1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
|
import os.path as op
from pathlib import Path
import re
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_equal,
assert_allclose, assert_array_equal,
assert_array_less)
from scipy import sparse
import pytest
import copy
import mne
from mne.datasets import testing
from mne.label import read_label, label_sign_flip
from mne.event import read_events
from mne.epochs import Epochs, EpochsArray, make_fixed_length_epochs
from mne.forward import restrict_forward_to_stc, apply_forward, is_fixed_orient
from mne.source_estimate import read_source_estimate, VolSourceEstimate
from mne.source_space import _get_src_nn
from mne.surface import _normal_orth
from mne import (read_cov, read_forward_solution, read_evokeds, pick_types,
pick_types_forward, make_forward_solution, EvokedArray,
convert_forward_solution, Covariance, combine_evoked,
SourceEstimate, make_sphere_model, make_ad_hoc_cov,
pick_channels_forward, compute_raw_covariance)
from mne.io import read_raw_fif, read_info
from mne.minimum_norm import (apply_inverse, read_inverse_operator,
apply_inverse_raw, apply_inverse_epochs,
apply_inverse_tfr_epochs,
make_inverse_operator, apply_inverse_cov,
write_inverse_operator, prepare_inverse_operator,
compute_rank_inverse, INVERSE_METHODS)
from mne.time_frequency import EpochsTFR
from mne.utils import catch_logging, _record_warnings
test_path = testing.data_path(download=False)
s_path = op.join(test_path, 'MEG', 'sample')
fname_fwd = op.join(s_path, 'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
# Four inverses:
fname_full = op.join(s_path, 'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif')
fname_inv = op.join(s_path, 'sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif')
fname_inv_fixed_nodepth = op.join(s_path,
'sample_audvis_trunc-meg-eeg-oct-4-meg'
'-nodepth-fixed-inv.fif')
fname_inv_fixed_depth = op.join(s_path,
'sample_audvis_trunc-meg-eeg-oct-4-meg'
'-fixed-inv.fif')
fname_inv_meeg_diag = op.join(s_path,
'sample_audvis_trunc-'
'meg-eeg-oct-4-meg-eeg-diagnoise-inv.fif')
fname_data = op.join(s_path, 'sample_audvis_trunc-ave.fif')
fname_cov = op.join(s_path, 'sample_audvis_trunc-cov.fif')
fname_raw = op.join(s_path, 'sample_audvis_trunc_raw.fif')
fname_sss = op.join(test_path, 'SSS', 'test_move_anon_raw_sss.fif')
fname_raw_ctf = op.join(test_path, 'CTF', 'somMDYO-18av.ds')
fname_event = op.join(s_path, 'sample_audvis_trunc_raw-eve.fif')
fname_label = op.join(s_path, 'labels', '%s.label')
fname_vol_inv = op.join(s_path,
'sample_audvis_trunc-meg-vol-7-meg-inv.fif')
# trans and bem needed for channel reordering tests incl. forward computation
fname_trans = op.join(s_path, 'sample_audvis_trunc-trans.fif')
subjects_dir = op.join(test_path, 'subjects')
s_path_bem = op.join(subjects_dir, 'sample', 'bem')
fname_bem = op.join(s_path_bem, 'sample-320-320-320-bem-sol.fif')
fname_bem_homog = op.join(s_path_bem, 'sample-320-bem-sol.fif')
src_fname = op.join(s_path_bem, 'sample-oct-4-src.fif')
snr = 3.0
lambda2 = 1.0 / snr ** 2
last_keys = [None] * 10
def read_forward_solution_meg(fname, **kwargs):
"""Read MEG forward."""
fwd = convert_forward_solution(read_forward_solution(fname), copy=False,
**kwargs)
fwd = pick_types_forward(fwd, meg=True, eeg=False)
return fwd
def read_forward_solution_eeg(fname, **kwargs):
"""Read EEG forward."""
fwd = convert_forward_solution(read_forward_solution(fname), copy=False,
**kwargs)
fwd = pick_types_forward(fwd, meg=False, eeg=True)
return fwd
def _compare(a, b):
"""Compare two python objects."""
global last_keys
skip_types = ['whitener', 'proj', 'reginv', 'noisenorm', 'nchan',
'command_line', 'working_dir', 'mri_file', 'mri_id',
'scanno']
try:
if isinstance(a, dict):
assert isinstance(b, dict)
for k, v in a.items():
if k not in b and k not in skip_types:
raise ValueError('First one had one second one didn\'t:\n'
'%s not in %s' % (k, b.keys()))
if k not in skip_types:
last_keys.pop()
last_keys = [k] + last_keys
_compare(v, b[k])
for k in b.keys():
if k not in a and k not in skip_types:
raise ValueError('Second one had one first one didn\'t:\n'
'%s not in %s' % (k, sorted(a.keys())))
elif isinstance(a, list):
assert (len(a) == len(b))
for i, j in zip(a, b):
_compare(i, j)
elif isinstance(a, sparse.csr_matrix):
assert_array_almost_equal(a.data, b.data)
assert_equal(a.indices, b.indices)
assert_equal(a.indptr, b.indptr)
elif isinstance(a, np.ndarray):
assert_array_almost_equal(a, b)
else:
assert a == b
except Exception:
print(last_keys)
raise
def _compare_inverses_approx(inv_1, inv_2, evoked, rtol, atol,
depth_atol=1e-6, ctol=0.999999,
check_nn=True, check_K=True):
"""Compare inverses."""
# depth prior
if inv_1['depth_prior'] is not None:
assert_allclose(inv_1['depth_prior']['data'],
inv_2['depth_prior']['data'], atol=depth_atol)
else:
assert (inv_2['depth_prior'] is None)
# orient prior
if inv_1['orient_prior'] is not None:
assert_allclose(inv_1['orient_prior']['data'],
inv_2['orient_prior']['data'], atol=1e-7)
else:
assert (inv_2['orient_prior'] is None)
# source cov
assert_allclose(inv_1['source_cov']['data'], inv_2['source_cov']['data'],
atol=1e-7)
for key in ('units', 'eigen_leads_weighted', 'nsource', 'coord_frame'):
assert_equal(inv_1[key], inv_2[key], err_msg=key)
assert_equal(inv_1['eigen_leads']['ncol'], inv_2['eigen_leads']['ncol'])
K_1 = np.dot(inv_1['eigen_leads']['data'] * inv_1['sing'].astype(float),
inv_1['eigen_fields']['data'])
K_2 = np.dot(inv_2['eigen_leads']['data'] * inv_2['sing'].astype(float),
inv_2['eigen_fields']['data'])
# for free + surf ori, we only care about the ::2
# (the other two dimensions have arbitrary direction)
if inv_1['nsource'] * 3 == inv_1['source_nn'].shape[0]:
# Technically this undersamples the free-orientation, non-surf-ori
# inverse, but it's probably okay
sl = slice(2, None, 3)
else:
sl = slice(None)
if check_nn:
assert_allclose(inv_1['source_nn'][sl], inv_2['source_nn'][sl],
atol=1e-4)
if check_K:
assert_allclose(np.abs(K_1[sl]), np.abs(K_2[sl]), rtol=rtol, atol=atol)
# Now let's do some practical tests, too
evoked = EvokedArray(np.eye(len(evoked.ch_names)), evoked.info)
for method in ('MNE', 'dSPM'):
stc_1 = apply_inverse(evoked, inv_1, lambda2, method)
stc_2 = apply_inverse(evoked, inv_2, lambda2, method)
assert_equal(stc_1.subject, stc_2.subject)
assert_equal(stc_1.times, stc_2.times)
stc_1 = stc_1.data
stc_2 = stc_2.data
norms = np.max(stc_1, axis=-1, keepdims=True)
stc_1 /= norms
stc_2 /= norms
corr = np.corrcoef(stc_1.ravel(), stc_2.ravel())[0, 1]
assert corr > ctol
assert_allclose(stc_1, stc_2, rtol=rtol, atol=atol,
err_msg='%s: %s' % (method, corr))
def _compare_io(inv_op, *, out_file_ext='.fif', tempdir):
"""Compare inverse IO."""
