File: spatial_resolution.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (332 lines) | stat: -rw-r--r-- 13,024 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# -*- coding: utf-8 -*-
# Authors: Olaf Hauk <olaf.hauk@mrc-cbu.cam.ac.uk>
#
# License: BSD-3-Clause
"""Compute resolution metrics from resolution matrix.

Resolution metrics: localisation error, spatial extent, relative amplitude.
Metrics can be computed for point-spread and cross-talk functions (PSFs/CTFs).
"""
import numpy as np

from .. import SourceEstimate
from ..utils import logger, verbose, _check_option


@verbose
def resolution_metrics(resmat, src, function='psf', metric='peak_err',
                       threshold=0.5, verbose=None):
    """Compute spatial resolution metrics for linear solvers.

    Parameters
    ----------
    resmat : array, shape (n_orient * n_vertices, n_vertices)
        The resolution matrix.
        If not a square matrix and if the number of rows is a multiple of
        number of columns (e.g. free or loose orientations), then the Euclidean
        length per source location is computed (e.g. if inverse operator with
        free orientations was applied to forward solution with fixed
        orientations).
    src : instance of SourceSpaces
        Source space object from forward or inverse operator.
    function : 'psf' | 'ctf'
        Whether to compute metrics for columns (point-spread functions, PSFs)
        or rows (cross-talk functions, CTFs) of the resolution matrix.
    metric : str
        The resolution metric to compute. Allowed options are:

        Localization-based metrics:

        - ``'peak_err'`` Peak localization error (PLE), Euclidean distance
          between peak and true source location.
        - ``'cog_err'`` Centre-of-gravity localisation error (CoG), Euclidean
          distance between CoG and true source location.

        Spatial-extent-based metrics:

        - ``'sd_ext'`` Spatial deviation
          (e.g. :footcite:`MolinsEtAl2008,HaukEtAl2019`).
        - ``'maxrad_ext'`` Maximum radius to 50%% of max amplitude.

        Amplitude-based metrics:

        - ``'peak_amp'`` Ratio between absolute maximum amplitudes of peaks
          per location and maximum peak across locations.
        - ``'sum_amp'`` Ratio between sums of absolute amplitudes.

    threshold : float
        Amplitude fraction threshold for spatial extent metric 'maxrad_ext'.
        Defaults to 0.5.
    %(verbose)s

    Returns
    -------
    resolution_metric : instance of SourceEstimate
        The resolution metric.

    Notes
    -----
    For details, see :footcite:`MolinsEtAl2008,HaukEtAl2019`.

    .. versionadded:: 0.20

    References
    ----------
    .. footbibliography::
    """
    # Check if input options are valid
    metrics = ('peak_err', 'cog_err', 'sd_ext', 'maxrad_ext', 'peak_amp',
               'sum_amp')
    if metric not in metrics:
        raise ValueError('"%s" is not a recognized metric.' % metric)

    if function not in ['psf', 'ctf']:
        raise ValueError('Not a recognised resolution function: %s.'
                         % function)

    if metric in ('peak_err', 'cog_err'):
        resolution_metric = _localisation_error(resmat, src, function=function,
                                                metric=metric)

    elif metric in ('sd_ext', 'maxrad_ext'):
        resolution_metric = _spatial_extent(resmat, src, function=function,
                                            metric=metric, threshold=threshold)

    elif metric in ('peak_amp', 'sum_amp'):
        resolution_metric = _relative_amplitude(resmat, src, function=function,
                                                metric=metric)

    # get vertices from source space
    vertno_lh = src[0]['vertno']
    vertno_rh = src[1]['vertno']
    vertno = [vertno_lh, vertno_rh]

    # Convert array to source estimate
    resolution_metric = SourceEstimate(resolution_metric, vertno, tmin=0.,
                                       tstep=1.)

    return resolution_metric


def _localisation_error(resmat, src, function, metric):
    """Compute localisation error metrics for resolution matrix.

