1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
|
# -*- coding: utf-8 -*-
"""Generic tests that all raw classes should run."""
# Authors: MNE Developers
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD-3-Clause
from contextlib import redirect_stdout
from io import StringIO
import math
import os
from os import path as op
from pathlib import Path
import re
import pytest
import numpy as np
from numpy.testing import (assert_allclose, assert_array_almost_equal,
assert_array_equal, assert_array_less)
import mne
from mne import concatenate_raws, create_info, Annotations, pick_types
from mne.datasets import testing
from mne.io import read_raw_fif, RawArray, BaseRaw, Info, _writing_info_hdf5
from mne.io._digitization import _dig_kind_dict
from mne.io.base import _get_scaling
from mne.io.pick import _ELECTRODE_CH_TYPES, _FNIRS_CH_TYPES_SPLIT
from mne.utils import (_TempDir, catch_logging, _raw_annot, _stamp_to_dt,
object_diff, check_version, requires_pandas,
_import_h5io_funcs)
from mne.io.meas_info import _get_valid_units
from mne.io._digitization import DigPoint
from mne.io.proj import Projection
from mne.io.utils import _mult_cal_one
from mne.io.constants import FIFF
raw_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
'data', 'test_raw.fif')
def assert_named_constants(info):
"""Assert that info['chs'] has named constants."""
# for now we just check one
__tracebackhide__ = True
r = repr(info['chs'][0])
for check in ('.*FIFFV_COORD_.*', '.*FIFFV_COIL_.*', '.*FIFF_UNIT_.*',
'.*FIFF_UNITM_.*',):
assert re.match(check, r, re.DOTALL) is not None, (check, r)
def test_orig_units():
"""Test the error handling for original units."""
# Should work fine
info = create_info(ch_names=['Cz'], sfreq=100, ch_types='eeg')
BaseRaw(info, last_samps=[1], orig_units={'Cz': 'nV'})
# Should complain that channel Cz does not have a corresponding original
# unit.
with pytest.raises(ValueError, match='has no associated original unit.'):
info = create_info(ch_names=['Cz'], sfreq=100, ch_types='eeg')
BaseRaw(info, last_samps=[1], orig_units={'not_Cz': 'nV'})
# Test that a non-dict orig_units argument raises a ValueError
with pytest.raises(ValueError, match='orig_units must be of type dict'):
info = create_info(ch_names=['Cz'], sfreq=100, ch_types='eeg')
BaseRaw(info, last_samps=[1], orig_units=True)
def _test_raw_reader(reader, test_preloading=True, test_kwargs=True,
boundary_decimal=2, test_scaling=True, test_rank=True,
**kwargs):
"""Test reading, writing and slicing of raw classes.
Parameters
----------
reader : function
Function to test.
test_preloading : bool
Whether not preloading is implemented for the reader. If True, both
cases and memory mapping to file are tested.
test_kwargs : dict
Test _init_kwargs support.
boundary_decimal : int
Number of decimals up to which the boundary should match.
**kwargs :
Arguments for the reader. Note: Do not use preload as kwarg.
Use ``test_preloading`` instead.
Returns
-------
raw : instance of Raw
A preloaded Raw object.
"""
tempdir = _TempDir()
rng = np.random.RandomState(0)
montage = None
if "montage" in kwargs:
montage = kwargs['montage']
del kwargs['montage']
if test_preloading:
raw = reader(preload=True, **kwargs)
rep = repr(raw)
assert rep.count('<') == 1
assert rep.count('>') == 1
if montage is not None:
raw.set_montage(montage)
# don't assume the first is preloaded
buffer_fname = op.join(tempdir, 'buffer')
picks = rng.permutation(np.arange(len(raw.ch_names) - 1))[:10]
picks = np.append(picks, len(raw.ch_names) - 1) # test trigger channel
bnd = min(int(round(raw.buffer_size_sec *
raw.info['sfreq'])), raw.n_times)
slices = [slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd),
slice(3, 300), slice(None), slice(1, bnd)]
if raw.n_times >= 2 * bnd: # at least two complete blocks
slices += [slice(bnd, 2 * bnd), slice(bnd, bnd + 1),
slice(0, bnd + 100)]
other_raws = [reader(preload=buffer_fname, **kwargs),
reader(preload=False, **kwargs)]
for sl_time in slices:
data1, times1 = raw[picks, sl_time]
for other_raw in other_raws:
data2, times2 = other_raw[picks, sl_time]
assert_allclose(
data1, data2, err_msg='Data mismatch with preload')
assert_allclose(times1, times2)
# test projection vs cals and data units
other_raw = reader(preload=False, **kwargs)
other_raw.del_proj()
eeg = meg = fnirs = False
if 'eeg' in raw:
eeg, atol = True, 1e-18
elif 'grad' in raw:
meg, atol = 'grad', 1e-24
elif 'mag' in raw:
meg, atol = 'mag', 1e-24
elif 'hbo' in raw:
fnirs, atol = 'hbo', 1e-10
elif 'hbr' in raw:
fnirs, atol = 'hbr', 1e-10
else:
assert 'fnirs_cw_amplitude' in raw, 'New channel type necessary?'