if out_file_ext == '.fif':
out_file = op.join(tempdir, 'test-inv.fif')
elif out_file_ext == '.gz':
out_file = op.join(tempdir, 'test-inv.fif.gz')
else:
raise ValueError('IO test could not complete')
out_file = Path(out_file)
# Test io operations
inv_init = copy.deepcopy(inv_op)
write_inverse_operator(out_file, inv_op, overwrite=True)
read_inv_op = read_inverse_operator(out_file)
_compare(inv_init, read_inv_op)
_compare(inv_init, inv_op)
def test_warn_inverse_operator(evoked, noise_cov):
"""Test MNE inverse warning without average EEG projection."""
bad_info = evoked.info
data = evoked.data
tmax = evoked.tmax
del evoked
with bad_info._unlock():
bad_info['projs'] = list()
assert bad_info['bads'] == ['MEG 2443', 'EEG 053']
fwd_op = convert_forward_solution(read_forward_solution(fname_fwd),
surf_ori=True, copy=False)
with pytest.raises(ValueError, match='greater than or'):
make_inverse_operator(bad_info, fwd_op, noise_cov, depth=-0.1)
noise_cov['projs'].pop(-1) # get rid of avg EEG ref proj
with pytest.warns(RuntimeWarning, match='reference'):
inv = make_inverse_operator(bad_info, fwd_op, noise_cov)
# Create MEG-only forward, create inverse (should not warn)
fwd_meg = pick_channels_forward(fwd_op, bad_info['ch_names'][:306])
inv_meg = make_inverse_operator(bad_info, fwd_meg, noise_cov)
# Create MEG-only inverse, apply to M/EEG data (raw, epochs, evoked)
raw = mne.io.RawArray(data, bad_info)
epochs = make_fixed_length_epochs(raw, duration=tmax).load_data()
assert len(epochs) == 1
evoked = epochs.average()
evoked_cust = epochs.average().set_eeg_reference()
assert evoked_cust.info['custom_ref_applied']
assert 'eeg' in raw
assert 'meg' in raw
for (func, inst) in ((apply_inverse_raw, raw),
(apply_inverse_epochs, epochs),
(apply_inverse, evoked),
(apply_inverse, evoked_cust)):
with pytest.raises(ValueError, match='reference'):
func(inst, inv, 1. / 9.)
func(inst, inv_meg, 1. / 9.) # no warning
@pytest.mark.slowtest
def test_make_inverse_operator_loose(evoked, tmp_path):
"""Test MNE inverse computation (precomputed and non-precomputed)."""
# Test old version of inverse computation starting from forward operator
noise_cov = read_cov(fname_cov)
inverse_operator = read_inverse_operator(fname_inv)
fwd_op = convert_forward_solution(read_forward_solution_meg(fname_fwd),
surf_ori=True, copy=False)
with catch_logging() as log:
my_inv_op = make_inverse_operator(
evoked.info, fwd_op, noise_cov, loose=0.2,
depth=dict(exp=0.8, limit_depth_chs=False), verbose=True)
log = log.getvalue()
assert 'MEG: rank 302 computed' in log
assert 'limit = 1/%d' % fwd_op['nsource'] in log
assert 'Loose (0.2)' in repr(my_inv_op)
_compare_io(my_inv_op, tempdir=str(tmp_path))
assert_equal(inverse_operator['units'], 'Am')
_compare_inverses_approx(my_inv_op, inverse_operator, evoked,
rtol=1e-2, atol=1e-5, depth_atol=1e-3)
# Test MNE inverse computation starting from forward operator
with catch_logging() as log:
my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
loose='auto', depth=0.8,
fixed=False, verbose=True)
log = log.getvalue()
assert 'MEG: rank 302 computed from 305' in log
_compare_io(my_inv_op, tempdir=str(tmp_path))
_compare_inverses_approx(my_inv_op, inverse_operator, evoked,
rtol=1e-3, atol=1e-5)
assert ('dev_head_t' in my_inv_op['info'])
assert ('mri_head_t' in my_inv_op)
@pytest.mark.slowtest
def test_inverse_operator_channel_ordering(evoked, noise_cov):
"""Test MNE inverse computation is immune to channel reorderings."""
# These are with original ordering
evoked_orig = evoked.copy()
fwd_orig = make_forward_solution(evoked.info, fname_trans, src_fname,
fname_bem, eeg=True, mindist=5.0)
fwd_orig = convert_forward_solution(fwd_orig, surf_ori=True)
depth = dict(exp=2.8, limit_depth_chs=False) # test depth > 1 as well
with catch_logging() as log:
inv_orig = make_inverse_operator(evoked.info, fwd_orig, noise_cov,
loose=0.2, depth=depth, verbose=True)
log = log.getvalue()
assert 'limit = 1/%s' % fwd_orig['nsource'] in log
stc_1 = apply_inverse(evoked, inv_orig, lambda2, "dSPM")
# Assume that a raw reordering applies to both evoked and noise_cov,
# so we don't need to create those from scratch. Just reorder them,
# then try to apply the original inverse operator
new_order = np.arange(len(evoked.info['ch_names']))
randomiser = np.random.RandomState(42)
randomiser.shuffle(new_order)
evoked.data = evoked.data[new_order]
with evoked.info._unlock(update_redundant=True, check_after=True):
evoked.info['chs'] = [evoked.info['chs'][n] for n in new_order]
cov_ch_reorder = [c for c in evoked.info['ch_names']
if (c in noise_cov.ch_names)]
new_order_cov = [noise_cov.ch_names.index(name) for name in cov_ch_reorder]
noise_cov['data'] = noise_cov.data[np.ix_(new_order_cov, new_order_cov)]
noise_cov['names'] = [noise_cov['names'][idx] for idx in new_order_cov]
fwd_reorder = make_forward_solution(evoked.info, fname_trans, src_fname,
fname_bem, eeg=True, mindist=5.0)
fwd_reorder = convert_forward_solution(fwd_reorder, surf_ori=True)
inv_reorder = make_inverse_operator(evoked.info, fwd_reorder, noise_cov,
loose=0.2, depth=depth)
stc_2 = apply_inverse(evoked, inv_reorder, lambda2, "dSPM")
assert_equal(stc_1.subject, stc_2.subject)
assert_array_equal(stc_1.times, stc_2.times)
assert_allclose(stc_1.data, stc_2.data, rtol=1e-5, atol=1e-5)
assert (inv_orig['units'] == inv_reorder['units'])
# Reload with original ordering & apply reordered inverse
evoked = evoked_orig
noise_cov = read_cov(fname_cov)
stc_3 = apply_inverse(evoked, inv_reorder, lambda2, "dSPM")
assert_allclose(stc_1.data, stc_3.data, rtol=1e-5, atol=1e-5)
@pytest.mark.parametrize('method, lower, upper, depth', [
('MNE', 54, 57, dict(limit=None, combine_xyz=False, exp=1.)), # DICS def
('MNE', 75, 80, dict(limit_depth_chs=False)), # ancient MNE default
('MNE', 83, 87, 0.8), # MNE default
('MNE', 89, 92, dict(limit_depth_chs='whiten')), # sparse default
('dSPM', 96, 98, 0.8),
('sLORETA', 100, 100, 0.8),
pytest.param('eLORETA', 100, 100, None, marks=pytest.mark.slowtest),
pytest.param('eLORETA', 100, 100, 0.8, marks=pytest.mark.slowtest),
])
def test_localization_bias_fixed(bias_params_fixed, method, lower, upper,
depth):
"""Test inverse localization bias for fixed minimum-norm solvers."""
evoked, fwd, noise_cov, _, want = bias_params_fixed
fwd_use = convert_forward_solution(fwd, force_fixed=False)
inv_fixed = make_inverse_operator(evoked.info, fwd_use, noise_cov,
loose=0., depth=depth)
loc = np.abs(apply_inverse(evoked, inv_fixed, lambda2, method,
verbose='debug').data)
# Compute the percentage of sources for which there is no loc bias:
perc = (want == np.argmax(loc, axis=0)).mean() * 100
assert lower <= perc <= upper, method
@pytest.mark.parametrize('method, lower, upper, depth, loose', [
('MNE', 32, 37, dict(limit=None, combine_xyz=False, exp=1.), 0.2), # DICS
('MNE', 78, 81, 0.8, 0.2), # MNE default
('MNE', 89, 92, dict(limit_depth_chs='whiten'), 0.2), # sparse default
('dSPM', 85, 87, 0.8, 0.2),
('sLORETA', 100, 100, 0.8, 0.2),
pytest.param('eLORETA', 99, 100, None, 0.2, marks=pytest.mark.slowtest),
pytest.param('eLORETA', 99, 100, 0.8, 0.2, marks=pytest.mark.slowtest),
pytest.param('eLORETA', 99, 100, 0.8, 0.001, marks=pytest.mark.slowtest),
])
@pytest.mark.parametrize('pick_ori', (None, 'vector'))
def test_localization_bias_loose(bias_params_fixed, method, lower, upper,
depth, loose, pick_ori):
"""Test inverse localization bias for loose minimum-norm solvers."""
