .fif.gz'):
        raw.save(out_fname_h5)

    raw3 = read_raw_fif(out_fname)
    assert_named_constants(raw3.info)
    assert set(raw.info.keys()) == set(raw3.info.keys())
    assert_allclose(raw3[0:20][0], full_data[0:20], rtol=1e-6,
                    atol=1e-20)  # atol is very small but > 0
    assert_allclose(raw.times, raw3.times, atol=1e-6, rtol=1e-6)

    assert not math.isnan(raw3.info['highpass'])
    assert not math.isnan(raw3.info['lowpass'])
    assert not math.isnan(raw.info['highpass'])
    assert not math.isnan(raw.info['lowpass'])

    assert raw3.info['kit_system_id'] == raw.info['kit_system_id']

    # Make sure concatenation works
    first_samp = raw.first_samp
    last_samp = raw.last_samp
    concat_raw = concatenate_raws([raw.copy(), raw])
    assert concat_raw.n_times == 2 * raw.n_times
    assert concat_raw.first_samp == first_samp
    assert concat_raw.last_samp - last_samp + first_samp == last_samp + 1
    idx = np.where(concat_raw.annotations.description == 'BAD boundary')[0]

    expected_bad_boundary_onset = raw._last_time

    assert_array_almost_equal(concat_raw.annotations.onset[idx],
                              expected_bad_boundary_onset,
                              decimal=boundary_decimal)

    if raw.info['meas_id'] is not None:
        for key in ['secs', 'usecs', 'version']:
            assert raw.info['meas_id'][key] == raw3.info['meas_id'][key]
        assert_array_equal(raw.info['meas_id']['machid'],
                           raw3.info['meas_id']['machid'])

    assert isinstance(raw.annotations, Annotations)

    # Make a "soft" test on units: They have to be valid SI units as in
    # mne.io.meas_info.valid_units, but we accept any lower/upper case for now.
    valid_units = _get_valid_units()
    valid_units_lower = [unit.lower() for unit in valid_units]
    if raw._orig_units is not None:
        assert isinstance(raw._orig_units, dict)
        for ch_name, unit in raw._orig_units.items():
            assert unit.lower() in valid_units_lower, ch_name

    # Test picking with and without preload
    if test_preloading:
        preload_kwargs = (dict(preload=True), dict(preload=False))
    else:
        preload_kwargs = (dict(),)
    n_ch = len(raw.ch_names)
    picks = rng.permutation(n_ch)
    for preload_kwarg in preload_kwargs:
        these_kwargs = kwargs.copy()
        these_kwargs.update(preload_kwarg)
        # don't use the same filename or it could create problems
        if isinstance(these_kwargs.get('preload', None), str) and \
                op.isfile(these_kwargs['preload']):
            these_kwargs['preload'] += '-1'
        whole_raw = reader(**these_kwargs)
        print(whole_raw)  # __repr__
        assert n_ch >= 2
        picks_1 = picks[:n_ch // 2]
        picks_2 = picks[n_ch // 2:]
        raw_1 = whole_raw.copy().pick(picks_1)
        raw_2 = whole_raw.copy().pick(picks_2)
        data, times = whole_raw[:]
        data_1, times_1 = raw_1[:]
        data_2, times_2 = raw_2[:]
        assert_array_equal(times, times_1)
        assert_array_equal(data[picks_1], data_1)
        assert_array_equal(times, times_2,)
        assert_array_equal(data[picks_2], data_2)

    # Make sure that writing info to h5 format
    # (all fields should be compatible)
    if check_version('h5io'):
        read_hdf5, write_hdf5 = _import_h5io_funcs()
        fname_h5 = op.join(tempdir, 'info.h5')
        with _writing_info_hdf5(raw.info):
            write_hdf5(fname_h5, raw.info)
        new_info = Info(read_hdf5(fname_h5))
        assert object_diff(new_info, raw.info) == ''

