File: test_reference.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (726 lines) | stat: -rw-r--r-- 32,233 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
# Authors: Marijn van Vliet <w.m.vanvliet@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD-3-Clause

from contextlib import nullcontext
import itertools
import os.path as op

import numpy as np
from numpy.testing import assert_array_equal, assert_allclose, assert_equal
import pytest

from mne import (pick_channels, pick_types, Epochs, read_events,
                 set_eeg_reference, set_bipolar_reference,
                 add_reference_channels, create_info, make_sphere_model,
                 make_forward_solution, setup_volume_source_space,
                 pick_channels_forward, read_evokeds,
                 find_events)
from mne.epochs import BaseEpochs, make_fixed_length_epochs
from mne.io import RawArray, read_raw_fif
from mne.io.constants import FIFF
from mne.io.proj import _has_eeg_average_ref_proj, Projection
from mne.io.reference import _apply_reference
from mne.datasets import testing
from mne.utils import catch_logging, _record_warnings

base_dir = op.join(op.dirname(__file__), 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')

data_dir = op.join(testing.data_path(download=False), 'MEG', 'sample')
fif_fname = op.join(data_dir, 'sample_audvis_trunc_raw.fif')
eve_fname = op.join(data_dir, 'sample_audvis_trunc_raw-eve.fif')
ave_fname = op.join(data_dir, 'sample_audvis-ave.fif')


def _test_reference(raw, reref, ref_data, ref_from):
    """Test whether a reference has been correctly applied."""
    # Separate EEG channels from other channel types
    picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
    picks_other = pick_types(raw.info, meg=True, eeg=False, eog=True,
                             stim=True, exclude='bads')

    # Calculate indices of reference channesl
    picks_ref = [raw.ch_names.index(ch) for ch in ref_from]

    # Get data
    _data = raw._data
    _reref = reref._data

    # Check that the ref has been properly computed
    if ref_data is not None:
        assert_array_equal(ref_data, _data[..., picks_ref, :].mean(-2))

    # Get the raw EEG data and other channel data
    raw_eeg_data = _data[..., picks_eeg, :]
    raw_other_data = _data[..., picks_other, :]

    # Get the rereferenced EEG data
    reref_eeg_data = _reref[..., picks_eeg, :]
    reref_other_data = _reref[..., picks_other, :]

    # Check that non-EEG channels are untouched
    assert_allclose(raw_other_data, reref_other_data, 1e-6, atol=1e-15)

    # Undo rereferencing of EEG channels if possible
    if ref_data is not None:
        if isinstance(raw, BaseEpochs):
            unref_eeg_data = reref_eeg_data + ref_data[:, np.newaxis, :]
        else:
            unref_eeg_data = reref_eeg_data + ref_data
        assert_allclose(raw_eeg_data, unref_eeg_data, 1e-6, atol=1e-15)


@testing.requires_testing_data
def test_apply_reference():
    """Test base function for rereferencing."""
    raw = read_raw_fif(fif_fname, preload=True)

    # Rereference raw data by creating a copy of original data
    reref, ref_data = _apply_reference(
        raw.copy(), ref_from=['EEG 001', 'EEG 002'])
    assert reref.info['custom_ref_applied']
    _test_reference(raw, reref, ref_data, ['EEG 001', 'EEG 002'])

    # The CAR reference projection should have been removed by the function
    assert not _has_eeg_average_ref_proj(reref.info)

    # Test that data is modified in place when copy=False
    reref, ref_data = _apply_reference(raw, ['EEG 001', 'EEG 002'])
    assert raw is reref

    # Test that disabling the reference does not change anything
    reref, ref_data = _apply_reference(raw.copy(), [])
    assert_array_equal(raw._data, reref._data)

    # Test re-referencing Epochs object
    raw = read_raw_fif(fif_fname, preload=False)
    events = read_events(eve_fname)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True)
    reref, ref_data = _apply_reference(
        epochs.copy(), ref_from=['EEG 001', 'EEG 002'])
    assert reref.info['custom_ref_applied']
    _test_reference(epochs, reref, ref_data, ['EEG 001', 'EEG 002'])

    # Test re-referencing Evoked object
    evoked = epochs.average()
    reref, ref_data = _apply_reference(
        evoked.copy(), ref_from=['EEG 001', 'EEG 002'])
    assert reref.info['custom_ref_applied']
    _test_reference(evoked, reref, ref_data, ['EEG 001', 'EEG 002'])