if pick_ori == 'vector' and method == 'eLORETA': # works, but save cycles
return
evoked, fwd, noise_cov, _, want = bias_params_fixed
fwd = convert_forward_solution(fwd, surf_ori=False, force_fixed=False)
assert not is_fixed_orient(fwd)
inv_loose = make_inverse_operator(evoked.info, fwd, noise_cov, loose=loose,
depth=depth)
loc, res = apply_inverse(
evoked, inv_loose, lambda2, method, pick_ori=pick_ori,
return_residual=True)
if pick_ori is not None:
assert loc.data.ndim == 3
loc, directions = loc.project('pca', src=fwd['src'])
abs_cos_sim = np.abs(np.sum(
directions * inv_loose['source_nn'][2::3], axis=1))
assert np.percentile(abs_cos_sim, 10) > 0.9 # most very aligned
loc = abs(loc).data
else:
loc = loc.data
assert (loc >= 0).all()
# Compute the percentage of sources for which there is no loc bias:
perc = (want == np.argmax(loc, axis=0)).mean() * 100
assert lower <= perc <= upper, method
@pytest.mark.parametrize(
'method, lower, upper, lower_ori, upper_ori, kwargs, depth, loose', [
('MNE', 21, 24, 0.73, 0.75, {},
dict(limit=None, combine_xyz=False, exp=1.), 1),
('MNE', 35, 40, 0.93, 0.94, {},
dict(limit_depth_chs=False), 1), # ancient default
('MNE', 45, 55, 0.94, 0.95, {}, 0.8, 1), # MNE default
('MNE', 65, 70, 0.945, 0.955, {},
dict(limit_depth_chs='whiten'), 1), # sparse default
('dSPM', 40, 45, 0.96, 0.97, {}, 0.8, 1),
('sLORETA', 93, 95, 0.95, 0.96, {}, 0.8, 1),
pytest.param('eLORETA', 93, 100, 0.95, 0.96,
dict(method_params=dict(force_equal=True)), None, 1,
marks=pytest.mark.slowtest),
pytest.param('eLORETA', 100, 100, 0.98, 0.99, {}, None, 1.0,
marks=pytest.mark.slowtest),
pytest.param('eLORETA', 100, 100, 0.98, 0.99, {}, 0.8, 1.0,
marks=pytest.mark.slowtest),
pytest.param('eLORETA', 100, 100, 0.98, 0.99, {}, 0.8, 0.999,
marks=pytest.mark.slowtest),
]
)
def test_localization_bias_free(bias_params_free, method, lower, upper,
lower_ori, upper_ori, kwargs, depth, loose):
"""Test inverse localization bias for free minimum-norm solvers."""
evoked, fwd, noise_cov, _, want = bias_params_free
inv_free = make_inverse_operator(evoked.info, fwd, noise_cov, loose=loose,
depth=depth)
loc = apply_inverse(evoked, inv_free, lambda2, method,
pick_ori='vector', verbose='debug', **kwargs).data
ori = loc / np.linalg.norm(loc, axis=1, keepdims=True)
loc = np.linalg.norm(loc, axis=1)
# Compute the percentage of sources for which there is no loc bias:
max_idx = np.argmax(loc, axis=0)
perc = (want == max_idx).mean() * 100
assert lower <= perc <= upper, method
_assert_free_ori_match(ori, max_idx, lower_ori, upper_ori)
@pytest.mark.slowtest
def test_apply_inverse_sphere(evoked, tmp_path):
"""Test applying an inverse with a sphere model (rank-deficient)."""
evoked.pick_channels(evoked.ch_names[:306:8])
with evoked.info._unlock():
evoked.info['projs'] = []
cov = make_ad_hoc_cov(evoked.info)
sphere = make_sphere_model('auto', 'auto', evoked.info)
fwd = read_forward_solution(fname_fwd)
vertices = [fwd['src'][0]['vertno'][::5],
fwd['src'][1]['vertno'][::5]]
stc = SourceEstimate(np.zeros((sum(len(v) for v in vertices), 1)),
vertices, 0., 1.)
fwd = restrict_forward_to_stc(fwd, stc)
fwd = make_forward_solution(evoked.info, fwd['mri_head_t'], fwd['src'],
sphere, mindist=5.)
evoked = EvokedArray(fwd['sol']['data'].copy(), evoked.info)
assert fwd['sol']['nrow'] == 39
assert fwd['nsource'] == 101
assert fwd['sol']['ncol'] == 303
tempdir = str(tmp_path)
temp_fname = op.join(tempdir, 'temp-inv.fif')
inv = make_inverse_operator(evoked.info, fwd, cov, loose=1.)
# This forces everything to be float32
write_inverse_operator(temp_fname, inv)
inv = read_inverse_operator(temp_fname)
stc = apply_inverse(evoked, inv, method='eLORETA',
method_params=dict(eps=1e-2))
# assert zero localization bias
assert_array_equal(np.argmax(stc.data, axis=0),
np.repeat(np.arange(101), 3))
@pytest.mark.parametrize('loose', [0., 0.2, 1.])
@pytest.mark.parametrize('lambda2', [1. / 9., 0.])
def test_apply_inverse_eLORETA_MNE_equiv(bias_params_free, loose, lambda2):
"""Test that eLORETA with no iterations is the same as MNE."""
method_params = dict(max_iter=0, force_equal=False)
pick_ori = None if loose == 0 else 'vector'
evoked, fwd, noise_cov, _, _ = bias_params_free
inv = make_inverse_operator(
evoked.info, fwd, noise_cov, loose=loose, depth=None,
verbose='debug')
stc_mne = apply_inverse(evoked, inv, lambda2, 'MNE', pick_ori=pick_ori,
verbose='debug')
with pytest.warns(RuntimeWarning, match='converge'):
stc_e = apply_inverse(evoked, inv, lambda2, 'eLORETA',
method_params=method_params, pick_ori=pick_ori,
verbose='debug')
atol = np.mean(np.abs(stc_mne.data)) * 1e-6
assert 3e-9 < atol < 3e-6 # nothing has blown up
assert_allclose(stc_mne.data, stc_e.data, atol=atol, rtol=1e-4)
@pytest.mark.slowtest
@pytest.mark.parametrize('inv, min_, max_', [
(fname_inv, 0, 13e-9),
(fname_inv_fixed_depth, -25e-9, 25e-9),
])
def test_apply_inverse_operator(evoked, inv, min_, max_):
"""Test MNE inverse application."""