    # Make sure that changing directory does not break anything
    if test_preloading:
        these_kwargs = kwargs.copy()
        key = None
        for key in ('fname',
                    'input_fname',  # artemis123
                    'vhdr_fname',  # BV
                    'pdf_fname',  # BTi
                    'directory',  # CTF
                    'filename',  # nedf
                    ):
            try:
                fname = kwargs[key]
            except KeyError:
                key = None
            else:
                break
        # len(kwargs) == 0 for the fake arange reader
        if len(kwargs):
            assert key is not None, sorted(kwargs.keys())
            this_fname = fname[0] if isinstance(fname, list) else fname
            dirname = op.dirname(this_fname)
            these_kwargs[key] = op.basename(this_fname)
            these_kwargs['preload'] = False
            orig_dir = os.getcwd()
            try:
                os.chdir(dirname)
                raw_chdir = reader(**these_kwargs)
            finally:
                os.chdir(orig_dir)
            raw_chdir.load_data()

    # make sure that cropping works (with first_samp shift)
    if n_samp >= 50:  # we crop to this number of samples below
        for t_prop in (0., 0.5):
            _test_raw_crop(reader, t_prop, kwargs)
            if test_preloading:
                use_kwargs = kwargs.copy()
                use_kwargs['preload'] = True
                _test_raw_crop(reader, t_prop, use_kwargs)

    # make sure electrode-like sensor locations show up as dig points
    eeg_dig = [d for d in (raw.info['dig'] or [])
               if d['kind'] == _dig_kind_dict['eeg']]
    pick_kwargs = dict()
    for t in _ELECTRODE_CH_TYPES + ('fnirs',):
        pick_kwargs[t] = True
    dig_picks = pick_types(raw.info, exclude=(), **pick_kwargs)
    dig_types = _ELECTRODE_CH_TYPES + _FNIRS_CH_TYPES_SPLIT
    assert (len(dig_picks) > 0) == any(t in raw for t in dig_types)
    if len(dig_picks):
        eeg_loc = np.array([  # eeg_loc a bit of a misnomer to match eeg_dig
            raw.info['chs'][pick]['loc'][:3] for pick in dig_picks])
        eeg_loc = eeg_loc[np.isfinite(eeg_loc).all(axis=1)]
        if len(eeg_loc):
            if 'fnirs_cw_amplitude' in raw:
                assert 2 * len(eeg_dig) >= len(eeg_loc)
            else:
                assert len(eeg_dig) >= len(eeg_loc)  # could have some excluded
    # make sure that dig points in head coords implies that fiducials are
    # present
    if len(raw.info['dig'] or []) > 0:
        card_pts = [d for d in raw.info['dig']
                    if d['kind'] == _dig_kind_dict['cardinal']]
        eeg_dig_head = [
            d for d in eeg_dig if d['coord_frame'] == FIFF.FIFFV_COORD_HEAD]
        if len(eeg_dig_head):
            assert len(card_pts) == 3, 'Cardinal points missing'
        if len(card_pts) == 3:  # they should all be in head coords then
            assert len(eeg_dig_head) == len(eeg_dig)

    return raw


def _test_raw_crop(reader, t_prop, kwargs):
    raw_1 = reader(**kwargs)
    n_samp = 50  # crop to this number of samples (per instance)
    crop_t = n_samp / raw_1.info['sfreq']
    t_start = t_prop * crop_t  # also crop to some fraction into the first inst
    extra = f' t_start={t_start}, preload={kwargs.get("preload", False)}'
    stop = (n_samp - 1) / raw_1.info['sfreq']
    raw_1.crop(0, stop)
    assert len(raw_1.times) == 50
    first_time = raw_1.first_time
    atol = 0.5 / raw_1.info['sfreq']
    assert_allclose(raw_1.times[-1], stop, atol=atol)
    raw_2, raw_3 = raw_1.copy(), raw_1.copy()
    t_tot = raw_1.times[-1] * 3 + 2. / raw_1.info['sfreq']
    raw_concat = concatenate_raws([raw_1, raw_2, raw_3])
    assert len(raw_concat._filenames) == 3
    assert_allclose(raw_concat.times[-1], t_tot)
    assert_allclose(raw_concat.first_time, first_time)
    # keep all instances, but crop to t_start at the beginning
    raw_concat.crop(t_start, None)
    assert len(raw_concat._filenames) == 3
    assert_allclose(raw_concat.times[-1], t_tot - t_start, atol=atol)
    assert_allclose(
        raw_concat.first_time, first_time + t_start, atol=atol,
        err_msg=f'Base concat, {extra}')
    # drop the first instance
    raw_concat.crop(crop_t, None)
    assert len(raw_concat._filenames) == 2
    assert_allclose(
        raw_concat.times[-1], t_tot - t_start - crop_t, atol=atol)
    assert_allclose(
        raw_concat.first_time, first_time + t_start + crop_t,
        atol=atol, err_msg=f'Dropping one, {extra}')
    # drop the second instance, leaving just one
    raw_concat.crop(crop_t, None)
    assert len(raw_concat._filenames) == 1
    assert_allclose(
        raw_concat.times[-1], t_tot - t_start - 2 * crop_t, atol=atol)
    assert_allclose(
        raw_concat.first_time, first_time + t_start + 2 * crop_t,
        atol=atol, err_msg=f'Dropping two, {extra}')


