File: test_time_frequency.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (207 lines) | stat: -rw-r--r-- 8,571 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os.path as op

import numpy as np
from numpy.testing import assert_allclose
import pytest

from mne.datasets import testing
from mne import find_events, Epochs, pick_types
from mne.io import read_raw_fif
from mne.io.constants import FIFF
from mne.label import read_label
from mne.minimum_norm import (read_inverse_operator, apply_inverse_epochs,
                              prepare_inverse_operator, INVERSE_METHODS)
from mne.minimum_norm.time_frequency import (source_band_induced_power,
                                             source_induced_power,
                                             compute_source_psd,
                                             compute_source_psd_epochs)


from mne.time_frequency.multitaper import psd_array_multitaper

data_path = testing.data_path(download=False)
fname_inv = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif')
fname_data = op.join(data_path, 'MEG', 'sample',
                     'sample_audvis_trunc_raw.fif')
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', 'Aud-lh.label')


@testing.requires_testing_data
@pytest.mark.parametrize('method', INVERSE_METHODS)
def test_tfr_with_inverse_operator(method):
    """Test time freq with MNE inverse computation."""
    tmin, tmax, event_id = -0.2, 0.5, 1

    # Setup for reading the raw data
    raw = read_raw_fif(fname_data)
    events = find_events(raw, stim_channel='STI 014')
    inv = read_inverse_operator(fname_inv)
    inv = prepare_inverse_operator(inv, nave=1, lambda2=1. / 9., method=method)

    raw.info['bads'] += ['MEG 2443', 'EEG 053']  # bads + 2 more

    # picks MEG gradiometers
    picks = pick_types(raw.info, meg=True, eeg=False, eog=True,
                       stim=False, exclude='bads')

    # Load condition 1
    event_id = 1
    events3 = events[:3]  # take 3 events to keep the computation time low
    epochs = Epochs(raw, events3, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6),
                    preload=True)

    # Compute a source estimate per frequency band
    bands = dict(alpha=[10, 10])
    label = read_label(fname_label)

    # XXX someday we should refactor this so that you don't have to pass
    # method -- maybe `prepare_inverse_operator` should add a `method`
    # to it and when `prepared=True` the value passed in can be ignored
    # (or better, default method=None means "dSPM if unprepared" and if they
    # actually pass a value, we check against `inv['method']`)
    stcs = source_band_induced_power(epochs, inv, bands, method=method,
                                     n_cycles=2, use_fft=False, pca=True,
                                     label=label, prepared=True)

    stc = stcs['alpha']
    assert len(stcs) == len(list(bands.keys()))
    assert np.all(stc.data > 0)
    assert_allclose(stc.times, epochs.times, atol=1e-6)

    stcs_no_pca = source_band_induced_power(epochs, inv, bands, method=method,
                                            n_cycles=2, use_fft=False,
                                            pca=False, label=label,
                                            prepared=True)

    assert_allclose(stcs['alpha'].data, stcs_no_pca['alpha'].data)

    # Compute a source estimate per frequency band
    epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6),
                    preload=True)

    freqs = np.arange(7, 30, 2)  # define frequencies of interest
    power, phase_lock = source_induced_power(
        epochs, inv, freqs, label, baseline=(-0.1, 0), baseline_mode='percent',
        n_cycles=2, n_jobs=None, method=method, prepared=True)
    assert np.all(phase_lock > 0)
    assert np.all(phase_lock <= 1)
    assert 5 < np.max(power) < 7


@testing.requires_testing_data
@pytest.mark.parametrize('method', INVERSE_METHODS)
@pytest.mark.parametrize('pick_ori', (None, 'normal'))  # XXX vector someday?
def test_source_psd(method, pick_ori):
    """Test source PSD computation from raw."""
    raw = read_raw_fif(fname_data)
    raw.crop(0, 5).load_data()
    inverse_operator = read_inverse_operator(fname_inv)
    fmin, fmax = 40, 65  # Hz
    n_fft = 512