fnirs, atol = 'fnirs_cw_amplitude', 1e-10
picks = pick_types(
other_raw.info, meg=meg, eeg=eeg, fnirs=fnirs)
col_names = [other_raw.ch_names[pick] for pick in picks]
proj = np.ones((1, len(picks)))
proj /= np.sqrt(proj.shape[1])
proj = Projection(
data=dict(data=proj, nrow=1, row_names=None,
col_names=col_names, ncol=len(picks)),
active=False)
assert len(other_raw.info['projs']) == 0
other_raw.add_proj(proj)
assert len(other_raw.info['projs']) == 1
# Orders of projector application, data loading, and reordering
# equivalent:
# 1. load->apply->get
data_load_apply_get = \
other_raw.copy().load_data().apply_proj().get_data(picks)
# 2. apply->get (and don't allow apply->pick)
apply = other_raw.copy().apply_proj()
data_apply_get = apply.get_data(picks)
data_apply_get_0 = apply.get_data(picks[0])[0]
with pytest.raises(RuntimeError, match='loaded'):
apply.copy().pick(picks[0]).get_data()
# 3. apply->load->get
data_apply_load_get = apply.copy().load_data().get_data(picks)
data_apply_load_get_0, data_apply_load_get_1 = \
apply.copy().load_data().pick(picks[:2]).get_data()
# 4. reorder->apply->load->get
all_picks = np.arange(len(other_raw.ch_names))
reord = np.concatenate((
picks[1::2],
picks[0::2],
np.setdiff1d(all_picks, picks)))
rev = np.argsort(reord)
assert_array_equal(reord[rev], all_picks)
assert_array_equal(rev[reord], all_picks)
reorder = other_raw.copy().pick(reord)
assert reorder.ch_names == [other_raw.ch_names[r] for r in reord]
assert reorder.ch_names[0] == other_raw.ch_names[picks[1]]
assert_allclose(reorder.get_data([0]), other_raw.get_data(picks[1]))
reorder_apply = reorder.copy().apply_proj()
assert reorder_apply.ch_names == reorder.ch_names
assert reorder_apply.ch_names[0] == apply.ch_names[picks[1]]
assert_allclose(reorder_apply.get_data([0]), apply.get_data(picks[1]),
atol=1e-18)
data_reorder_apply_load_get = \
reorder_apply.load_data().get_data(rev[:len(picks)])
data_reorder_apply_load_get_1 = \
reorder_apply.copy().load_data().pick([0]).get_data()[0]
assert reorder_apply.ch_names[0] == apply.ch_names[picks[1]]
assert (data_load_apply_get.shape ==
data_apply_get.shape ==
data_apply_load_get.shape ==
data_reorder_apply_load_get.shape)
del apply
# first check that our data are (probably) in the right units
data = data_load_apply_get.copy()
data = data - np.mean(data, axis=1, keepdims=True) # can be offsets
np.abs(data, out=data)
if test_scaling:
maxval = atol * 1e16
assert_array_less(data, maxval)
minval = atol * 1e6
assert_array_less(minval, np.median(data))
else:
atol = 1e-7 * np.median(data) # 1e-7 * MAD
# ranks should all be reduced by 1
if test_rank == 'less':
cmp = np.less
elif test_rank is False:
cmp = None
else: # anything else is like True or 'equal'
assert test_rank is True or test_rank == 'equal', test_rank
cmp = np.equal
rank_load_apply_get = np.linalg.matrix_rank(data_load_apply_get)
rank_apply_get = np.linalg.matrix_rank(data_apply_get)
rank_apply_load_get = np.linalg.matrix_rank(data_apply_load_get)
if cmp is not None:
assert cmp(rank_load_apply_get, len(col_names) - 1)
assert cmp(rank_apply_get, len(col_names) - 1)
assert cmp(rank_apply_load_get, len(col_names) - 1)
# and they should all match
t_kw = dict(
atol=atol, err_msg='before != after, likely _mult_cal_one prob')
assert_allclose(data_apply_get[0], data_apply_get_0, **t_kw)
assert_allclose(data_apply_load_get_1,
data_reorder_apply_load_get_1, **t_kw)
assert_allclose(data_load_apply_get[0], data_apply_load_get_0, **t_kw)
assert_allclose(data_load_apply_get, data_apply_get, **t_kw)