def _test_concat(reader, *args):
    """Test concatenation of raw classes that allow not preloading."""
    data = None

    for preload in (True, False):
        raw1 = reader(*args, preload=preload)
        raw2 = reader(*args, preload=preload)
        raw1.append(raw2)
        raw1.load_data()
        if data is None:
            data = raw1[:, :][0]
        assert_allclose(data, raw1[:, :][0])

    for first_preload in (True, False):
        raw = reader(*args, preload=first_preload)
        data = raw[:, :][0]
        for preloads in ((True, True), (True, False), (False, False)):
            for last_preload in (True, False):
                t_crops = raw.times[np.argmin(np.abs(raw.times - 0.5)) +
                                    [0, 1]]
                raw1 = raw.copy().crop(0, t_crops[0])
                if preloads[0]:
                    raw1.load_data()
                raw2 = raw.copy().crop(t_crops[1], None)
                if preloads[1]:
                    raw2.load_data()
                raw1.append(raw2)
                if last_preload:
                    raw1.load_data()
                assert_allclose(data, raw1[:, :][0])


@testing.requires_testing_data
def test_time_as_index():
    """Test indexing of raw times."""
    raw = read_raw_fif(raw_fname)

    # Test original (non-rounding) indexing behavior
    orig_inds = raw.time_as_index(raw.times)
    assert len(set(orig_inds)) != len(orig_inds)

    # Test new (rounding) indexing behavior
    new_inds = raw.time_as_index(raw.times, use_rounding=True)
    assert_array_equal(new_inds, np.arange(len(raw.times)))


@pytest.mark.parametrize('meas_date', [None, "orig"])
@pytest.mark.parametrize('first_samp', [0, 10000])
def test_crop_by_annotations(meas_date, first_samp):
    """Test crop by annotations of raw."""
    raw = read_raw_fif(raw_fname)

    if meas_date is None:
        raw.set_meas_date(None)

    raw = mne.io.RawArray(raw.get_data(), raw.info, first_samp=first_samp)

    onset = np.array([0, 1.5], float)
    if meas_date is not None:
        onset += raw.first_time
    annot = mne.Annotations(
        onset=onset,
        duration=[1, 0.5],
        description=["a", "b"],
        orig_time=raw.info['meas_date'])

    raw.set_annotations(annot)
    raws = raw.crop_by_annotations()
    assert len(raws) == 2
    assert len(raws[0].annotations) == 1
    assert raws[0].times[-1] == pytest.approx(annot[:1].duration[0], rel=1e-3)
    assert raws[0].annotations.description[0] == annot.description[0]
    assert len(raws[1].annotations) == 1
    assert raws[1].times[-1] == pytest.approx(annot[1:2].duration[0], rel=5e-3)
    assert raws[1].annotations.description[0] == annot.description[1]


@pytest.mark.parametrize('offset, origin', [
    pytest.param(0, None, id='times in s. relative to first_samp (default)'),
    pytest.param(0, 2.0, id='times in s. relative to first_samp'),
    pytest.param(1, 1.0, id='times in s. relative to meas_date'),
    pytest.param(2, 0.0, id='absolute times in s. relative to 0')])
def test_time_as_index_ref(offset, origin):
    """Test indexing of raw times."""
    info = create_info(ch_names=10, sfreq=10.)
    raw = RawArray(data=np.empty((10, 10)), info=info, first_samp=10)
    raw.set_meas_date(1)

    relative_times = raw.times
    inds = raw.time_as_index(relative_times + offset,
                             use_rounding=True,
                             origin=origin)
    assert_array_equal(inds, np.arange(raw.n_times))


def test_meas_date_orig_time():
    """Test the relation between meas_time in orig_time."""
    # meas_time is set and orig_time is set:
    # clips the annotations based on raw.data and resets the annotation based
    # on raw.info['meas_date]
    raw = _raw_annot(1, 1.5)
    assert raw.annotations.orig_time == _stamp_to_dt((1, 0))
    assert raw.annotations.onset[0] == 1