# use fname_inv as it will be faster than fname_full (fewer verts and chs)
inverse_operator = read_inverse_operator(inv)
# Inverse has 306 channels - 4 proj = 302
assert (compute_rank_inverse(inverse_operator) == 302)
# Inverse has 306 channels - 4 proj = 302
assert (compute_rank_inverse(inverse_operator) == 302)
stc = apply_inverse(evoked, inverse_operator, lambda2, "MNE")
assert stc.subject == 'sample'
assert stc.data.min() > min_
assert stc.data.max() < max_
assert abs(stc).data.mean() > 1e-11
# test if using prepared and not prepared inverse operator give the same
# result
inv_op = prepare_inverse_operator(inverse_operator, nave=evoked.nave,
lambda2=lambda2, method="MNE")
stc2 = apply_inverse(evoked, inv_op, lambda2, "MNE")
assert_array_almost_equal(stc.data, stc2.data)
assert_array_almost_equal(stc.times, stc2.times)
# This is little more than a smoke test...
stc = apply_inverse(evoked, inverse_operator, lambda2, "sLORETA")
assert stc.subject == 'sample'
assert abs(stc).data.min() > 0
assert 2 < stc.data.max() < 7
assert abs(stc).data.mean() > 0.1
stc = apply_inverse(evoked, inverse_operator, lambda2, "eLORETA")
assert stc.subject == 'sample'
assert abs(stc).data.min() > min_
assert stc.data.max() < max_ * 2
assert abs(stc).data.mean() > 1e-11
stc = apply_inverse(evoked, inverse_operator, lambda2, "dSPM")
assert stc.subject == 'sample'
assert abs(stc).data.min() > 0
assert 7.5 < stc.data.max() < 15
assert abs(stc).data.mean() > 0.1
# test without using a label (so delayed computation is used)
label = read_label(fname_label % 'Aud-lh')
for method in INVERSE_METHODS:
stc = apply_inverse(evoked, inv_op, lambda2, method)
stc_label = apply_inverse(evoked, inv_op, lambda2, method,
label=label)
assert_equal(stc_label.subject, 'sample')
label_stc = stc.in_label(label)
assert label_stc.subject == 'sample'
assert_allclose(stc_label.data, label_stc.data)
# Test that no errors are raised with loose inverse ops and picking normals
noise_cov = read_cov(fname_cov)
fwd = read_forward_solution_meg(fname_fwd)
inv_op_meg = make_inverse_operator(
evoked.info, fwd, noise_cov, loose=1,
fixed='auto', depth=None)
apply_inverse(evoked, inv_op_meg, 1 / 9., method='MNE', pick_ori='normal')
# Test type checking
with pytest.raises(TypeError, match='must be an instance of Evoked'):
apply_inverse(
mne.EpochsArray(evoked.data[np.newaxis], evoked.info), inv_op)
with pytest.raises(TypeError, match='must be an instance of Evoked'):
apply_inverse(mne.io.RawArray(evoked.data, evoked.info), inv_op)
# Test we get errors when using custom ref or no average proj is present
with evoked.info._unlock():
evoked.info['custom_ref_applied'] = True
with pytest.raises(ValueError, match='Custom EEG reference'):
apply_inverse(evoked, inv_op, lambda2, "MNE")
with evoked.info._unlock():
evoked.info['custom_ref_applied'] = False
evoked.info['projs'] = [] # remove EEG proj
with pytest.raises(ValueError, match='EEG average reference.*mandatory'):
apply_inverse(evoked, inv_op, lambda2, "MNE")
# But test that we do not get EEG-related errors on MEG-only inv (gh-4650)
apply_inverse(evoked, inv_op_meg, 1. / 9.)
@pytest.mark.slowtest # lots of params here, adds up
@pytest.mark.parametrize('method', INVERSE_METHODS)
@pytest.mark.parametrize('looses, vmin, vmax, nmin, nmax', [
((1., 0.8), 0.87, 0.94, 0.9, 1.1), # almost the same as free
((0., 0.2), 0.3, 0.6, 2, 4), # similar to fixed
])
def test_orientation_prior(bias_params_free, method, looses, vmin, vmax,
nmin, nmax):
"""Test that orientation priors are handled properly."""
evoked, fwd, noise_cov, _, _ = bias_params_free
stcs = list()
vec_stc = None
for loose in looses:
inv = make_inverse_operator(evoked.info, fwd, noise_cov, loose=loose)
if looses[0] == 0.:
pick_ori = None if loose == 0 else 'normal'
else:
pick_ori = 'vector'
stcs.append(apply_inverse(
evoked, inv, method=method, pick_ori=pick_ori))
if loose in (1., 0.2):
assert vec_stc is None
vec_stc = apply_inverse(
evoked, inv, method=method, pick_ori='vector')
assert vec_stc is not None
rot = _normal_orth(np.concatenate(
[_get_src_nn(s) for s in inv['src']]))
vec_stc_surf = np.matmul(rot, vec_stc.data)
if 0. in looses:
vec_stc_normal, _ = vec_stc.project('normal', inv['src'])
assert_allclose(stcs[1].data, vec_stc_normal.data)
del vec_stc
assert_allclose(vec_stc_normal.data, vec_stc_surf[:, 2])
assert_allclose(vec_stc_normal.data, stcs[1].data)
# Ensure that our relative strengths are reasonable
# (normal should be much larger than tangential)
normal = np.linalg.norm(vec_stc_surf[:, 2].ravel())
for ii in range(2):
tangential = np.linalg.norm(vec_stc_surf[:, ii].ravel())
ratio = normal / tangential
assert nmin < ratio < nmax
assert stcs[0].data.shape == stcs[1].data.shape
R2 = 1. - (
np.linalg.norm(stcs[0].data.ravel() - stcs[1].data.ravel()) /
np.linalg.norm(stcs[0].data.ravel()))
assert vmin < R2 < vmax
def assert_stc_res(evoked, stc, forward, res, atol=1e-20):
"""Assert that orig == residual + estimate."""
__tracebackhide__ = True
with _record_warnings(): # all positive or large values
estimated = apply_forward(forward, stc, evoked.info)
meg, eeg = 'meg' in estimated, 'eeg' in estimated
evoked = evoked.copy().pick_types(meg=meg, eeg=eeg, exclude=())
evoked.apply_proj()
res = res.copy().pick_types(meg=meg, eeg=eeg, exclude=())
estimated.info['bads'] = evoked.info['bads'] # proj the same channels
estimated.add_proj(evoked.info['projs']).apply_proj()
estimated.pick_channels(res.ch_names, ordered=True)
evoked.pick_channels(res.ch_names, ordered=True)
recon = estimated.data + res.data
assert_allclose(evoked.data, recon.data, atol=atol, rtol=1e-6)
def assert_var_exp_log(log, lower, upper):
"""Assert a variance explained log value."""
__tracebackhide__ = True
exp_var = re.match(r'.* ([0-9]?[0-9]?[0-9]?\.[0-9])% variance.*',
log.replace('\n', ' '))
assert exp_var is not None, f'No explained variance found:\n{log}'
exp_var = float(exp_var.group(1))
assert lower <= exp_var <= upper
return exp_var
@pytest.mark.parametrize('method', INVERSE_METHODS)
@pytest.mark.parametrize('pick_ori', (None, 'vector'))
def test_inverse_residual(evoked, method, pick_ori):
"""Test MNE inverse application."""
if method == 'eLORETA' and pick_ori == 'vector': # works but slow
return
# use fname_inv as it will be faster than fname_full (fewer verts and chs)
evoked = evoked.pick_types(meg=True)
if pick_ori is None: # use fixed
inv = read_inverse_operator(fname_inv_fixed_depth)
else:
inv = read_inverse_operator(fname_inv)
fwd = read_forward_solution(fname_fwd)
pick_channels_forward(fwd, evoked.ch_names, copy=False)
fwd = convert_forward_solution(fwd, force_fixed=True, surf_ori=True)
# make it complex to ensure we handle it properly
evoked.data = 1j * evoked.data
with catch_logging() as log:
stc, residual = apply_inverse(
evoked, inv, method=method, return_residual=True, verbose=True,
pick_ori=pick_ori)
assert_array_equal(residual.data.real, 0)
residual.data = (-1j * residual.data).real
evoked.data = (-1j * evoked.data).real
assert stc.data.min() < 0
stc.data = (-1j * stc.data)
assert_var_exp_log(log.getvalue(), 45, 52)
if method not in ('dSPM', 'sLORETA'):
assert_stc_res(evoked, stc, fwd, residual, atol=1e-16)
if method != 'sLORETA': # XXX divide by zero error
with catch_logging() as log:
_, residual = apply_inverse(
evoked, inv, 0., method, return_residual=True, verbose=True)
assert_var_exp_log(log.getvalue(), 100, 100)
assert_array_less(np.abs(residual.data), 1e-15)
@pytest.mark.slowtest
def test_make_inverse_operator_fixed(evoked, noise_cov):
"""Test MNE inverse computation (fixed orientation)."""