    # Referencing needs data to be preloaded
    raw_np = read_raw_fif(fif_fname, preload=False)
    pytest.raises(RuntimeError, _apply_reference, raw_np, ['EEG 001'])

    # Test having inactive SSP projections that deal with channels involved
    # during re-referencing
    raw = read_raw_fif(fif_fname, preload=True)
    raw.add_proj(
        Projection(
            active=False,
            data=dict(
                col_names=['EEG 001', 'EEG 002'],
                row_names=None,
                data=np.array([[1, 1]]),
                ncol=2,
                nrow=1
            ),
            desc='test',
            kind=1,
        )
    )
    # Projection concerns channels mentioned in projector
    with pytest.raises(RuntimeError, match='Inactive signal space'):
        _apply_reference(raw, ['EEG 001'])

    # Projection does not concern channels mentioned in projector, no error
    _apply_reference(raw, ['EEG 003'], ['EEG 004'])

    # CSD cannot be rereferenced
    with raw.info._unlock():
        raw.info['custom_ref_applied'] = FIFF.FIFFV_MNE_CUSTOM_REF_CSD
    with pytest.raises(RuntimeError, match="Cannot set.* type 'CSD'"):
        raw.set_eeg_reference()


@testing.requires_testing_data
def test_set_eeg_reference():
    """Test rereference eeg data."""
    raw = read_raw_fif(fif_fname, preload=True)
    with raw.info._unlock():
        raw.info['projs'] = []

    # Test setting an average reference projection
    assert not _has_eeg_average_ref_proj(raw.info)
    reref, ref_data = set_eeg_reference(raw, projection=True)
    assert _has_eeg_average_ref_proj(reref.info)
    assert not reref.info['projs'][0]['active']
    assert ref_data is None
    reref.apply_proj()
    eeg_chans = [raw.ch_names[ch]
                 for ch in pick_types(raw.info, meg=False, eeg=True)]
    _test_reference(raw, reref, ref_data,
                    [ch for ch in eeg_chans if ch not in raw.info['bads']])

    # Test setting an average reference when one was already present
    with pytest.warns(RuntimeWarning, match='untouched'):
        reref, ref_data = set_eeg_reference(raw, copy=False, projection=True)
    assert ref_data is None

    # Test setting an average reference on non-preloaded data
    raw_nopreload = read_raw_fif(fif_fname, preload=False)
    with raw_nopreload.info._unlock():
        raw_nopreload.info['projs'] = []
    reref, ref_data = set_eeg_reference(raw_nopreload, projection=True)
    assert _has_eeg_average_ref_proj(reref.info)
    assert not reref.info['projs'][0]['active']

    # Rereference raw data by creating a copy of original data
    reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'], copy=True)
    assert reref.info['custom_ref_applied']
    _test_reference(raw, reref, ref_data, ['EEG 001', 'EEG 002'])

    # Test that data is modified in place when copy=False
    reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'],
                                        copy=False)
    assert raw is reref

    # Test moving from custom to average reference
    reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'])
    reref, _ = set_eeg_reference(reref, projection=True)
    assert _has_eeg_average_ref_proj(reref.info)
    assert not reref.info['custom_ref_applied']

    # When creating an average reference fails, make sure the
    # custom_ref_applied flag remains untouched.
    reref = raw.copy()
    with reref.info._unlock():
        reref.info['custom_ref_applied'] = FIFF.FIFFV_MNE_CUSTOM_REF_ON
    reref.pick_types(meg=True, eeg=False)  # Cause making average ref fail
    # should have turned it off
    assert reref.info['custom_ref_applied'] == FIFF.FIFFV_MNE_CUSTOM_REF_OFF
    with pytest.raises(ValueError, match='found to rereference'):
        set_eeg_reference(reref, projection=True)

    # Test moving from average to custom reference
    reref, ref_data = set_eeg_reference(raw, projection=True)
    reref, _ = set_eeg_reference(reref, ['EEG 001', 'EEG 002'])
    assert not _has_eeg_average_ref_proj(reref.info)
    assert len(reref.info['projs']) == 0
    assert reref.info['custom_ref_applied'] == FIFF.FIFFV_MNE_CUSTOM_REF_ON