assert_allclose(data_load_apply_get, data_apply_load_get, **t_kw)
if 'eeg' in raw:
other_raw.del_proj()
direct = \
other_raw.copy().load_data().set_eeg_reference().get_data()
other_raw.set_eeg_reference(projection=True)
assert len(other_raw.info['projs']) == 1
this_proj = other_raw.info['projs'][0]['data']
assert this_proj['col_names'] == col_names
assert this_proj['data'].shape == proj['data']['data'].shape
assert_allclose(
np.linalg.norm(proj['data']['data']), 1., atol=1e-6)
assert_allclose(
np.linalg.norm(this_proj['data']), 1., atol=1e-6)
assert_allclose(this_proj['data'], proj['data']['data'])
proj = other_raw.apply_proj().get_data()
assert_allclose(proj[picks], data_load_apply_get, atol=1e-10)
assert_allclose(proj, direct, atol=1e-10, err_msg=t_kw['err_msg'])
else:
raw = reader(**kwargs)
n_samp = len(raw.times)
assert_named_constants(raw.info)
# smoke test for gh #9743
ids = [id(ch['loc']) for ch in raw.info['chs']]
assert len(set(ids)) == len(ids)
full_data = raw._data
assert raw.__class__.__name__ in repr(raw) # to test repr
assert raw.info.__class__.__name__ in repr(raw.info)
assert isinstance(raw.info['dig'], (type(None), list))
data_max = full_data.max()
data_min = full_data.min()
# these limits could be relaxed if we actually find data with
# huge values (in SI units)
assert data_max < 1e5
assert data_min > -1e5
if isinstance(raw.info['dig'], list):
for di, d in enumerate(raw.info['dig']):
assert isinstance(d, DigPoint), (di, d)
# gh-5604
meas_date = raw.info['meas_date']
assert meas_date is None or meas_date >= _stamp_to_dt((0, 0))
# test repr_html
assert 'Good channels' in raw.info._repr_html_()
# test resetting raw
if test_kwargs:
raw2 = reader(**raw._init_kwargs)
assert set(raw.info.keys()) == set(raw2.info.keys())
assert_array_equal(raw.times, raw2.times)
# Test saving and reading
out_fname = op.join(tempdir, 'test_raw.fif')
raw = concatenate_raws([raw])
raw.save(out_fname, tmax=raw.times[-1], overwrite=True, buffer_size_sec=1)
# Test saving with not correct extension
out_fname_h5 = op.join(tempdir, 'test_raw.h5')
with pytest.raises(IOError, match='raw must end with .fif or .fif.gz'):
raw.save(out_fname_h5)
raw3 = read_raw_fif(out_fname)
assert_named_constants(raw3.info)
assert set(raw.info.keys()) == set(raw3.info.keys())
assert_allclose(raw3[0:20][0], full_data[0:20], rtol=1e-6,
atol=1e-20) # atol is very small but > 0
assert_allclose(raw.times, raw3.times, atol=1e-6, rtol=1e-6)
assert not math.isnan(raw3.info['highpass'])
assert not math.isnan(raw3.info['lowpass'])
assert not math.isnan(raw.info['highpass'])
assert not math.isnan(raw.info['lowpass'])
assert raw3.info['kit_system_id'] == raw.info['kit_system_id']
# Make sure concatenation works
first_samp = raw.first_samp
last_samp = raw.last_samp
concat_raw = concatenate_raws([raw.copy(), raw])
assert concat_raw.n_times == 2 * raw.n_times
assert concat_raw.first_samp == first_samp
assert concat_raw.last_samp - last_samp + first_samp == last_samp + 1
idx = np.where(concat_raw.annotations.description == 'BAD boundary')[0]
expected_bad_boundary_onset = raw._last_time
assert_array_almost_equal(concat_raw.annotations.onset[idx],
expected_bad_boundary_onset,
decimal=boundary_decimal)
if raw.info['meas_id'] is not None:
for key in ['secs', 'usecs', 'version']:
assert raw.info['meas_id'][key] == raw3.info['meas_id'][key]
assert_array_equal(raw.info['meas_id']['machid'],
raw3.info['meas_id']['machid'])
assert isinstance(raw.annotations, Annotations)