    Parameters
    ----------
    resmat : array, shape (n_orient * n_locations, n_locations)
        The resolution matrix.
        If not a square matrix and if the number of rows is a multiple of
        number of columns (i.e. n_orient>1), then the Euclidean length per
        source location is computed (e.g. if inverse operator with free
        orientations was applied to forward solution with fixed orientations).
    src : Source Space
        Source space object from forward or inverse operator.
    function : 'psf' | 'ctf'
        Whether to compute metrics for columns (point-spread functions, PSFs)
        or rows (cross-talk functions, CTFs).
    metric : str
        What type of localisation error to compute.

        - 'peak_err': Peak localisation error (PLE), Euclidean distance between
          peak and true source location, in centimeters.
        - 'cog_err': Centre-of-gravity localisation error (CoG), Euclidean
          distance between CoG and true source location, in centimeters.

    Returns
    -------
    locerr : array, shape (n_locations,)
        Localisation error per location (in cm).
    """
    # ensure resolution matrix is square
    # combine rows (Euclidean length) if necessary
    resmat = _rectify_resolution_matrix(resmat)
    locations = _get_src_locations(src)  # locs used in forw. and inv. operator
    locations = 100. * locations  # convert to cm (more common)
    # we want to use absolute values, but doing abs() mases a copy and this
    # can be quite expensive in memory. So let's just use abs() in place below.

    # The code below will operate on columns, so transpose if you want CTFs
    if function == 'ctf':
        resmat = resmat.T

    # Euclidean distance between true location and maximum
    if metric == 'peak_err':
        resmax = [abs(col).argmax() for col in resmat.T]  # max inds along cols
        maxloc = locations[resmax, :]   # locations of maxima
        diffloc = locations - maxloc    # diff btw true locs and maxima locs
        locerr = np.linalg.norm(diffloc, axis=1)  # Euclidean distance

    # centre of gravity
    elif metric == 'cog_err':
        locerr = np.empty(locations.shape[0])  # initialise result array
        for ii, rr in enumerate(locations):
            resvec = abs(resmat[:, ii].T)  # corresponding column of resmat
            cog = resvec.dot(locations) / np.sum(resvec)   # centre of gravity
            locerr[ii] = np.sqrt(np.sum((rr - cog) ** 2))  # Euclidean distance

    return locerr


def _spatial_extent(resmat, src, function, metric, threshold=0.5):
    """Compute spatial width metrics for resolution matrix.

    Parameters
    ----------
    resmat : array, shape (n_orient * n_dipoles, n_dipoles)
        The resolution matrix.
        If not a square matrix and if the number of rows is a multiple of
        number of columns (i.e. n_orient>1), then the Euclidean length per
        source location is computed (e.g. if inverse operator with free
        orientations was applied to forward solution with fixed orientations).
    src : Source Space
        Source space object from forward or inverse operator.
    function : 'psf' | 'ctf'
        Whether to compute metrics for columns (PSFs) or rows (CTFs).
    metric : str
        What type of width metric to compute.

        - 'sd_ext': spatial deviation (e.g. Molins et al.), in centimeters.
        - 'maxrad_ext': maximum radius to fraction threshold of max amplitude,
          in centimeters.

    threshold : float
        Amplitude fraction threshold for metric 'maxrad'. Defaults to 0.5.

    Returns
    -------
    width : array, shape (n_dipoles,)
        Spatial width metric per location.
    """
    locations = _get_src_locations(src)  # locs used in forw. and inv. operator
    locations = 100. * locations  # convert to cm (more common)

    # The code below will operate on columns, so transpose if you want CTFs
    if function == 'ctf':
        resmat = resmat.T

    width = np.empty(resmat.shape[1])   # initialise output array

    # spatial deviation as in Molins et al.
    if metric == 'sd_ext':
        for ii in range(locations.shape[0]):

            diffloc = locations - locations[ii, :]  # locs w/r/t true source
            locerr = np.sum(diffloc**2, 1)  # squared Eucl dists to true source
            resvec = abs(resmat[:, ii]) ** 2       # pick current row
            # spatial deviation (Molins et al, NI 2008, eq. 12)
            width[ii] = np.sqrt(np.sum(np.multiply(locerr, resvec)) /
                                np.sum(resvec))