fwd = read_forward_solution_meg(fname_fwd)
# can't make fixed inv with depth weighting without free ori fwd
fwd_fixed = convert_forward_solution(fwd, force_fixed=True,
use_cps=True)
pytest.raises(ValueError, make_inverse_operator, evoked.info, fwd_fixed,
noise_cov, depth=0.8, fixed=True)
# now compare to C solution
# note that the forward solution must not be surface-oriented
# to get equivalence (surf_ori=True changes the normals)
with catch_logging() as log:
inv_op = make_inverse_operator( # test depth=0. alias for depth=None
evoked.info, fwd, noise_cov, depth=0., fixed=True,
use_cps=False, verbose=True)
log = log.getvalue()
assert 'MEG: rank 302 computed from 305' in log
assert 'EEG channels: 0' in repr(inv_op)
assert 'MEG channels: 305' in repr(inv_op)
assert 'Fixed' in repr(inv_op)
del fwd_fixed
inverse_operator_nodepth = read_inverse_operator(fname_inv_fixed_nodepth)
# XXX We should have this but we don't (MNE-C doesn't restrict info):
# assert 'EEG channels: 0' in repr(inverse_operator_nodepth)
assert 'MEG channels: 305' in repr(inverse_operator_nodepth)
_compare_inverses_approx(inverse_operator_nodepth, inv_op, evoked,
rtol=1e-5, atol=1e-4)
# Inverse has 306 channels - 6 proj = 302
assert (compute_rank_inverse(inverse_operator_nodepth) == 302)
# Now with depth
fwd_surf = convert_forward_solution(fwd, surf_ori=True) # not fixed
for kwargs, use_fwd in zip([dict(fixed=True), dict(loose=0.)],
[fwd, fwd_surf]): # Should be equiv.
inv_op_depth = make_inverse_operator(
evoked.info, use_fwd, noise_cov, depth=0.8, use_cps=True,
**kwargs)
inverse_operator_depth = read_inverse_operator(fname_inv_fixed_depth)
# Normals should be the adjusted ones
assert_allclose(inverse_operator_depth['source_nn'],
fwd_surf['source_nn'][2::3], atol=1e-5)
_compare_inverses_approx(inverse_operator_depth, inv_op_depth, evoked,
rtol=1e-3, atol=1e-4)
def test_make_inverse_operator_free(evoked, noise_cov):
"""Test MNE inverse computation (free orientation)."""
fwd = read_forward_solution_meg(fname_fwd)
fwd_surf = convert_forward_solution(fwd, surf_ori=True)
fwd_fixed = convert_forward_solution(fwd, force_fixed=True,
use_cps=True)
# can't make free inv with fixed fwd
with pytest.raises(ValueError, match='can only be used'):
make_inverse_operator(evoked.info, fwd_fixed, noise_cov, depth=None)
# for depth=None (or depth=0.8), surf_ori of the fwd should not matter
inv_surf = make_inverse_operator(evoked.info, fwd_surf, noise_cov,
depth=None, loose=1.)
inv = make_inverse_operator(evoked.info, fwd, noise_cov,
depth=None, loose=1.)
assert 'Free' in repr(inv_surf)
assert 'Free' in repr(inv)
_compare_inverses_approx(inv, inv_surf, evoked, rtol=1e-5, atol=1e-8,
check_nn=False, check_K=False)
for pick_ori in (None, 'vector', 'normal'):
stc = apply_inverse(evoked, inv, pick_ori=pick_ori)
stc_surf = apply_inverse(evoked, inv_surf, pick_ori=pick_ori)
assert_allclose(stc_surf.data, stc.data, atol=1e-2)
@pytest.mark.slowtest
def test_make_inverse_operator_vector(evoked, noise_cov):
"""Test MNE inverse computation (vector result)."""
fwd_surf = read_forward_solution_meg(fname_fwd, surf_ori=True)
fwd = read_forward_solution_meg(fname_fwd, surf_ori=False)
# Make different version of the inverse operator
inv_1 = make_inverse_operator(evoked.info, fwd, noise_cov, loose=1)
inv_2 = make_inverse_operator(evoked.info, fwd_surf, noise_cov, depth=None,
use_cps=True)
inv_4 = make_inverse_operator(evoked.info, fwd, noise_cov,
loose=.2, depth=None)
# Apply the inverse operators and check the result
for ii, inv in enumerate((inv_1, inv_2, inv_4)):
# Don't do eLORETA here as it will be quite slow
methods = ['MNE', 'dSPM', 'sLORETA'] if ii < 2 else ['MNE']
for method in methods:
stc = apply_inverse(evoked, inv, method=method)
stc_vec = apply_inverse(evoked, inv, pick_ori='vector',
method=method)
assert_allclose(stc.data, stc_vec.magnitude().data)
# When computing with vector fields, computing the difference between two
# evokeds and then performing the inverse should yield the same result as
# computing the difference between the inverses.
evoked0 = read_evokeds(fname_data, condition=0, baseline=(None, 0))
evoked0.crop(0, 0.2)
evoked1 = read_evokeds(fname_data, condition=1, baseline=(None, 0))
evoked1.crop(0, 0.2)
diff = combine_evoked((evoked0, evoked1), [1, -1])
stc_diff = apply_inverse(diff, inv_1, method='MNE')
stc_diff_vec = apply_inverse(diff, inv_1, method='MNE', pick_ori='vector')
stc_vec0 = apply_inverse(evoked0, inv_1, method='MNE', pick_ori='vector')
stc_vec1 = apply_inverse(evoked1, inv_1, method='MNE', pick_ori='vector')
assert_allclose(stc_diff_vec.data, (stc_vec0 - stc_vec1).data,
atol=1e-20)
assert_allclose(stc_diff.data, (stc_vec0 - stc_vec1).magnitude().data,
atol=1e-20)
def test_make_inverse_operator_diag(evoked, noise_cov, tmp_path,
azure_windows):
"""Test MNE inverse computation with diagonal noise cov."""
noise_cov = noise_cov.as_diag()
fwd_op = convert_forward_solution(read_forward_solution(fname_fwd),
surf_ori=True)
inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
loose=0.2, depth=0.8)
_compare_io(inv_op, tempdir=str(tmp_path))
inverse_operator_diag = read_inverse_operator(fname_inv_meeg_diag)
# This one is pretty bad, and for some reason it's worse on Azure Windows
ctol = 0.75 if azure_windows else 0.99
_compare_inverses_approx(inverse_operator_diag, inv_op, evoked,
rtol=1e-1, atol=1e-1, ctol=ctol, check_K=False)
# Inverse has 366 channels - 6 proj = 360
assert (compute_rank_inverse(inverse_operator_diag) == 360)
def test_inverse_operator_noise_cov_rank(evoked, noise_cov):
"""Test MNE inverse operator with a specified noise cov rank."""
fwd_op = read_forward_solution_meg(fname_fwd, surf_ori=True)
inv = make_inverse_operator(
evoked.info, fwd_op, noise_cov, rank=dict(meg=64))
assert (compute_rank_inverse(inv) == 64)
inv = make_inverse_operator(
evoked.info, fwd_op, noise_cov, rank=dict(meg=64))
assert (compute_rank_inverse(inv) == 64)
fwd_op = read_forward_solution_eeg(fname_fwd, surf_ori=True)
inv = make_inverse_operator(
evoked.info, fwd_op, noise_cov, rank=dict(eeg=20))
assert (compute_rank_inverse(inv) == 20)
def test_inverse_operator_volume(evoked, tmp_path):
"""Test MNE inverse computation on volume source space."""
tempdir = str(tmp_path)
inv_vol = read_inverse_operator(fname_vol_inv)
assert (repr(inv_vol))
stc = apply_inverse(evoked, inv_vol, lambda2, 'dSPM')
assert (isinstance(stc, VolSourceEstimate))
# volume inverses don't have associated subject IDs
assert (stc.subject is None)
stc.save(op.join(tempdir, 'tmp-vl.stc'))
stc2 = read_source_estimate(op.join(tempdir, 'tmp-vl.stc'))
assert (np.all(stc.data > 0))
assert (np.all(stc.data < 35))
assert_array_almost_equal(stc.data, stc2.data)
assert_array_almost_equal(stc.times, stc2.times)
# vector source estimate
stc_vec = apply_inverse(evoked, inv_vol, lambda2, 'dSPM', 'vector')
assert (repr(stc_vec))
assert_allclose(np.linalg.norm(stc_vec.data, axis=1), stc.data)
with pytest.raises(RuntimeError, match='surface or discrete'):
apply_inverse(evoked, inv_vol, pick_ori='normal')
@pytest.mark.slowtest
def test_inverse_operator_discrete(evoked, tmp_path):
"""Test MNE inverse computation on discrete source space."""