# Make a "soft" test on units: They have to be valid SI units as in
# mne.io.meas_info.valid_units, but we accept any lower/upper case for now.
valid_units = _get_valid_units()
valid_units_lower = [unit.lower() for unit in valid_units]
if raw._orig_units is not None:
assert isinstance(raw._orig_units, dict)
for ch_name, unit in raw._orig_units.items():
assert unit.lower() in valid_units_lower, ch_name
# Test picking with and without preload
if test_preloading:
preload_kwargs = (dict(preload=True), dict(preload=False))
else:
preload_kwargs = (dict(),)
n_ch = len(raw.ch_names)
picks = rng.permutation(n_ch)
for preload_kwarg in preload_kwargs:
these_kwargs = kwargs.copy()
these_kwargs.update(preload_kwarg)
# don't use the same filename or it could create problems
if isinstance(these_kwargs.get('preload', None), str) and \
op.isfile(these_kwargs['preload']):
these_kwargs['preload'] += '-1'
whole_raw = reader(**these_kwargs)
print(whole_raw) # __repr__
assert n_ch >= 2
picks_1 = picks[:n_ch // 2]
picks_2 = picks[n_ch // 2:]
raw_1 = whole_raw.copy().pick(picks_1)
raw_2 = whole_raw.copy().pick(picks_2)
data, times = whole_raw[:]
data_1, times_1 = raw_1[:]
data_2, times_2 = raw_2[:]
assert_array_equal(times, times_1)
assert_array_equal(data[picks_1], data_1)
assert_array_equal(times, times_2,)
assert_array_equal(data[picks_2], data_2)
# Make sure that writing info to h5 format
# (all fields should be compatible)
if check_version('h5io'):
read_hdf5, write_hdf5 = _import_h5io_funcs()
fname_h5 = op.join(tempdir, 'info.h5')
with _writing_info_hdf5(raw.info):
write_hdf5(fname_h5, raw.info)
new_info = Info(read_hdf5(fname_h5))
assert object_diff(new_info, raw.info) == ''
# Make sure that changing directory does not break anything
if test_preloading:
these_kwargs = kwargs.copy()
key = None
for key in ('fname',
'input_fname', # artemis123
'vhdr_fname', # BV
'pdf_fname', # BTi
'directory', # CTF
'filename', # nedf
):
try:
fname = kwargs[key]
except KeyError:
key = None
else:
break
# len(kwargs) == 0 for the fake arange reader
if len(kwargs):
assert key is not None, sorted(kwargs.keys())
this_fname = fname[0] if isinstance(fname, list) else fname
dirname = op.dirname(this_fname)
these_kwargs[key] = op.basename(this_fname)
these_kwargs['preload'] = False
orig_dir = os.getcwd()
try:
os.chdir(dirname)
raw_chdir = reader(**these_kwargs)
finally:
os.chdir(orig_dir)
raw_chdir.load_data()
# make sure that cropping works (with first_samp shift)
if n_samp >= 50: # we crop to this number of samples below
for t_prop in (0., 0.5):
_test_raw_crop(reader, t_prop, kwargs)
if test_preloading:
use_kwargs = kwargs.copy()
use_kwargs['preload'] = True
_test_raw_crop(reader, t_prop, use_kwargs)
# make sure electrode-like sensor locations show up as dig points
eeg_dig = [d for d in (raw.info['dig'] or [])
if d['kind'] == _dig_kind_dict['eeg']]
pick_kwargs = dict()
for t in _ELECTRODE_CH_TYPES + ('fnirs',):
pick_kwargs[t] = True
dig_picks = pick_types(raw.info, exclude=(), **pick_kwargs)
dig_types = _ELECTRODE_CH_TYPES + _FNIRS_CH_TYPES_SPLIT
assert (len(dig_picks) > 0) == any(t in raw for t in dig_types)
if len(dig_picks):
eeg_loc = np.array([ # eeg_loc a bit of a misnomer to match eeg_dig
raw.info['chs'][pick]['loc'][:3] for pick in dig_picks])
eeg_loc = eeg_loc[np.isfinite(eeg_loc).all(axis=1)]
if len(eeg_loc):
if 'fnirs_cw_amplitude' in raw:
assert 2 * len(eeg_dig) >= len(eeg_loc)
else:
assert len(eeg_dig) >= len(eeg_loc) # could have some excluded
# make sure that dig points in head coords implies that fiducials are
# present
if len(raw.info['dig'] or []) > 0:
card_pts = [d for d in raw.info['dig']
if d['kind'] == _dig_kind_dict['cardinal']]
eeg_dig_head = [
d for d in eeg_dig if d['coord_frame'] == FIFF.FIFFV_COORD_HEAD]
if len(eeg_dig_head):
assert len(card_pts) == 3, 'Cardinal points missing'
if len(card_pts) == 3: # they should all be in head coords then
assert len(eeg_dig_head) == len(eeg_dig)
return raw
def _test_raw_crop(reader, t_prop, kwargs):
raw_1 = reader(**kwargs)
n_samp = 50 # crop to this number of samples (per instance)
crop_t = n_samp / raw_1.info['sfreq']
t_start = t_prop * crop_t # also crop to some fraction into the first inst
extra = f' t_start={t_start}, preload={kwargs.get("preload", False)}'
stop = (n_samp - 1) / raw_1.info['sfreq']
raw_1.crop(0, stop)
assert len(raw_1.times) == 50
first_time = raw_1.first_time
atol = 0.5 / raw_1.info['sfreq']
assert_allclose(raw_1.times[-1], stop, atol=atol)
raw_2, raw_3 = raw_1.copy(), raw_1.copy()
t_tot = raw_1.times[-1] * 3 + 2. / raw_1.info['sfreq']
raw_concat = concatenate_raws([raw_1, raw_2, raw_3])
assert len(raw_concat._filenames) == 3
assert_allclose(raw_concat.times[-1], t_tot)
assert_allclose(raw_concat.first_time, first_time)
# keep all instances, but crop to t_start at the beginning
raw_concat.crop(t_start, None)
assert len(raw_concat._filenames) == 3
assert_allclose(raw_concat.times[-1], t_tot - t_start, atol=atol)
assert_allclose(
raw_concat.first_time, first_time + t_start, atol=atol,
err_msg=f'Base concat, {extra}')
# drop the first instance
raw_concat.crop(crop_t, None)
assert len(raw_concat._filenames) == 2
assert_allclose(
raw_concat.times[-1], t_tot - t_start - crop_t, atol=atol)
assert_allclose(
raw_concat.first_time, first_time + t_start + crop_t,
atol=atol, err_msg=f'Dropping one, {extra}')
# drop the second instance, leaving just one
raw_concat.crop(crop_t, None)
assert len(raw_concat._filenames) == 1
assert_allclose(
raw_concat.times[-1], t_tot - t_start - 2 * crop_t, atol=atol)
assert_allclose(
raw_concat.first_time, first_time + t_start + 2 * crop_t,
atol=atol, err_msg=f'Dropping two, {extra}')
def _test_concat(reader, *args):
"""Test concatenation of raw classes that allow not preloading."""
data = None
for preload in (True, False):
raw1 = reader(*args, preload=preload)
raw2 = reader(*args, preload=preload)
raw1.append(raw2)
raw1.load_data()
if data is None:
data = raw1[:, :][0]
assert_allclose(data, raw1[:, :][0])
for first_preload in (True, False):
raw = reader(*args, preload=first_preload)
data = raw[:, :][0]
for preloads in ((True, True), (True, False), (False, False)):
for last_preload in (True, False):
t_crops = raw.times[np.argmin(np.abs(raw.times - 0.5)) +
[0, 1]]
raw1 = raw.copy().crop(0, t_crops[0])
if preloads[0]:
raw1.load_data()
raw2 = raw.copy().crop(t_crops[1], None)
if preloads[1]:
raw2.load_data()
raw1.append(raw2)
if last_preload:
raw1.load_data()
assert_allclose(data, raw1[:, :][0])
@testing.requires_testing_data
def test_time_as_index():
"""Test indexing of raw times."""
raw = read_raw_fif(raw_fname)
# Test original (non-rounding) indexing behavior
orig_inds = raw.time_as_index(raw.times)
assert len(set(orig_inds)) != len(orig_inds)
# Test new (rounding) indexing behavior
new_inds = raw.time_as_index(raw.times, use_rounding=True)
assert_array_equal(new_inds, np.arange(len(raw.times)))
@pytest.mark.parametrize('meas_date', [None, "orig"])
@pytest.mark.parametrize('first_samp', [0, 10000])
def test_crop_by_annotations(meas_date, first_samp):
"""Test crop by annotations of raw."""