    # Test that disabling the reference does not change the data
    assert _has_eeg_average_ref_proj(raw.info)
    reref, _ = set_eeg_reference(raw, [])
    assert_array_equal(raw._data, reref._data)
    assert not _has_eeg_average_ref_proj(reref.info)

    # make sure ref_channels=[] removes average reference projectors
    assert _has_eeg_average_ref_proj(raw.info)
    reref, _ = set_eeg_reference(raw, [])
    assert not _has_eeg_average_ref_proj(reref.info)

    # Test that average reference gives identical results when calculated
    # via SSP projection (projection=True) or directly (projection=False)
    with raw.info._unlock():
        raw.info['projs'] = []
    reref_1, _ = set_eeg_reference(raw.copy(), projection=True)
    reref_1.apply_proj()
    reref_2, _ = set_eeg_reference(raw.copy(), projection=False)
    assert_allclose(reref_1._data, reref_2._data, rtol=1e-6, atol=1e-15)

    # Test average reference without projection
    reref, ref_data = set_eeg_reference(raw.copy(), ref_channels="average",
                                        projection=False)
    _test_reference(raw, reref, ref_data, eeg_chans)

    with pytest.raises(ValueError, match='supported for ref_channels="averag'):
        set_eeg_reference(raw, [], True, True)
    with pytest.raises(ValueError, match='supported for ref_channels="averag'):
        set_eeg_reference(raw, ['EEG 001'], True, True)


@pytest.mark.parametrize('ch_type, msg',
                         [('auto', ('ECoG',)),
                          ('ecog', ('ECoG',)),
                          ('dbs', ('DBS',)),
                          (['ecog', 'dbs'], ('ECoG', 'DBS'))])
@pytest.mark.parametrize('projection', [False, True])
def test_set_eeg_reference_ch_type(ch_type, msg, projection):
    """Test setting EEG reference for ECoG or DBS."""
    # gh-6454
    # gh-8739 added DBS
    ch_names = ['ECOG01', 'ECOG02', 'DBS01', 'DBS02', 'MISC']
    rng = np.random.RandomState(0)
    data = rng.randn(5, 1000)
    raw = RawArray(data, create_info(ch_names, 1000., ['ecog'] * 2
                                     + ['dbs'] * 2 + ['misc']))

    if ch_type == 'auto':
        ref_ch = ch_names[:2]
    else:
        ref_ch = raw.copy().pick(picks=ch_type).ch_names

    with catch_logging() as log:
        reref, ref_data = set_eeg_reference(raw.copy(), ch_type=ch_type,
                                            projection=projection,
                                            verbose=True)

    if not projection:
        assert f"Applying a custom {msg}" in log.getvalue()
        assert reref.info['custom_ref_applied']  # gh-7350
    _test_reference(raw, reref, ref_data, ref_ch)
    match = "no EEG data found" if projection else "No channels supplied"
    with pytest.raises(ValueError, match=match):
        set_eeg_reference(raw, ch_type='eeg', projection=projection)
    # gh-8739
    raw2 = RawArray(data, create_info(5, 1000., ['mag'] * 4 + ['misc']))
    with pytest.raises(ValueError, match='No EEG, ECoG, sEEG or DBS channels '
                       'found to rereference.'):
        set_eeg_reference(raw2, ch_type='auto', projection=projection)