# Make discrete source space
src = mne.setup_volume_source_space(
pos=dict(rr=[[0, 0, 0.1], [0, -0.01, 0.05]],
nn=[[0, 1, 0], [1, 0, 0]]),
bem=fname_bem)
# Perform inverse
fwd = mne.make_forward_solution(
evoked.info, mne.Transform('head', 'mri'), src, fname_bem)
inv = make_inverse_operator(
evoked.info, fwd, make_ad_hoc_cov(evoked.info), loose=0, fixed=True,
depth=0)
stc = apply_inverse(evoked, inv)
assert (isinstance(stc, VolSourceEstimate))
assert stc.data.shape == (2, len(evoked.times))
@pytest.mark.slowtest
@testing.requires_testing_data
def test_io_inverse_operator(tmp_path):
"""Test IO of inverse_operator."""
tempdir = str(tmp_path)
inverse_operator = read_inverse_operator(fname_inv)
x = repr(inverse_operator)
assert (x)
assert (isinstance(inverse_operator['noise_cov'], Covariance))
# just do one example for .gz, as it should generalize
_compare_io(inverse_operator, out_file_ext='.gz', tempdir=tempdir)
# test warnings on bad filenames
inv_badname = op.join(tempdir, 'test-bad-name.fif.gz')
with pytest.warns(RuntimeWarning, match='-inv.fif'):
write_inverse_operator(inv_badname, inverse_operator)
with pytest.warns(RuntimeWarning, match='-inv.fif'):
read_inverse_operator(inv_badname)
# make sure we can write and read
inv_fname = op.join(tempdir, 'test-inv.fif')
args = (10, 1. / 9., 'dSPM')
inv_prep = prepare_inverse_operator(inverse_operator, *args)
write_inverse_operator(inv_fname, inv_prep)
inv_read = read_inverse_operator(inv_fname)
_compare(inverse_operator, inv_read)
inv_read_prep = prepare_inverse_operator(inv_read, *args)
_compare(inv_prep, inv_read_prep)
inv_prep_prep = prepare_inverse_operator(inv_prep, *args)
_compare(inv_prep, inv_prep_prep)
# eLORETA is slow and we can trust that it will work because we just route
# through apply_inverse
_fast_methods = list(INVERSE_METHODS)
_fast_methods.pop(_fast_methods.index('eLORETA'))
@testing.requires_testing_data
@pytest.mark.parametrize('method', _fast_methods)
@pytest.mark.parametrize('pick_ori', ['normal', None])
def test_apply_inverse_cov(method, pick_ori):
"""Test MNE with precomputed inverse operator on cov."""
raw = read_raw_fif(fname_raw, preload=True)
# use 10 sec of data
raw.crop(0, 10)
raw.filter(1, None)
label_lh = read_label(fname_label % 'Aud-lh')
# test with a free ori inverse
inverse_operator = read_inverse_operator(fname_inv)
data_cov = compute_raw_covariance(raw, tstep=None)
with pytest.raises(ValueError, match='has not been prepared'):
apply_inverse_cov(data_cov, raw.info, inverse_operator,
lambda2=lambda2, prepared=True)
this_inv_op = prepare_inverse_operator(inverse_operator, nave=1,
lambda2=lambda2, method=method)
raw_ori = 'normal' if pick_ori == 'normal' else 'vector'
stc_raw = apply_inverse_raw(
raw, this_inv_op, lambda2, method, label=label_lh, nave=1,
pick_ori=raw_ori, prepared=True)
stc_cov = apply_inverse_cov(
data_cov, raw.info, this_inv_op, method=method, pick_ori=pick_ori,
label=label_lh, prepared=True, lambda2=lambda2)
n_sources = np.prod(stc_cov.data.shape[:-1])
raw_data = stc_raw.data.reshape(n_sources, -1)
exp_res = np.diag(np.cov(raw_data, ddof=1)).copy()
exp_res *= 1 if raw_ori == pick_ori else 3.
# There seems to be some precision penalty when combining orientations,
# but it's probably acceptable
rtol = 5e-4 if pick_ori is None else 1e-12
assert_allclose(exp_res, stc_cov.data.ravel(), rtol=rtol)
with pytest.raises(ValueError, match='Invalid value'):
apply_inverse_cov(
data_cov, raw.info, this_inv_op, method=method, pick_ori='vector')
@testing.requires_testing_data
def test_apply_mne_inverse_raw():
"""Test MNE with precomputed inverse operator on Raw."""
start = 3
stop = 10
raw = read_raw_fif(fname_raw)
label_lh = read_label(fname_label % 'Aud-lh')
data, times = raw[0, start:stop]
inverse_operator = read_inverse_operator(fname_full)
with pytest.raises(ValueError, match='has not been prepared'):
apply_inverse_raw(raw, inverse_operator, lambda2, prepared=True)
inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
lambda2=lambda2, method="dSPM")
for pick_ori in [None, "normal", "vector"]:
stc = apply_inverse_raw(raw, inverse_operator, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=pick_ori, buffer_size=None,
prepared=True)
stc2 = apply_inverse_raw(raw, inverse_operator, lambda2, "dSPM",
label=label_lh, start=start, stop=stop,
nave=1, pick_ori=pick_ori,
buffer_size=3, prepared=True)
if pick_ori is None:
assert (np.all(stc.data > 0))
assert (np.all(stc2.data > 0))
assert (stc.subject == 'sample')
assert (stc2.subject == 'sample')
assert_array_almost_equal(stc.times, times)
assert_array_almost_equal(stc2.times, times)
assert_array_almost_equal(stc.data, stc2.data)
with pytest.raises(TypeError, match='must be an instance of BaseRaw'):
apply_inverse_raw(
EpochsArray(raw.get_data()[np.newaxis], raw.info),
inverse_operator, 1.)
@testing.requires_testing_data
def test_apply_mne_inverse_fixed_raw():
"""Test MNE with fixed-orientation inverse operator on Raw."""
raw = read_raw_fif(fname_raw)
start = 3
stop = 10
_, times = raw[0, start:stop]
label_lh = read_label(fname_label % 'Aud-lh')
# create a fixed-orientation inverse operator
fwd = read_forward_solution_meg(fname_fwd, force_fixed=False,
surf_ori=True)
noise_cov = read_cov(fname_cov)
pytest.raises(ValueError, make_inverse_operator,
raw.info, fwd, noise_cov, loose=1., fixed=True)
inv_op = make_inverse_operator(raw.info, fwd, noise_cov,
fixed=True, use_cps=True)
inv_op2 = prepare_inverse_operator(inv_op, nave=1,
lambda2=lambda2, method="dSPM")
stc = apply_inverse_raw(raw, inv_op2, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=None, buffer_size=None, prepared=True)
stc2 = apply_inverse_raw(raw, inv_op2, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=None, buffer_size=3, prepared=True)
stc3 = apply_inverse_raw(raw, inv_op, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=None, buffer_size=None)
assert (stc.subject == 'sample')
assert (stc2.subject == 'sample')
assert_array_almost_equal(stc.times, times)
assert_array_almost_equal(stc2.times, times)
assert_array_almost_equal(stc3.times, times)
assert_array_almost_equal(stc.data, stc2.data)
assert_array_almost_equal(stc.data, stc3.data)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_apply_mne_inverse_epochs():
"""Test MNE with precomputed inverse operator on Epochs."""