raw = read_raw_fif(raw_fname)
if meas_date is None:
raw.set_meas_date(None)
raw = mne.io.RawArray(raw.get_data(), raw.info, first_samp=first_samp)
onset = np.array([0, 1.5], float)
if meas_date is not None:
onset += raw.first_time
annot = mne.Annotations(
onset=onset,
duration=[1, 0.5],
description=["a", "b"],
orig_time=raw.info['meas_date'])
raw.set_annotations(annot)
raws = raw.crop_by_annotations()
assert len(raws) == 2
assert len(raws[0].annotations) == 1
assert raws[0].times[-1] == pytest.approx(annot[:1].duration[0], rel=1e-3)
assert raws[0].annotations.description[0] == annot.description[0]
assert len(raws[1].annotations) == 1
assert raws[1].times[-1] == pytest.approx(annot[1:2].duration[0], rel=5e-3)
assert raws[1].annotations.description[0] == annot.description[1]
@pytest.mark.parametrize('offset, origin', [
pytest.param(0, None, id='times in s. relative to first_samp (default)'),
pytest.param(0, 2.0, id='times in s. relative to first_samp'),
pytest.param(1, 1.0, id='times in s. relative to meas_date'),
pytest.param(2, 0.0, id='absolute times in s. relative to 0')])
def test_time_as_index_ref(offset, origin):
"""Test indexing of raw times."""
info = create_info(ch_names=10, sfreq=10.)
raw = RawArray(data=np.empty((10, 10)), info=info, first_samp=10)
raw.set_meas_date(1)
relative_times = raw.times
inds = raw.time_as_index(relative_times + offset,
use_rounding=True,
origin=origin)
assert_array_equal(inds, np.arange(raw.n_times))
def test_meas_date_orig_time():
"""Test the relation between meas_time in orig_time."""
# meas_time is set and orig_time is set:
# clips the annotations based on raw.data and resets the annotation based
# on raw.info['meas_date]
raw = _raw_annot(1, 1.5)
assert raw.annotations.orig_time == _stamp_to_dt((1, 0))
assert raw.annotations.onset[0] == 1
# meas_time is set and orig_time is None:
# Consider annot.orig_time to be raw.frist_sample, clip and reset
# annotations to have the raw.annotations.orig_time == raw.info['meas_date]
raw = _raw_annot(1, None)
assert raw.annotations.orig_time == _stamp_to_dt((1, 0))
assert raw.annotations.onset[0] == 1.5
# meas_time is None and orig_time is set:
# Raise error, it makes no sense to have an annotations object that we know
# when was acquired and set it to a raw object that does not know when was
# it acquired.
with pytest.raises(RuntimeError, match='Ambiguous operation'):
_raw_annot(None, 1.5)
# meas_time is None and orig_time is None:
# Consider annot.orig_time to be raw.first_sample and clip
raw = _raw_annot(None, None)
assert raw.annotations.orig_time is None
assert raw.annotations.onset[0] == 1.5
assert raw.annotations.duration[0] == 0.2
def test_get_data_reject():
"""Test if reject_by_annotation is working correctly."""
fs = 256
ch_names = ["C3", "Cz", "C4"]
info = create_info(ch_names, sfreq=fs)
raw = RawArray(np.zeros((len(ch_names), 10 * fs)), info)
raw.set_annotations(Annotations(onset=[2, 4], duration=[3, 2],
description="bad"))
with catch_logging() as log:
data = raw.get_data(reject_by_annotation="omit", verbose=True)
msg = ('Omitting 1024 of 2560 (40.00%) samples, retaining 1536' +
' (60.00%) samples.')
assert log.getvalue().strip() == msg
assert data.shape == (len(ch_names), 1536)
with catch_logging() as log:
data = raw.get_data(reject_by_annotation="nan", verbose=True)
msg = ('Setting 1024 of 2560 (40.00%) samples to NaN, retaining 1536' +
' (60.00%) samples.')
assert log.getvalue().strip() == msg
assert data.shape == (len(ch_names), 2560) # shape doesn't change
assert np.isnan(data).sum() == 3072 # but NaNs are introduced instead
def test_5839():
"""Test concatenating raw objects with annotations."""