    # maximum radius to 50% of max amplitude
    elif metric == 'maxrad_ext':
        for ii, resvec in enumerate(resmat.T):  # iterate over columns
            resvec = abs(resvec)  # operate on absolute values
            amps = resvec.max()
            # indices of elements with values larger than fraction threshold
            # of peak amplitude
            thresh_idx = np.where(resvec > threshold * amps)
            # get distances for those indices from true source position
            locs_thresh = locations[thresh_idx, :] - locations[ii, :]
            # get maximum distance
            width[ii] = np.sqrt(np.sum(locs_thresh**2, 1).max())

    return width


def _relative_amplitude(resmat, src, function, metric):
    """Compute relative amplitude metrics for resolution matrix.

    Parameters
    ----------
    resmat : array, shape (n_orient * n_dipoles, n_dipoles)
        The resolution matrix.
        If not a square matrix and if the number of rows is a multiple of
        number of columns (i.e. n_orient>1), then the Euclidean length per
        source location is computed (e.g. if inverse operator with free
        orientations was applied to forward solution with fixed orientations).
    src : Source Space
        Source space object from forward or inverse operator.
    function : 'psf' | 'ctf'
        Whether to compute metrics for columns (PSFs) or rows (CTFs).
    metric : str
        Which amplitudes to use.

        - 'peak_amp': Ratio between absolute maximum amplitudes of peaks per
          location and maximum peak across locations.
        - 'sum_amp': Ratio between sums of absolute amplitudes.

    Returns
    -------
    relamp : array, shape (n_dipoles,)
        Relative amplitude metric per location.
    """
    # The code below will operate on columns, so transpose if you want CTFs
    if function == 'ctf':
        resmat = resmat.T

    # Ratio between amplitude at peak and global peak maximum
    if metric == 'peak_amp':
        # maximum amplitudes per column
        maxamps = np.array([abs(col).max() for col in resmat.T])
        maxmaxamps = maxamps.max()    # global absolute maximum
        relamp = maxamps / maxmaxamps

    # ratio between sums of absolute amplitudes
    elif metric == 'sum_amp':
        # sum of amplitudes per column
        sumamps = np.array([abs(col).sum() for col in resmat.T])
        sumampsmax = sumamps.max()        # maximum of summed amplitudes
        relamp = sumamps / sumampsmax

    return relamp


def _get_src_locations(src):
    """Get source positions from src object."""
    # vertices used in forward and inverse operator
    # for now let's just support surface source spaces
    _check_option('source space kind', src.kind, ('surface',))
    vertno_lh = src[0]['vertno']
    vertno_rh = src[1]['vertno']

    # locations corresponding to vertices for both hemispheres
    locations_lh = src[0]['rr'][vertno_lh, :]
    locations_rh = src[1]['rr'][vertno_rh, :]
    locations = np.vstack([locations_lh, locations_rh])

    return locations


def _rectify_resolution_matrix(resmat):
    """
    Ensure resolution matrix is square matrix.

    If resmat is not a square matrix, it is assumed that the inverse operator
    had free or loose orientation constraint, i.e. multiple values per source
    location. The Euclidean length for values at each location is computed to
    make resmat a square matrix.
    """
    shape = resmat.shape
    if not shape[0] == shape[1]:
        if shape[0] < shape[1]:
            raise ValueError('Number of target sources (%d) cannot be lower '
                             'than number of input sources (%d)' % shape[0],
                             shape[1])

        if np.mod(shape[0], shape[1]):  # if ratio not integer
            raise ValueError('Number of target sources (%d) must be a '
                             'multiple of the number of input sources (%d)'
                             % shape[0], shape[1])

        ns = shape[0] // shape[1]  # number of source components per vertex

        # Combine rows of resolution matrix
        resmatl = [np.sqrt((resmat[ns * i:ns * (i + 1), :]**2).sum(axis=0))
                   for i in np.arange(0, shape[1], dtype=int)]

        resmat = np.array(resmatl)

        logger.info('Rectified resolution matrix from (%d, %d) to (%d, %d).' %
                    (shape[0], shape[1], resmat.shape[0], resmat.shape[1]))

    return resmat