inverse_operator = read_inverse_operator(fname_full)
label_lh = read_label(fname_label % 'Aud-lh')
label_rh = read_label(fname_label % 'Aud-rh')
event_id, tmin, tmax = 1, -0.2, 0.5
raw = read_raw_fif(fname_raw)
picks = pick_types(raw.info, meg=True, eeg=False, stim=True, ecg=True,
eog=True, include=['STI 014'], exclude='bads')
reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
flat = dict(grad=1e-15, mag=1e-15)
events = read_events(fname_event)[:15]
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=reject, flat=flat)
inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
lambda2=lambda2,
method="dSPM")
for pick_ori in [None, "normal", "vector"]:
stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_lh, pick_ori=pick_ori)
stcs2 = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_lh, pick_ori=pick_ori,
prepared=True)
# test if using prepared and not prepared inverse operator give the
# same result
assert_array_almost_equal(stcs[0].data, stcs2[0].data)
assert_array_almost_equal(stcs[0].times, stcs2[0].times)
assert (len(stcs) == 2)
assert (3 < stcs[0].data.max() < 10)
assert (stcs[0].subject == 'sample')
inverse_operator = read_inverse_operator(fname_full)
stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_lh, pick_ori='normal')
data = sum(stc.data for stc in stcs) / len(stcs)
flip = label_sign_flip(label_lh, inverse_operator['src'])
label_mean = np.mean(data, axis=0)
label_mean_flip = np.mean(flip[:, np.newaxis] * data, axis=0)
assert (label_mean.max() < label_mean_flip.max())
# test extracting a BiHemiLabel
inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
lambda2=lambda2,
method="dSPM")
stcs_rh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_rh, pick_ori="normal",
prepared=True)
stcs_bh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_lh + label_rh,
pick_ori="normal",
prepared=True)
n_lh = len(stcs[0].data)
assert_array_almost_equal(stcs[0].data, stcs_bh[0].data[:n_lh])
assert_array_almost_equal(stcs_rh[0].data, stcs_bh[0].data[n_lh:])
# test without using a label (so delayed computation is used)
stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
pick_ori="normal", prepared=True)
assert (stcs[0].subject == 'sample')
label_stc = stcs[0].in_label(label_rh)
assert (label_stc.subject == 'sample')
assert_array_almost_equal(stcs_rh[0].data, label_stc.data)
with pytest.raises(TypeError, match='must be an instance of BaseEpochs'):
apply_inverse_epochs(
EvokedArray(epochs[0].get_data()[0], epochs.info),
inverse_operator, 1.)
@pytest.mark.slowtest
@testing.requires_testing_data
@pytest.mark.parametrize('return_generator', (True, False))
def test_apply_inverse_tfr(return_generator):
"""Test applying an inverse to time-frequency data."""
rng = np.random.default_rng(11)
n_epochs = 4
info = read_info(fname_raw)
inverse_operator = read_inverse_operator(fname_full)
freqs = np.arange(8, 10)
sfreq = info['sfreq']
times = np.arange(sfreq) / sfreq # make epochs 1s long
data = rng.random((n_epochs, len(info.ch_names), freqs.size, times.size))
data = data + 1j * data # make complex to simulate amplitude + phase
epochs_tfr = EpochsTFR(info, data, times=times, freqs=freqs)
epochs_tfr.apply_baseline((0, 0.5))
pick_ori = 'vector'
with pytest.raises(ValueError, match='Expected 2 inverse operators, '
'got 3'):
apply_inverse_tfr_epochs(epochs_tfr, [inverse_operator] * 3, lambda2)
# test epochs
stcs = apply_inverse_tfr_epochs(
epochs_tfr, inverse_operator, lambda2, "dSPM", pick_ori=pick_ori,
return_generator=return_generator)
n_orient = 3 if pick_ori == 'vector' else 1
if return_generator:
stcs = [[s for s in these_stcs] for these_stcs in stcs]
assert_allclose(stcs[0][0].times, times)
assert len(stcs) == freqs.size
assert all([len(s) == len(epochs_tfr) for s in stcs])
assert all([s.data.shape == (inverse_operator['nsource'],
n_orient, times.size)
for these_stcs in stcs for s in these_stcs])
evoked = EvokedArray(data.mean(axis=(0, 2)), info, epochs_tfr.tmin)
stc = apply_inverse(
evoked, inverse_operator, lambda2, "dSPM", pick_ori=pick_ori)
tfr_stc_data = np.array([[stc.data for stc in tfr_stcs]
for tfr_stcs in stcs])
assert_allclose(stc.data, tfr_stc_data.mean(axis=(0, 1)))
def test_make_inverse_operator_bads(evoked, noise_cov):
"""Test MNE inverse computation given a mismatch of bad channels."""
fwd_op = read_forward_solution_meg(fname_fwd, surf_ori=True)
assert evoked.info['bads'] == noise_cov['bads']
assert evoked.info['bads'] == fwd_op['info']['bads'] + ['EEG 053']
# one fewer bad in evoked than cov
bad = evoked.info['bads'].pop()
inv_ = make_inverse_operator(evoked.info, fwd_op, noise_cov, loose=1.)
union_good = set(noise_cov['names']) & set(evoked.ch_names)
union_bads = set(noise_cov['bads']) & set(evoked.info['bads'])
evoked.info['bads'].append(bad)
assert len(set(inv_['info']['ch_names']) - union_good) == 0
assert len(set(inv_['info']['bads']) - union_bads) == 0
@pytest.mark.slowtest
@testing.requires_testing_data
def test_inverse_ctf_comp():
"""Test interpolation with compensated CTF data."""
raw = mne.io.read_raw_ctf(fname_raw_ctf).crop(0, 0)
raw.apply_gradient_compensation(1)
sphere = make_sphere_model()
cov = make_ad_hoc_cov(raw.info)
src = mne.setup_volume_source_space(
pos=dict(rr=[[0., 0., 0.01]], nn=[[0., 1., 0.]]))
fwd = make_forward_solution(raw.info, None, src, sphere, eeg=False)
raw.apply_gradient_compensation(0)
with pytest.raises(RuntimeError, match='Compensation grade .* not match'):
make_inverse_operator(raw.info, fwd, cov, loose=1.)
raw.apply_gradient_compensation(1)
inv = make_inverse_operator(raw.info, fwd, cov, loose=1.)
apply_inverse_raw(raw, inv, 1. / 9.) # smoke test
raw.apply_gradient_compensation(0)
with pytest.raises(RuntimeError, match='Compensation grade .* not match'):
apply_inverse_raw(raw, inv, 1. / 9.)
@pytest.mark.slowtest
def test_inverse_mixed(all_src_types_inv_evoked):
"""Test creating and applying an inverse to mixed source spaces."""
stcs = dict()
invs, evoked = all_src_types_inv_evoked
for kind, klass in [('surface', mne.VectorSourceEstimate),
('volume', mne.VolVectorSourceEstimate),
('mixed', mne.MixedVectorSourceEstimate)]:
assert invs[kind]['src'].kind == kind
with pytest.warns(RuntimeWarning, match='has been reduced'):
stc = apply_inverse(evoked, invs[kind])
assert isinstance(stc, klass._scalar_class)
with pytest.warns(RuntimeWarning, match='has been reduced'):
stc_vec = apply_inverse(evoked, invs[kind], pick_ori='vector')
stcs[kind] = stc_vec
assert isinstance(stc_vec, klass)
assert_allclose(stc.data, stc_vec.magnitude().data, atol=1e-2)
# Check class equivalences, need to force the mixed to have the same
# data as the other two
surf_src = invs['surface']['src']
stcs['mixed'].data = np.concatenate(
[stcs['surface'].data, stcs['volume'].data], axis=0)
for kind in ('surface', 'volume'):
assert_allclose(getattr(stcs['mixed'], kind)().data,
stcs[kind].data)
assert_allclose(getattr(stcs['mixed'].magnitude(), kind)().data,
stcs[kind].magnitude().data)
assert_allclose(getattr(stcs['mixed'], kind)().magnitude().data,
stcs[kind].magnitude().data)
assert not np.allclose(stcs['surface'].data[0], 0., atol=1e-2)
assert_allclose(
stcs['mixed'].surface().project('normal', surf_src)[0].data,
stcs['surface'].project('normal', surf_src)[0].data)
@pytest.mark.slowtest # slow on Azure
def test_inverse_mixed_loose(mixed_fwd_cov_evoked):
"""Test loose mixed source spaces."""
fwd, cov, evoked = mixed_fwd_cov_evoked
assert fwd['src'].kind == 'mixed'
# with different values for loose
bads = [
# uniform loose
(dict(loose=0.2), r'got loose\["volume"\] = 0.2'),
# underspecified
(dict(loose=dict(surface=0.2)), r"keys \['surface', 'volume'\]"),
]
for kwargs, match in bads:
with pytest.raises(ValueError, match=match):
make_inverse_operator(evoked.info, fwd, cov, **kwargs)
evoked.info.normalize_proj()
cov['projs'] = [] # avoid warnings
# use_cps=False just to make comparing easier
inv_fixed = make_inverse_operator(
evoked.info, fwd, cov, use_cps=False,
loose=dict(surface=0., volume=1.))