@testing.requires_testing_data
def test_set_eeg_reference_rest():
    """Test setting a REST reference."""
    raw = read_raw_fif(fif_fname).crop(0, 1).pick_types(
        meg=False, eeg=True, exclude=()).load_data()
    raw.info['bads'] = ['EEG 057']  # should be excluded
    same = [raw.ch_names.index(raw.info['bads'][0])]
    picks = np.setdiff1d(np.arange(len(raw.ch_names)), same)
    trans = None
    sphere = make_sphere_model('auto', 'auto', raw.info)
    src = setup_volume_source_space(pos=20., sphere=sphere, exclude=30.)
    assert src[0]['nuse'] == 223  # low but fast
    fwd = make_forward_solution(raw.info, trans, src, sphere)
    orig_data = raw.get_data()
    avg_data = raw.copy().set_eeg_reference('average').get_data()
    assert_array_equal(avg_data[same], orig_data[same])  # not processed
    raw.set_eeg_reference('REST', forward=fwd)
    rest_data = raw.get_data()
    assert_array_equal(rest_data[same], orig_data[same])
    # should be more similar to an avg ref than nose ref
    orig_corr = np.corrcoef(rest_data[picks].ravel(),
                            orig_data[picks].ravel())[0, 1]
    avg_corr = np.corrcoef(rest_data[picks].ravel(),
                           avg_data[picks].ravel())[0, 1]
    assert -0.6 < orig_corr < -0.5
    assert 0.1 < avg_corr < 0.2
    # and applying an avg ref after should work
    avg_after = raw.set_eeg_reference('average').get_data()
    assert_allclose(avg_after, avg_data, atol=1e-12)
    with pytest.raises(TypeError, match='forward when ref_channels="REST"'):
        raw.set_eeg_reference('REST')
    fwd_bad = pick_channels_forward(fwd, raw.ch_names[:-1])
    with pytest.raises(ValueError, match='Missing channels'):
        raw.set_eeg_reference('REST', forward=fwd_bad)
    # compare to FieldTrip
    evoked = read_evokeds(ave_fname, baseline=(None, 0))[0]
    evoked.info['bads'] = []
    evoked.pick_types(meg=False, eeg=True, exclude=())
    assert len(evoked.ch_names) == 60
    # Data obtained from FieldTrip with something like (after evoked.save'ing
    # then scipy.io.savemat'ing fwd['sol']['data']):
    # dat = ft_read_data('ft-ave.fif');
    # load('leadfield.mat', 'G');
    # dat_ref = ft_preproc_rereference(dat, 'all', 'rest', true, G);
    # sprintf('%g ', dat_ref(:, 171));
    want = np.array('-3.3265e-05 -3.2419e-05 -3.18758e-05 -3.24079e-05 -3.39801e-05 -3.40573e-05 -3.24163e-05 -3.26896e-05 -3.33814e-05 -3.54734e-05 -3.51289e-05 -3.53229e-05 -3.51532e-05 -3.53149e-05 -3.4505e-05 -3.03462e-05 -2.81848e-05 -3.08895e-05 -3.27158e-05 -3.4605e-05 -3.47728e-05 -3.2459e-05 -3.06552e-05 -2.53255e-05 -2.69671e-05 -2.83425e-05 -3.12836e-05 -3.30965e-05 -3.34099e-05 -3.32766e-05 -3.32256e-05 -3.36385e-05 -3.20796e-05 -2.7108e-05 -2.47054e-05 -2.49589e-05 -2.7382e-05 -3.09774e-05 -3.12003e-05 -3.1246e-05 -3.07572e-05 -2.64942e-05 -2.25505e-05 -2.67194e-05 -2.86e-05 -2.94903e-05 -2.96249e-05 -2.92653e-05 -2.86472e-05 -2.81016e-05 -2.69737e-05 -2.48076e-05 -3.00473e-05 -2.73404e-05 -2.60153e-05 -2.41608e-05 -2.61937e-05 -2.5539e-05 -2.47104e-05 -2.35194e-05'.split(' '), float)  # noqa: E501
    norm = np.linalg.norm(want)
    idx = np.argmin(np.abs(evoked.times - 0.083))
    assert idx == 170
    old = evoked.data[:, idx].ravel()
    exp_var = 1 - np.linalg.norm(want - old) / norm
    assert 0.006 < exp_var < 0.008
    evoked.set_eeg_reference('REST', forward=fwd)
    exp_var_old = 1 - np.linalg.norm(evoked.data[:, idx] - old) / norm
    assert 0.005 < exp_var_old <= 0.009
    exp_var = 1 - np.linalg.norm(evoked.data[:, idx] - want) / norm
    assert 0.995 < exp_var <= 1


@testing.requires_testing_data
@pytest.mark.parametrize('inst_type', ('raw', 'epochs', 'evoked'))
def test_set_bipolar_reference(inst_type):
    """Test bipolar referencing."""
    raw = read_raw_fif(fif_fname, preload=True)
    raw.apply_proj()

    if inst_type == 'raw':
        inst = raw
        del raw
    elif inst_type in ['epochs', 'evoked']:
        events = find_events(raw, stim_channel='STI 014')
        epochs = Epochs(raw, events, tmin=-0.3, tmax=0.7, preload=True)
        inst = epochs
        if inst_type == 'evoked':
            inst = epochs.average()
        del epochs

    ch_info = {'kind': FIFF.FIFFV_EOG_CH, 'extra': 'some extra value'}
    with pytest.raises(KeyError, match='key errantly present'):
        set_bipolar_reference(inst, 'EEG 001', 'EEG 002', 'bipolar', ch_info)
    ch_info.pop('extra')
    reref = set_bipolar_reference(
        inst, 'EEG 001', 'EEG 002', 'bipolar', ch_info)
    assert reref.info['custom_ref_applied']