    assert inverse_operator['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI

    stc, ev = compute_source_psd(
        raw, inverse_operator, lambda2=1. / 9., method=method,
        fmin=fmin, fmax=fmax, pick_ori=pick_ori, n_fft=n_fft,
        overlap=0., return_sensor=True, dB=True)

    assert ev.data.shape == (len(ev.info['ch_names']), len(stc.times))
    assert ev.times[0] >= fmin
    assert ev.times[-1] <= fmax
    # Time max at line frequency (60 Hz in US)
    assert 58 <= ev.times[np.argmax(np.sum(ev.data, axis=0))] <= 61
    assert ev.nave == 2

    assert stc.shape[0] == inverse_operator['nsource']
    assert stc.times[0] >= fmin
    assert stc.times[-1] <= fmax
    assert 58 <= stc.times[np.argmax(np.sum(stc.data, axis=0))] <= 61

    if method in ('sLORETA', 'dSPM'):
        stc_dspm = stc
        stc_mne, _ = compute_source_psd(
            raw, inverse_operator, lambda2=1. / 9., method='MNE',
            fmin=fmin, fmax=fmax, pick_ori=pick_ori, n_fft=n_fft,
            overlap=0., return_sensor=True, dB=True)
        # normalize each source point by its power after undoing the dB
        stc_dspm.data = 10 ** (stc_dspm.data / 10.)
        stc_dspm /= stc_dspm.mean()
        stc_mne.data = 10 ** (stc_mne.data / 10.)
        stc_mne /= stc_mne.mean()
        assert_allclose(stc_dspm.data, stc_mne.data, atol=1e-4)


@testing.requires_testing_data
@pytest.mark.parametrize('method', INVERSE_METHODS)
def test_source_psd_epochs(method):
    """Test multi-taper source PSD computation in label from epochs."""
    raw = read_raw_fif(fname_data)
    inverse_operator = read_inverse_operator(fname_inv)
    label = read_label(fname_label)

    event_id, tmin, tmax = 1, -0.2, 0.5
    lambda2 = 1. / 9.
    bandwidth = 8.
    fmin, fmax = 0, 100

    picks = pick_types(raw.info, meg=True, eeg=False, stim=True,
                       ecg=True, eog=True, include=['STI 014'],
                       exclude='bads')
    reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)

    events = find_events(raw, stim_channel='STI 014')
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=reject)

    # only look at one epoch
    epochs.drop_bad()
    one_epochs = epochs[:1]

    inv = prepare_inverse_operator(inverse_operator, nave=1,
                                   lambda2=1. / 9., method="dSPM")
    # return list
    stc_psd = compute_source_psd_epochs(one_epochs, inv,
                                        lambda2=lambda2, method=method,
                                        pick_ori="normal", label=label,
                                        bandwidth=bandwidth,
                                        fmin=fmin, fmax=fmax,
                                        prepared=True)[0]

    # return generator
    stcs = compute_source_psd_epochs(one_epochs, inv,
                                     lambda2=lambda2, method=method,
                                     pick_ori="normal", label=label,
                                     bandwidth=bandwidth,
                                     fmin=fmin, fmax=fmax,
                                     return_generator=True,
                                     prepared=True)

    for stc in stcs:
        stc_psd_gen = stc

    assert_allclose(stc_psd.data, stc_psd_gen.data, atol=1e-7)

    # compare with direct computation
    stc = apply_inverse_epochs(one_epochs, inv,
                               lambda2=lambda2, method=method,
                               pick_ori="normal", label=label,
                               prepared=True)[0]

    sfreq = epochs.info['sfreq']
    psd, freqs = psd_array_multitaper(stc.data, sfreq=sfreq,
                                      bandwidth=bandwidth, fmin=fmin,
                                      fmax=fmax)

    assert_allclose(psd, stc_psd.data, atol=1e-7)
    assert_allclose(freqs, stc_psd.times)

    # Check corner cases caused by tiny bandwidth
    with pytest.raises(ValueError, match='use a value of at least'):
        compute_source_psd_epochs(
            one_epochs, inv, lambda2=lambda2, method=method,
            pick_ori="normal", label=label, bandwidth=0.01, low_bias=True,
            fmin=fmin, fmax=fmax, return_generator=False, prepared=True)