inv_fixedish = make_inverse_operator(
evoked.info, fwd, cov, use_cps=False,
loose=dict(surface=0.001, volume=1.))
n_srcs = [s['nuse'] for s in fwd['src']]
n_surf = sum(n_srcs[:2])
n_vol = sum(n_srcs[2:])
n_tot = n_surf + n_vol
# Correct priors
want_prior = np.ones(n_tot * 3)
for this_inv, val in [(inv_fixed, 0.), (inv_fixedish, 0.001)]:
want_prior[:n_surf * 3:3] = val
want_prior[1:n_surf * 3:3] = val
assert_allclose(this_inv['orient_prior']['data'], want_prior)
# Correct normals
want_surf_nn = np.concatenate(
[s['nn'][s['vertno']] for s in fwd['src'][:2]])
want_vol_nn = np.tile(np.eye(3)[np.newaxis], (n_vol, 1, 1)).reshape(-1, 3)
for this_inv in (inv_fixed, inv_fixedish):
assert_allclose(this_inv['source_nn'][2:n_surf * 3:3],
want_surf_nn, atol=1e-6)
assert_allclose(this_inv['source_nn'][n_surf * 3:], want_vol_nn)
# loose=0. (fixed) similar to loose=0.001
stc_fixed = apply_inverse(evoked, inv_fixed)
stc_fixedish = apply_inverse(evoked, inv_fixedish)
corr = np.corrcoef(stc_fixed.data.ravel(), stc_fixedish.data.ravel())[0, 1]
assert 0.9999 < corr < 0.9999999
# normal not supported
for this_inv in (inv_fixed, inv_fixedish):
with pytest.raises(RuntimeError, match='got type mixed'):
apply_inverse(evoked, this_inv, pick_ori='normal')
# vector supported
stc_fixed_vec = apply_inverse(evoked, inv_fixed, pick_ori='vector')
assert_allclose(stc_fixed_vec.surface().magnitude().data,
stc_fixed.data[:n_surf])
stc_fixed_normal, nn = stc_fixed_vec.surface().project(
'normal', inv_fixed['src'][:2], use_cps=False)
assert_allclose(nn, want_surf_nn, atol=1e-6)
assert stc_fixed_normal.data.min() < -1 # signed
assert_allclose(
abs(stc_fixed_normal).data, stc_fixed.data[:n_surf], atol=1e-6)
stc_fixed_normal_cps, _ = stc_fixed_vec.surface().project(
'normal', inv_fixed['src'][:2], use_cps=True)
corr = np.corrcoef(abs(stc_fixed_normal_cps).data.ravel(),
stc_fixed.data[:n_surf].ravel())[0, 1]
assert 0.8 < corr < 0.9 # CPS changes it a bit
# Do a source localization + orientation tests
assert not fwd['surf_ori']
idx = [fwd['sol']['row_names'].index(name) for name in evoked.ch_names]
data = np.dot(fwd['sol']['data'][idx, :3], nn[:1].T)
assert data.shape == (len(evoked.ch_names), 1)
data = np.concatenate((data, fwd['sol']['data'][idx, -1:]), axis=1)
assert data.shape == (len(evoked.ch_names), 2)
want_ori = np.concatenate([nn[:1], [[0, 0, 1]]])
want_pos = fwd['source_rr'][[0, -1]]
evoked_sim = EvokedArray(data, evoked.info)
del data
# dipole
sphere = mne.make_sphere_model('auto', 'auto', evoked.info)
dip, _ = mne.fit_dipole(evoked_sim, cov, sphere)
assert_allclose(dip.pos, want_pos, atol=1e-2) # 1 cm
ang = np.rad2deg(np.arccos(np.sum(dip.ori * want_ori, axis=1)))
assert_array_less(ang, 65) # not great
# MNE
stc = apply_inverse(evoked_sim, inv_fixed, pick_ori='vector')
stc, nn = stc.project('pca', fwd['src'])
idx = stc.data.argmax(0)
assert fwd['source_nn'].shape[0] == fwd['source_rr'].shape[0] * 3 == \
stc.data.shape[0] * 3 == nn.shape[0] * 3
got_ori = nn[idx]
got_pos = fwd['source_rr'][idx]
assert_allclose(got_pos, want_pos, atol=1.1e-2) # 1.1 cm
ang = np.rad2deg(np.arccos(np.sum(got_ori * want_ori, axis=1)))
assert_array_less(ang, 40) # better than ECD + sphere
# MxNE
stc = mne.inverse_sparse.mixed_norm(
evoked, fwd, cov, 0.05, loose=dict(surface=0., volume=1.),
maxit=10, tol=1e-6, active_set_size=2, weights=stc,
verbose='error')
assert len(stc.data) == 2
pos = np.concatenate([fwd['src'][ii]['rr'][v]
for ii, v in enumerate(stc.vertices)])
assert pos.shape == (2, 3)
assert_allclose(got_pos, want_pos, atol=1.1e-2)
@testing.requires_testing_data
def test_sss_rank():
"""Test passing rank explicitly during inverse computation."""
# make raw match the fwd and cov, doesn't matter that they are mismatched
raw = mne.io.read_raw_fif(fname_sss).pick_types(meg=True)
raw.rename_channels(
{ch_name: f'{ch_name[:3]} {ch_name[3:]}' for ch_name in raw.ch_names})
fwd = mne.read_forward_solution(fname_fwd)
cov = mne.read_cov(fname_cov)
with pytest.warns(RuntimeWarning, match='rank as it exceeds.*302 > 67'):
inv = make_inverse_operator(raw.info, fwd, cov)
rank = (inv['noise_cov']['eig'] > 0).sum()
assert rank == 302
# should not warn
inv = make_inverse_operator(raw.info, fwd, cov, rank=dict(meg=67))
rank = (inv['noise_cov']['eig'] > 0).sum()
assert rank == 67
def _assert_free_ori_match(ori, max_idx, lower_ori, upper_ori):
__tracebackhide__ = True
# Because of how we construct our free ori tests, the correct orientations
# are just np.eye(3) repeated, so our dot products are just np.diag()
# of all of the orientations
if ori is None:
return
if ori.ndim == 3: # time-varying
assert ori.shape == (ori.shape[0], 3, max_idx.size)
ori = ori[max_idx, :, np.arange(max_idx.size)]
else:
assert ori.ndim == 2
assert ori.shape == (ori.shape[0], 3)
ori = ori[max_idx]
assert ori.shape == (max_idx.size, 3)
ori.shape = (max_idx.size // 3, 3, 3)
dots = np.abs(np.diagonal(ori, axis1=1, axis2=2))
mu = np.mean(dots)
assert lower_ori <= mu <= upper_ori, mu
@pytest.mark.filterwarnings('ignore:Projection vector.*has been reduced.*:')
def test_allow_mixed_source_spaces(mixed_fwd_cov_evoked):
"""Test mixed surf+discrete source spaces w/fixed ori."""
fwd, cov, evoked = mixed_fwd_cov_evoked
assert fwd['src'].kind == 'mixed'
assert len(fwd['src']) == 4 # 2 surf + 2 vol
with pytest.raises(ValueError, match='loose param'): # no fixed with vol
inv_op = make_inverse_operator(evoked.info, fwd, cov, loose=0.)
for ii, type_ in enumerate(('surf', 'surf', 'vol', 'vol')):
assert fwd['src'][ii]['type'] == type_
if type_ == 'vol':
fwd['src'][ii]['type'] = 'discrete'
assert fwd['src'].kind == 'mixed'
inv_op = make_inverse_operator(evoked.info, fwd, cov)
stc = apply_inverse(evoked, inv_op, lambda2=1. / 9.) # magnitude
assert (stc.data >= 0).all()
inv_op = make_inverse_operator(evoked.info, fwd, cov, loose=0.)
stc = apply_inverse(evoked, inv_op, lambda2=1. / 9.) # normal
assert (stc.data < 0).any()
|