# Global Time 0 1 2 3 4
# .
# raw_A |---------XXXXXXXXXX
# annot |--------------AA
# latency . 0 0 1 1 2 2 3
# . 5 0 5 0 5 0
#
# raw_B . |---------YYYYYYYYYY
# annot . |--------------AA
# latency . 0 1
# . 5 0
# .
# output |---------XXXXXXXXXXYYYYYYYYYY
# annot |--------------AA---|----AA
# latency . 0 0 1 1 2 2 3
# . 5 0 5 0 5 0
#
EXPECTED_ONSET = [1.5, 2., 2., 2.5]
EXPECTED_DURATION = [0.2, 0., 0., 0.2]
EXPECTED_DESCRIPTION = ['dummy', 'BAD boundary', 'EDGE boundary', 'dummy']
def raw_factory(meas_date):
raw = RawArray(data=np.empty((10, 10)),
info=create_info(ch_names=10, sfreq=10.),
first_samp=10)
raw.set_meas_date(meas_date)
raw.set_annotations(annotations=Annotations(onset=[.5],
duration=[.2],
description='dummy',
orig_time=None))
return raw
raw_A, raw_B = [raw_factory((x, 0)) for x in [0, 2]]
raw_A.append(raw_B)
assert_array_equal(raw_A.annotations.onset, EXPECTED_ONSET)
assert_array_equal(raw_A.annotations.duration, EXPECTED_DURATION)
assert_array_equal(raw_A.annotations.description, EXPECTED_DESCRIPTION)
assert raw_A.annotations.orig_time == _stamp_to_dt((0, 0))
def test_repr():
"""Test repr of Raw."""
sfreq = 256
info = create_info(3, sfreq)
raw = RawArray(np.zeros((3, 10 * sfreq)), info)
r = repr(raw)
assert re.search('<RawArray | 3 x 2560 (10.0 s), ~.* kB, data loaded>',
r) is not None, r
assert raw._repr_html_()
# A class that sets channel data to np.arange, for testing _test_raw_reader
class _RawArange(BaseRaw):
def __init__(self, preload=False, verbose=None):
info = create_info(list(str(x) for x in range(1, 9)), 1000., 'eeg')
super().__init__(info, preload, last_samps=(999,), verbose=verbose)
assert len(self.times) == 1000
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
one = np.full((8, stop - start), np.nan)
one[idx] = np.arange(1, 9)[idx, np.newaxis]
_mult_cal_one(data, one, idx, cals, mult)
def _read_raw_arange(preload=False, verbose=None):
return _RawArange(preload, verbose)
def test_test_raw_reader():
"""Test _test_raw_reader."""
_test_raw_reader(_read_raw_arange, test_scaling=False, test_rank='less')
@pytest.mark.slowtest
def test_describe_print():
"""Test print output of describe method."""
fname = Path(__file__).parent / "data" / "test_raw.fif"
raw = read_raw_fif(fname)
# test print output
f = StringIO()
with redirect_stdout(f):
raw.describe()
s = f.getvalue().strip().split("\n")
assert len(s) == 378
# Can be 3.1, 3.3, etc.
assert re.match(
r'<Raw | test_raw.fif, 376 x 14400 (24\.0 s), '
r'~3\.. MB, data not loaded>', s[0]) is not None, s[0]
assert s[1] == " ch name type unit min Q1 median Q3 max" # noqa
assert s[2] == " 0 MEG 0113 GRAD fT/cm -221.80 -38.57 -9.64 19.29 414.67" # noqa
assert s[-1] == "375 EOG 061 EOG µV -231.41 271.28 277.16 285.66 334.69" # noqa
@requires_pandas
@pytest.mark.slowtest
def test_describe_df():
"""Test returned data frame of describe method."""
fname = Path(__file__).parent / "data" / "test_raw.fif"
raw = read_raw_fif(fname)
df = raw.describe(data_frame=True)
assert df.shape == (376, 8)
assert (df.columns.tolist() == ["name", "type", "unit", "min", "Q1",
"median", "Q3", "max"])
assert df.index.name == "ch"
assert_allclose(df.iloc[0, 3:].astype(float),
np.array([-2.218017605790535e-11,
-3.857421923113974e-12,
-9.643554807784935e-13,
1.928710961556987e-12,
4.146728567347522e-11]))
def test_get_data_units():
"""Test the "units" argument of get_data method."""