    # Compare result to a manual calculation
    a = inst.copy().pick_channels(['EEG 001', 'EEG 002'])
    a = a._data[..., 0, :] - a._data[..., 1, :]
    b = reref.copy().pick_channels(['bipolar'])._data[..., 0, :]
    assert_allclose(a, b)

    # Original channels should be replaced by a virtual one
    assert 'EEG 001' not in reref.ch_names
    assert 'EEG 002' not in reref.ch_names
    assert 'bipolar' in reref.ch_names

    # Check channel information
    bp_info = reref.info['chs'][reref.ch_names.index('bipolar')]
    an_info = inst.info['chs'][inst.ch_names.index('EEG 001')]
    for key in bp_info:
        if key == 'coil_type':
            assert bp_info[key] == FIFF.FIFFV_COIL_EEG_BIPOLAR, key
        elif key == 'kind':
            assert bp_info[key] == FIFF.FIFFV_EOG_CH, key
        elif key != 'ch_name':
            assert_equal(bp_info[key], an_info[key], err_msg=key)

    # Minimalist call
    reref = set_bipolar_reference(inst, 'EEG 001', 'EEG 002')
    assert 'EEG 001-EEG 002' in reref.ch_names

    # Minimalist call with twice the same anode
    reref = set_bipolar_reference(inst,
                                  ['EEG 001', 'EEG 001', 'EEG 002'],
                                  ['EEG 002', 'EEG 003', 'EEG 003'])
    assert 'EEG 001-EEG 002' in reref.ch_names
    assert 'EEG 001-EEG 003' in reref.ch_names

    # Set multiple references at once
    reref = set_bipolar_reference(
        inst,
        ['EEG 001', 'EEG 003'],
        ['EEG 002', 'EEG 004'],
        ['bipolar1', 'bipolar2'],
        [{'kind': FIFF.FIFFV_EOG_CH},
         {'kind': FIFF.FIFFV_EOG_CH}],
    )
    a = inst.copy().pick_channels(['EEG 001', 'EEG 002', 'EEG 003', 'EEG 004'])
    a = np.concatenate(
        [a._data[..., :1, :] - a._data[..., 1:2, :],
         a._data[..., 2:3, :] - a._data[..., 3:4, :]],
        axis=-2
    )
    b = reref.copy().pick_channels(['bipolar1', 'bipolar2'])._data
    assert_allclose(a, b)

    # Test creating a bipolar reference that doesn't involve EEG channels:
    # it should not set the custom_ref_applied flag
    reref = set_bipolar_reference(inst, 'MEG 0111', 'MEG 0112',
                                  ch_info={'kind': FIFF.FIFFV_MEG_CH},
                                  verbose='error')
    assert not reref.info['custom_ref_applied']
    assert 'MEG 0111-MEG 0112' in reref.ch_names

    # Test a battery of invalid inputs
    pytest.raises(ValueError, set_bipolar_reference, inst,
                  'EEG 001', ['EEG 002', 'EEG 003'], 'bipolar')
    pytest.raises(ValueError, set_bipolar_reference, inst,
                  ['EEG 001', 'EEG 002'], 'EEG 003', 'bipolar')
    pytest.raises(ValueError, set_bipolar_reference, inst,
                  'EEG 001', 'EEG 002', ['bipolar1', 'bipolar2'])
    pytest.raises(ValueError, set_bipolar_reference, inst,
                  'EEG 001', 'EEG 002', 'bipolar',
                  ch_info=[{'foo': 'bar'}, {'foo': 'bar'}])
    pytest.raises(ValueError, set_bipolar_reference, inst,
                  'EEG 001', 'EEG 002', ch_name='EEG 003')

    # Test if bad anode/cathode raises error if on_bad="raise"
    inst.info["bads"] = ["EEG 001"]
    pytest.raises(ValueError, set_bipolar_reference, inst,
                  'EEG 001', 'EEG 002', on_bad="raise")
    inst.info["bads"] = ["EEG 002"]
    pytest.raises(ValueError, set_bipolar_reference, inst,
                  'EEG 001', 'EEG 002', on_bad="raise")