    # meas_time is set and orig_time is None:
    # Consider annot.orig_time to be raw.frist_sample, clip and reset
    # annotations to have the raw.annotations.orig_time == raw.info['meas_date]
    raw = _raw_annot(1, None)
    assert raw.annotations.orig_time == _stamp_to_dt((1, 0))
    assert raw.annotations.onset[0] == 1.5

    # meas_time is None and orig_time is set:
    # Raise error, it makes no sense to have an annotations object that we know
    # when was acquired and set it to a raw object that does not know when was
    # it acquired.
    with pytest.raises(RuntimeError, match='Ambiguous operation'):
        _raw_annot(None, 1.5)

    # meas_time is None and orig_time is None:
    # Consider annot.orig_time to be raw.first_sample and clip
    raw = _raw_annot(None, None)
    assert raw.annotations.orig_time is None
    assert raw.annotations.onset[0] == 1.5
    assert raw.annotations.duration[0] == 0.2


def test_get_data_reject():
    """Test if reject_by_annotation is working correctly."""
    fs = 256
    ch_names = ["C3", "Cz", "C4"]
    info = create_info(ch_names, sfreq=fs)
    raw = RawArray(np.zeros((len(ch_names), 10 * fs)), info)
    raw.set_annotations(Annotations(onset=[2, 4], duration=[3, 2],
                                    description="bad"))

    with catch_logging() as log:
        data = raw.get_data(reject_by_annotation="omit", verbose=True)
        msg = ('Omitting 1024 of 2560 (40.00%) samples, retaining 1536' +
               ' (60.00%) samples.')
        assert log.getvalue().strip() == msg
    assert data.shape == (len(ch_names), 1536)
    with catch_logging() as log:
        data = raw.get_data(reject_by_annotation="nan", verbose=True)
        msg = ('Setting 1024 of 2560 (40.00%) samples to NaN, retaining 1536' +
               ' (60.00%) samples.')
        assert log.getvalue().strip() == msg
    assert data.shape == (len(ch_names), 2560)  # shape doesn't change
    assert np.isnan(data).sum() == 3072  # but NaNs are introduced instead


def test_5839():
    """Test concatenating raw objects with annotations."""
    # Global Time 0         1         2         3         4
    #             .
    #      raw_A  |---------XXXXXXXXXX
    #      annot  |--------------AA
    #    latency  .         0    0    1    1    2    2    3
    #             .              5    0    5    0    5    0
    #
    #      raw_B  .                   |---------YYYYYYYYYY
    #      annot  .                   |--------------AA
    #    latency  .                             0         1
    #             .                                  5    0
    #             .
    #     output  |---------XXXXXXXXXXYYYYYYYYYY
    #      annot  |--------------AA---|----AA
    #    latency  .         0    0    1    1    2    2    3
    #             .              5    0    5    0    5    0
    #
    EXPECTED_ONSET = [1.5, 2., 2., 2.5]
    EXPECTED_DURATION = [0.2, 0., 0., 0.2]
    EXPECTED_DESCRIPTION = ['dummy', 'BAD boundary', 'EDGE boundary', 'dummy']

    def raw_factory(meas_date):
        raw = RawArray(data=np.empty((10, 10)),
                       info=create_info(ch_names=10, sfreq=10.),
                       first_samp=10)
        raw.set_meas_date(meas_date)
        raw.set_annotations(annotations=Annotations(onset=[.5],
                                                    duration=[.2],
                                                    description='dummy',
                                                    orig_time=None))
        return raw

    raw_A, raw_B = [raw_factory((x, 0)) for x in [0, 2]]
    raw_A.append(raw_B)

    assert_array_equal(raw_A.annotations.onset, EXPECTED_ONSET)
    assert_array_equal(raw_A.annotations.duration, EXPECTED_DURATION)
    assert_array_equal(raw_A.annotations.description, EXPECTED_DESCRIPTION)
    assert raw_A.annotations.orig_time == _stamp_to_dt((0, 0))


def test_repr():
    """Test repr of Raw."""
    sfreq = 256
    info = create_info(3, sfreq)
    raw = RawArray(np.zeros((3, 10 * sfreq)), info)
    r = repr(raw)
    assert re.search('<RawArray | 3 x 2560 (10.0 s), ~.* kB, data loaded>',
                     r) is not None, r
    assert raw._repr_html_()