# Test the unit conversion function
assert _get_scaling('eeg', 'uV') == 1e6
assert _get_scaling('eeg', 'dV') == 1e1
assert _get_scaling('eeg', 'pV') == 1e12
assert _get_scaling('mag', 'fT') == 1e15
assert _get_scaling('grad', 'T/m') == 1
assert _get_scaling('grad', 'T/mm') == 1e-3
assert _get_scaling('grad', 'fT/m') == 1e15
assert _get_scaling('grad', 'fT/cm') == 1e13
assert _get_scaling('csd', 'uV/cm²') == 1e2
fname = Path(__file__).parent / "data" / "test_raw.fif"
raw = read_raw_fif(fname)
last = np.array([4.63803098e-05, 7.66563736e-05, 2.71933595e-04])
last_eeg = np.array([7.12207023e-05, 4.63803098e-05, 7.66563736e-05])
last_grad = np.array([-3.85742192e-12, 9.64355481e-13, -1.06079103e-11])
# None
data_none = raw.get_data()
assert data_none.shape == (376, 14400)
assert_array_almost_equal(data_none[-3:, -1], last)
# str: unit no conversion
data_str_noconv = raw.get_data(picks=['eeg'], units='V')
assert data_str_noconv.shape == (60, 14400)
assert_array_almost_equal(data_str_noconv[-3:, -1], last_eeg)
# str: simple unit
data_str_simple = raw.get_data(picks=['eeg'], units='uV')
assert data_str_simple.shape == (60, 14400)
assert_array_almost_equal(data_str_simple[-3:, -1], last_eeg * 1e6)
# str: fraction unit
data_str_fraction = raw.get_data(picks=['grad'], units='fT/cm')
assert data_str_fraction.shape == (204, 14400)
assert_array_almost_equal(data_str_fraction[-3:, -1],
last_grad * (1e15 / 1e2))
# str: more than one channel type but one with unit
data_str_simplestim = raw.get_data(picks=['eeg', 'stim'], units='V')
assert data_str_simplestim.shape == (69, 14400)
assert_array_almost_equal(data_str_simplestim[-3:, -1], last_eeg)
# str: too many channels
with pytest.raises(ValueError, match='more than one channel'):
raw.get_data(units='uV')
# str: invalid unit
with pytest.raises(ValueError, match='is not a valid unit'):
raw.get_data(picks=['eeg'], units='fV/cm')
# dict: combination of simple and fraction units
data_dict = raw.get_data(units=dict(grad='fT/cm', mag='fT', eeg='uV'))
assert data_dict.shape == (376, 14400)
assert_array_almost_equal(data_dict[0, -1],
-3.857421923113974e-12 * (1e15 / 1e2))
assert_array_almost_equal(data_dict[2, -1], -2.1478272253525944e-13 * 1e15)
assert_array_almost_equal(data_dict[-2, -1], 7.665637356879529e-05 * 1e6)
# dict: channel type not in instance
data_dict_notin = raw.get_data(units=dict(hbo='uM'))
assert data_dict_notin.shape == (376, 14400)
assert_array_almost_equal(data_dict_notin[-3:, -1], last)
# dict: one invalid unit
with pytest.raises(ValueError, match='is not a valid unit'):
raw.get_data(units=dict(grad='fT/cV', mag='fT', eeg='uV'))
# dict: one invalid channel type
with pytest.raises(KeyError, match='is not a channel type'):
raw.get_data(units=dict(bad_type='fT/cV', mag='fT', eeg='uV'))
# not the good type
with pytest.raises(TypeError, match='instance of None, str, or dict'):
raw.get_data(units=['fT/cm', 'fT', 'uV'])
def test_repr_dig_point():
"""Test printing of DigPoint."""
dp = DigPoint(r=np.arange(3), coord_frame=FIFF.FIFFV_COORD_HEAD,
kind=FIFF.FIFFV_POINT_EEG, ident=0)
assert 'mm' in repr(dp)
dp = DigPoint(r=np.arange(3), coord_frame=FIFF.FIFFV_MNE_COORD_MRI_VOXEL,
kind=FIFF.FIFFV_POINT_CARDINAL, ident=0)
assert 'mm' not in repr(dp)
assert 'voxel' in repr(dp)
def test_get_data_tmin_tmax():
"""Test tmin and tmax parameters of get_data method."""
fname = Path(__file__).parent / "data" / "test_raw.fif"
raw = read_raw_fif(fname)
# tmin and tmax just use time_as_index under the hood
tmin, tmax = (1, 9)
d1 = raw.get_data()
d2 = raw.get_data(tmin=tmin, tmax=tmax)
idxs = raw.time_as_index([tmin, tmax])
assert_allclose(d1[:, idxs[0]:idxs[1]], d2)
# specifying a too low tmin truncates to idx 0
d3 = raw.get_data(tmin=-5)
assert_allclose(d3, d1)
# specifying a too high tmax truncates to idx n_times
d4 = raw.get_data(tmax=1e6)
assert_allclose(d4, d1)
# when start/stop are passed, tmin/tmax are ignored
d5 = raw.get_data(start=1, stop=2, tmin=tmin, tmax=tmax)
assert d5.shape[1] == 1
# validate inputs are properly raised
with pytest.raises(TypeError, match='start must be .* int'):
raw.get_data(start=None)
with pytest.raises(TypeError, match='stop must be .* int'):
raw.get_data(stop=2.3)
with pytest.raises(TypeError, match='tmin must be .* float'):
raw.get_data(tmin=[1, 2])
with pytest.raises(TypeError, match='tmax must be .* float'):
raw.get_data(tmax=[1, 2])
|