    # Test if bad anode/cathode raises warning if on_bad="warn"
    inst.info["bads"] = ["EEG 001"]
    pytest.warns(RuntimeWarning, set_bipolar_reference, inst,
                 'EEG 001', 'EEG 002', on_bad="warn")
    inst.info["bads"] = ["EEG 002"]
    pytest.warns(RuntimeWarning, set_bipolar_reference, inst,
                 'EEG 001', 'EEG 002', on_bad="warn")


def _check_channel_names(inst, ref_names):
    """Check channel names."""
    if isinstance(ref_names, str):
        ref_names = [ref_names]

    # Test that the names of the reference channels are present in `ch_names`
    ref_idx = pick_channels(inst.info['ch_names'], ref_names)
    assert len(ref_idx) == len(ref_names)

    # Test that the names of the reference channels are present in the `chs`
    # list
    inst.info._check_consistency()  # Should raise no exceptions


@testing.requires_testing_data
def test_add_reference():
    """Test adding a reference."""
    raw = read_raw_fif(fif_fname, preload=True)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    # check if channel already exists
    pytest.raises(ValueError, add_reference_channels,
                  raw, raw.info['ch_names'][0])
    # add reference channel to Raw
    raw_ref = add_reference_channels(raw, 'Ref', copy=True)
    assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 1)
    assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
    _check_channel_names(raw_ref, 'Ref')

    orig_nchan = raw.info['nchan']
    raw = add_reference_channels(raw, 'Ref', copy=False)
    assert_array_equal(raw._data, raw_ref._data)
    assert_equal(raw.info['nchan'], orig_nchan + 1)
    _check_channel_names(raw, 'Ref')

    # for Neuromag fif's, the reference electrode location is placed in
    # elements [3:6] of each "data" electrode location
    assert_allclose(raw.info['chs'][-1]['loc'][:3],
                    raw.info['chs'][picks_eeg[0]]['loc'][3:6], 1e-6)

    ref_idx = raw.ch_names.index('Ref')
    ref_data, _ = raw[ref_idx]
    assert_array_equal(ref_data, 0)

    # add reference channel to Raw when no digitization points exist
    raw = read_raw_fif(fif_fname).crop(0, 1).load_data()
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    del raw.info['dig']

    raw_ref = add_reference_channels(raw, 'Ref', copy=True)

    assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 1)
    assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
    _check_channel_names(raw_ref, 'Ref')

    orig_nchan = raw.info['nchan']
    raw = add_reference_channels(raw, 'Ref', copy=False)
    assert_array_equal(raw._data, raw_ref._data)
    assert_equal(raw.info['nchan'], orig_nchan + 1)
    _check_channel_names(raw, 'Ref')

    # Test adding an existing channel as reference channel
    pytest.raises(ValueError, add_reference_channels, raw,
                  raw.info['ch_names'][0])

    # add two reference channels to Raw
    raw_ref = add_reference_channels(raw, ['M1', 'M2'], copy=True)
    _check_channel_names(raw_ref, ['M1', 'M2'])
    assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 2)
    assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
    assert_array_equal(raw_ref._data[-2:, :], 0)

    raw = add_reference_channels(raw, ['M1', 'M2'], copy=False)
    _check_channel_names(raw, ['M1', 'M2'])
    ref_idx = raw.ch_names.index('M1')
    ref_idy = raw.ch_names.index('M2')
    ref_data, _ = raw[[ref_idx, ref_idy]]
    assert_array_equal(ref_data, 0)

    # add reference channel to epochs
    raw = read_raw_fif(fif_fname, preload=True)
    events = read_events(eve_fname)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True)
    # default: proj=True, after which adding a Ref channel is prohibited
    pytest.raises(RuntimeError, add_reference_channels, epochs, 'Ref')

    # create epochs in delayed mode, allowing removal of CAR when re-reffing
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True, proj='delayed')
    epochs_ref = add_reference_channels(epochs, 'Ref', copy=True)

    assert_equal(epochs_ref._data.shape[1], epochs._data.shape[1] + 1)
    _check_channel_names(epochs_ref, 'Ref')
    ref_idx = epochs_ref.ch_names.index('Ref')
    ref_data = epochs_ref.get_data()[:, ref_idx, :]
    assert_array_equal(ref_data, 0)
    picks_eeg = pick_types(epochs.info, meg=False, eeg=True)
    assert_array_equal(epochs.get_data()[:, picks_eeg, :],
                       epochs_ref.get_data()[:, picks_eeg, :])