# A class that sets channel data to np.arange, for testing _test_raw_reader
class _RawArange(BaseRaw):

    def __init__(self, preload=False, verbose=None):
        info = create_info(list(str(x) for x in range(1, 9)), 1000., 'eeg')
        super().__init__(info, preload, last_samps=(999,), verbose=verbose)
        assert len(self.times) == 1000

    def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
        one = np.full((8, stop - start), np.nan)
        one[idx] = np.arange(1, 9)[idx, np.newaxis]
        _mult_cal_one(data, one, idx, cals, mult)


def _read_raw_arange(preload=False, verbose=None):
    return _RawArange(preload, verbose)


def test_test_raw_reader():
    """Test _test_raw_reader."""
    _test_raw_reader(_read_raw_arange, test_scaling=False, test_rank='less')


@pytest.mark.slowtest
def test_describe_print():
    """Test print output of describe method."""
    fname = Path(__file__).parent / "data" / "test_raw.fif"
    raw = read_raw_fif(fname)

    # test print output
    f = StringIO()
    with redirect_stdout(f):
        raw.describe()
    s = f.getvalue().strip().split("\n")
    assert len(s) == 378
    # Can be 3.1, 3.3, etc.
    assert re.match(
        r'<Raw | test_raw.fif, 376 x 14400 (24\.0 s), '
        r'~3\.. MB, data not loaded>', s[0]) is not None, s[0]
    assert s[1] == " ch  name      type  unit         min         Q1     median         Q3        max"  # noqa
    assert s[2] == "  0  MEG 0113  GRAD  fT/cm    -221.80     -38.57      -9.64      19.29     414.67"  # noqa
    assert s[-1] == "375  EOG 061   EOG   µV       -231.41     271.28     277.16     285.66     334.69"  # noqa


@requires_pandas
@pytest.mark.slowtest
def test_describe_df():
    """Test returned data frame of describe method."""
    fname = Path(__file__).parent / "data" / "test_raw.fif"
    raw = read_raw_fif(fname)

    df = raw.describe(data_frame=True)
    assert df.shape == (376, 8)
    assert (df.columns.tolist() == ["name", "type", "unit", "min", "Q1",
                                    "median", "Q3", "max"])
    assert df.index.name == "ch"
    assert_allclose(df.iloc[0, 3:].astype(float),
                    np.array([-2.218017605790535e-11,
                              -3.857421923113974e-12,
                              -9.643554807784935e-13,
                              1.928710961556987e-12,
                              4.146728567347522e-11]))


def test_get_data_units():
    """Test the "units" argument of get_data method."""
    # Test the unit conversion function
    assert _get_scaling('eeg', 'uV') == 1e6
    assert _get_scaling('eeg', 'dV') == 1e1
    assert _get_scaling('eeg', 'pV') == 1e12
    assert _get_scaling('mag', 'fT') == 1e15
    assert _get_scaling('grad', 'T/m') == 1
    assert _get_scaling('grad', 'T/mm') == 1e-3
    assert _get_scaling('grad', 'fT/m') == 1e15
    assert _get_scaling('grad', 'fT/cm') == 1e13
    assert _get_scaling('csd', 'uV/cm²') == 1e2

    fname = Path(__file__).parent / "data" / "test_raw.fif"
    raw = read_raw_fif(fname)

    last = np.array([4.63803098e-05, 7.66563736e-05, 2.71933595e-04])
    last_eeg = np.array([7.12207023e-05, 4.63803098e-05, 7.66563736e-05])
    last_grad = np.array([-3.85742192e-12,  9.64355481e-13, -1.06079103e-11])

    # None
    data_none = raw.get_data()
    assert data_none.shape == (376, 14400)
    assert_array_almost_equal(data_none[-3:, -1], last)