    # add two reference channels to epochs
    raw = read_raw_fif(fif_fname, preload=True)
    events = read_events(eve_fname)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    # create epochs in delayed mode, allowing removal of CAR when re-reffing
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True, proj='delayed')
    with pytest.warns(RuntimeWarning, match='reference channels are ignored'):
        epochs_ref = add_reference_channels(epochs, ['M1', 'M2'], copy=True)
    assert_equal(epochs_ref._data.shape[1], epochs._data.shape[1] + 2)
    _check_channel_names(epochs_ref, ['M1', 'M2'])
    ref_idx = epochs_ref.ch_names.index('M1')
    ref_idy = epochs_ref.ch_names.index('M2')
    assert_equal(epochs_ref.info['chs'][ref_idx]['ch_name'], 'M1')
    assert_equal(epochs_ref.info['chs'][ref_idy]['ch_name'], 'M2')
    ref_data = epochs_ref.get_data()[:, [ref_idx, ref_idy], :]
    assert_array_equal(ref_data, 0)
    picks_eeg = pick_types(epochs.info, meg=False, eeg=True)
    assert_array_equal(epochs.get_data()[:, picks_eeg, :],
                       epochs_ref.get_data()[:, picks_eeg, :])

    # add reference channel to evoked
    raw = read_raw_fif(fif_fname, preload=True)
    events = read_events(eve_fname)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    # create epochs in delayed mode, allowing removal of CAR when re-reffing
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True, proj='delayed')
    evoked = epochs.average()
    evoked_ref = add_reference_channels(evoked, 'Ref', copy=True)
    assert_equal(evoked_ref.data.shape[0], evoked.data.shape[0] + 1)
    _check_channel_names(evoked_ref, 'Ref')
    ref_idx = evoked_ref.ch_names.index('Ref')
    ref_data = evoked_ref.data[ref_idx, :]
    assert_array_equal(ref_data, 0)
    picks_eeg = pick_types(evoked.info, meg=False, eeg=True)
    assert_array_equal(evoked.data[picks_eeg, :],
                       evoked_ref.data[picks_eeg, :])

    # add two reference channels to evoked
    raw = read_raw_fif(fif_fname, preload=True)
    events = read_events(eve_fname)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    # create epochs in delayed mode, allowing removal of CAR when re-reffing
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True, proj='delayed')
    evoked = epochs.average()
    with pytest.warns(RuntimeWarning, match='reference channels are ignored'):
        evoked_ref = add_reference_channels(evoked, ['M1', 'M2'], copy=True)
    assert_equal(evoked_ref.data.shape[0], evoked.data.shape[0] + 2)
    _check_channel_names(evoked_ref, ['M1', 'M2'])
    ref_idx = evoked_ref.ch_names.index('M1')
    ref_idy = evoked_ref.ch_names.index('M2')
    ref_data = evoked_ref.data[[ref_idx, ref_idy], :]
    assert_array_equal(ref_data, 0)
    picks_eeg = pick_types(evoked.info, meg=False, eeg=True)
    assert_array_equal(evoked.data[picks_eeg, :],
                       evoked_ref.data[picks_eeg, :])

    # Test invalid inputs
    raw = read_raw_fif(fif_fname, preload=False)
    with pytest.raises(RuntimeError, match='loaded'):
        add_reference_channels(raw, ['Ref'])
    raw.load_data()
    with pytest.raises(ValueError, match='Channel.*already.*'):
        add_reference_channels(raw, raw.ch_names[:1])
    with pytest.raises(TypeError, match='instance of'):
        add_reference_channels(raw, 1)

    # gh-10878
    raw = read_raw_fif(raw_fname).crop(0, 1, include_tmax=False).load_data()
    data = raw.copy().add_reference_channels(['REF']).pick_types(eeg=True)
    data = data.get_data()
    epochs = make_fixed_length_epochs(raw).load_data()
    data_2 = epochs.copy().add_reference_channels(['REF']).pick_types(eeg=True)
    data_2 = data_2.get_data()[0]
    assert_allclose(data, data_2)
    evoked = epochs.average()
    data_3 = evoked.copy().add_reference_channels(['REF']).pick_types(eeg=True)
    data_3 = data_3.get_data()
    assert_allclose(data, data_3)


@pytest.mark.parametrize('n_ref', (1, 2))
def test_add_reorder(n_ref):
    """Test that a reference channel can be added and then data reordered."""
    # gh-8300
    raw = read_raw_fif(raw_fname).crop(0, 0.1).del_proj().pick('eeg')
    assert len(raw.ch_names) == 60
    chs = ['EEG %03d' % (60 + ii) for ii in range(1, n_ref)] + ['EEG 000']
    with pytest.raises(RuntimeError, match='preload'):
        with _record_warnings():  # ignore multiple warning
            add_reference_channels(raw, chs, copy=False)
    raw.load_data()
    if n_ref == 1:
        ctx = nullcontext()
    else:
        assert n_ref == 2
        ctx = pytest.warns(RuntimeWarning, match='locations of multiple')
    with ctx:
        add_reference_channels(raw, chs, copy=False)
    data = raw.get_data()
    assert_array_equal(data[-1], 0.)
    assert raw.ch_names[-n_ref:] == chs
    raw.reorder_channels(raw.ch_names[-1:] + raw.ch_names[:-1])
    assert raw.ch_names == ['EEG %03d' % ii for ii in range(60 + n_ref)]
    data_new = raw.get_data()
    data_new = np.concatenate([data_new[1:], data_new[:1]])
    assert_allclose(data, data_new)


def test_bipolar_combinations():
    """Test bipolar channel generation."""
    ch_names = ['CH' + str(ni + 1) for ni in range(10)]
    info = create_info(
        ch_names=ch_names, sfreq=1000., ch_types=['eeg'] * len(ch_names))
    raw_data = np.random.randn(len(ch_names), 1000)
    raw = RawArray(raw_data, info)

    def _check_bipolar(raw_test, ch_a, ch_b):
        picks = [raw_test.ch_names.index(ch_a + '-' + ch_b)]
        get_data_res = raw_test.get_data(picks=picks)[0, :]
        manual_a = raw_data[ch_names.index(ch_a), :]
        manual_b = raw_data[ch_names.index(ch_b), :]
        assert_array_equal(get_data_res, manual_a - manual_b)

    # test classic EOG/ECG bipolar reference (only two channels per pair).
    raw_test = set_bipolar_reference(raw, ['CH2'], ['CH1'], copy=True)
    _check_bipolar(raw_test, 'CH2', 'CH1')

    # test all combinations.
    a_channels, b_channels = zip(*itertools.combinations(ch_names, 2))
    a_channels, b_channels = list(a_channels), list(b_channels)
    raw_test = set_bipolar_reference(raw, a_channels, b_channels, copy=True)
    for ch_a, ch_b in zip(a_channels, b_channels):
        _check_bipolar(raw_test, ch_a, ch_b)
    # check if reference channels have been dropped.
    assert len(raw_test.ch_names) == len(a_channels)

    raw_test = set_bipolar_reference(
        raw, a_channels, b_channels, drop_refs=False, copy=True)
    # check if reference channels have been kept correctly.
    assert len(raw_test.ch_names) == len(a_channels) + len(ch_names)
    for idx, ch_label in enumerate(ch_names):
        manual_ch = raw_data[np.newaxis, idx]
        assert_array_equal(raw_test.get_data(ch_label), manual_ch)

    # test bipolars with a channel in both list (anode & cathode).
    raw_test = set_bipolar_reference(
        raw, ['CH2', 'CH1'], ['CH1', 'CH2'], copy=True)
    _check_bipolar(raw_test, 'CH2', 'CH1')
    _check_bipolar(raw_test, 'CH1', 'CH2')

    # test if bipolar channel is bad if anode is a bad channel
    raw.info["bads"] = ["CH1"]
    raw_test = set_bipolar_reference(raw, ['CH1'], ['CH2'], on_bad="ignore",
                                     ch_name="bad_bipolar", copy=True)
    assert raw_test.info["bads"] == ["bad_bipolar"]

    # test if bipolar channel is bad if cathode is a bad channel
    raw.info["bads"] = ["CH2"]
    raw_test = set_bipolar_reference(raw, ['CH1'], ['CH2'], on_bad="ignore",
                                     ch_name="bad_bipolar", copy=True)
    assert raw_test.info["bads"] == ["bad_bipolar"]