    # str: unit no conversion
    data_str_noconv = raw.get_data(picks=['eeg'], units='V')
    assert data_str_noconv.shape == (60, 14400)
    assert_array_almost_equal(data_str_noconv[-3:, -1], last_eeg)
    # str: simple unit
    data_str_simple = raw.get_data(picks=['eeg'], units='uV')
    assert data_str_simple.shape == (60, 14400)
    assert_array_almost_equal(data_str_simple[-3:, -1], last_eeg * 1e6)
    # str: fraction unit
    data_str_fraction = raw.get_data(picks=['grad'], units='fT/cm')
    assert data_str_fraction.shape == (204, 14400)
    assert_array_almost_equal(data_str_fraction[-3:, -1],
                              last_grad * (1e15 / 1e2))
    # str: more than one channel type but one with unit
    data_str_simplestim = raw.get_data(picks=['eeg', 'stim'], units='V')
    assert data_str_simplestim.shape == (69, 14400)
    assert_array_almost_equal(data_str_simplestim[-3:, -1], last_eeg)
    # str: too many channels
    with pytest.raises(ValueError, match='more than one channel'):
        raw.get_data(units='uV')
    # str: invalid unit
    with pytest.raises(ValueError, match='is not a valid unit'):
        raw.get_data(picks=['eeg'], units='fV/cm')

    # dict: combination of simple and fraction units
    data_dict = raw.get_data(units=dict(grad='fT/cm', mag='fT', eeg='uV'))
    assert data_dict.shape == (376, 14400)
    assert_array_almost_equal(data_dict[0, -1],
                              -3.857421923113974e-12 * (1e15 / 1e2))
    assert_array_almost_equal(data_dict[2, -1], -2.1478272253525944e-13 * 1e15)
    assert_array_almost_equal(data_dict[-2, -1], 7.665637356879529e-05 * 1e6)
    # dict: channel type not in instance
    data_dict_notin = raw.get_data(units=dict(hbo='uM'))
    assert data_dict_notin.shape == (376, 14400)
    assert_array_almost_equal(data_dict_notin[-3:, -1], last)
    # dict: one invalid unit
    with pytest.raises(ValueError, match='is not a valid unit'):
        raw.get_data(units=dict(grad='fT/cV', mag='fT', eeg='uV'))
    # dict: one invalid channel type
    with pytest.raises(KeyError, match='is not a channel type'):
        raw.get_data(units=dict(bad_type='fT/cV', mag='fT', eeg='uV'))

    # not the good type
    with pytest.raises(TypeError, match='instance of None, str, or dict'):
        raw.get_data(units=['fT/cm', 'fT', 'uV'])


def test_repr_dig_point():
    """Test printing of DigPoint."""
    dp = DigPoint(r=np.arange(3), coord_frame=FIFF.FIFFV_COORD_HEAD,
                  kind=FIFF.FIFFV_POINT_EEG, ident=0)
    assert 'mm' in repr(dp)

    dp = DigPoint(r=np.arange(3), coord_frame=FIFF.FIFFV_MNE_COORD_MRI_VOXEL,
                  kind=FIFF.FIFFV_POINT_CARDINAL, ident=0)
    assert 'mm' not in repr(dp)
    assert 'voxel' in repr(dp)


def test_get_data_tmin_tmax():
    """Test tmin and tmax parameters of get_data method."""
    fname = Path(__file__).parent / "data" / "test_raw.fif"
    raw = read_raw_fif(fname)

    # tmin and tmax just use time_as_index under the hood
    tmin, tmax = (1, 9)
    d1 = raw.get_data()
    d2 = raw.get_data(tmin=tmin, tmax=tmax)

    idxs = raw.time_as_index([tmin, tmax])
    assert_allclose(d1[:, idxs[0]:idxs[1]], d2)

    # specifying a too low tmin truncates to idx 0
    d3 = raw.get_data(tmin=-5)
    assert_allclose(d3, d1)

    # specifying a too high tmax truncates to idx n_times
    d4 = raw.get_data(tmax=1e6)
    assert_allclose(d4, d1)

    # when start/stop are passed, tmin/tmax are ignored
    d5 = raw.get_data(start=1, stop=2, tmin=tmin, tmax=tmax)
    assert d5.shape[1] == 1

    # validate inputs are properly raised
    with pytest.raises(TypeError, match='start must be .* int'):
        raw.get_data(start=None)

    with pytest.raises(TypeError, match='stop must be .* int'):
        raw.get_data(stop=2.3)

    with pytest.raises(TypeError, match='tmin must be .* float'):
        raw.get_data(tmin=[1, 2])

    with pytest.raises(TypeError, match='tmax must be .* float'):
        raw.get_data(tmax=[1, 2])