1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
# Authors: Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Matti Hämäläinen <msh@nmr.mgh.harvard.edu>
# Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Many of the computations in this code were derived from Matti Hämäläinen's
# C code.
import os
import os.path as op
import numpy as np
from .io.constants import FIFF
from .io.open import fiff_open
from .io.tag import find_tag
from .io.tree import dir_tree_find
from .io.write import (start_block, end_block, write_string,
start_and_end_file, write_float_sparse_rcs, write_int)
from .surface import (read_surface, _triangle_neighbors, _compute_nearest,
_normalize_vectors, _get_tri_supp_geom,
_find_nearest_tri_pts)
from .utils import get_subjects_dir, warn, logger, verbose
@verbose
def read_morph_map(subject_from, subject_to, subjects_dir=None, xhemi=False,
verbose=None):
"""Read morph map.
Morph maps can be generated with mne_make_morph_maps. If one isn't
available, it will be generated automatically and saved to the
``subjects_dir/morph_maps`` directory.
Parameters
----------
subject_from : str
Name of the original subject as named in the SUBJECTS_DIR.
subject_to : str
Name of the subject on which to morph as named in the SUBJECTS_DIR.
subjects_dir : str
Path to SUBJECTS_DIR is not set in the environment.
xhemi : bool
Morph across hemisphere. Currently only implemented for
``subject_to == subject_from``. See notes of
:func:`mne.compute_source_morph`.
%(verbose)s
Returns
-------
left_map, right_map : ~scipy.sparse.csr_matrix
The morph maps for the 2 hemispheres.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
# First check for morph-map dir existence
mmap_dir = op.join(subjects_dir, 'morph-maps')
if not op.isdir(mmap_dir):
try:
os.mkdir(mmap_dir)
except Exception:
warn('Could not find or make morph map directory "%s"' % mmap_dir)
# filename components
if xhemi:
if subject_to != subject_from:
raise NotImplementedError(
"Morph-maps between hemispheres are currently only "
"implemented for subject_to == subject_from")
map_name_temp = '%s-%s-xhemi'
log_msg = 'Creating morph map %s -> %s xhemi'
else:
map_name_temp = '%s-%s'
log_msg = 'Creating morph map %s -> %s'
map_names = [map_name_temp % (subject_from, subject_to),
map_name_temp % (subject_to, subject_from)]
# find existing file
fname = None
for map_name in map_names:
fname = op.join(mmap_dir, '%s-morph.fif' % map_name)
if op.exists(fname):
return _read_morph_map(fname, subject_from, subject_to)
# if file does not exist, make it
logger.info('Morph map "%s" does not exist, creating it and saving it to '
'disk' % fname)
logger.info(log_msg % (subject_from, subject_to))
mmap_1 = _make_morph_map(subject_from, subject_to, subjects_dir, xhemi)
if subject_to == subject_from:
mmap_2 = None
else:
logger.info(log_msg % (subject_to, subject_from))
mmap_2 = _make_morph_map(subject_to, subject_from, subjects_dir,
xhemi)
_write_morph_map(fname, subject_from, subject_to, mmap_1, mmap_2)
return mmap_1
def _read_morph_map(fname, subject_from, subject_to):
"""Read a morph map from disk."""
f, tree, _ = fiff_open(fname)
with f as fid:
# Locate all maps
maps = dir_tree_find(tree, FIFF.FIFFB_MNE_MORPH_MAP)
if len(maps) == 0:
raise ValueError('Morphing map data not found')
# Find the correct ones
left_map = None
right_map = None
for m in maps:
tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP_FROM)
if tag.data == subject_from:
tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP_TO)
if tag.data == subject_to:
# Names match: which hemishere is this?
tag = find_tag(fid, m, FIFF.FIFF_MNE_HEMI)
if tag.data == FIFF.FIFFV_MNE_SURF_LEFT_HEMI:
tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP)
left_map = tag.data
logger.info(' Left-hemisphere map read.')
elif tag.data == FIFF.FIFFV_MNE_SURF_RIGHT_HEMI:
tag = find_tag(fid, m, FIFF.FIFF_MNE_MORPH_MAP)
right_map = tag.data
logger.info(' Right-hemisphere map read.')
if left_map is None or right_map is None:
raise ValueError('Could not find both hemispheres in %s' % fname)
return left_map, right_map
def _write_morph_map(fname, subject_from, subject_to, mmap_1, mmap_2):
"""Write a morph map to disk."""
try:
with start_and_end_file(fname) as fid:
_write_morph_map_(fid, subject_from, subject_to, mmap_1, mmap_2)
except Exception as exp:
warn('Could not write morph-map file "%s" (error: %s)'
% (fname, exp))
def _write_morph_map_(fid, subject_from, subject_to, mmap_1, mmap_2):
assert len(mmap_1) == 2
hemis = [FIFF.FIFFV_MNE_SURF_LEFT_HEMI, FIFF.FIFFV_MNE_SURF_RIGHT_HEMI]
for m, hemi in zip(mmap_1, hemis):
start_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_FROM, subject_from)
write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_TO, subject_to)
write_int(fid, FIFF.FIFF_MNE_HEMI, hemi)
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_MORPH_MAP, m)
end_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
# don't write mmap_2 if it is identical (subject_to == subject_from)
if mmap_2 is not None:
assert len(mmap_2) == 2
for m, hemi in zip(mmap_2, hemis):
start_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_FROM, subject_to)
write_string(fid, FIFF.FIFF_MNE_MORPH_MAP_TO, subject_from)
write_int(fid, FIFF.FIFF_MNE_HEMI, hemi)
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_MORPH_MAP, m)
end_block(fid, FIFF.FIFFB_MNE_MORPH_MAP)
def _make_morph_map(subject_from, subject_to, subjects_dir, xhemi):
"""Construct morph map from one subject to another.
Note that this is close, but not exactly like the C version.
For example, parts are more accurate due to double precision,
so expect some small morph-map differences!
Note: This seems easily parallelizable, but the overhead
of pickling all the data structures makes it less efficient
than just running on a single core :(
"""
subjects_dir = get_subjects_dir(subjects_dir)
if xhemi:
reg = '%s.sphere.left_right'
hemis = (('lh', 'rh'), ('rh', 'lh'))
else:
reg = '%s.sphere.reg'
hemis = (('lh', 'lh'), ('rh', 'rh'))
return [_make_morph_map_hemi(subject_from, subject_to, subjects_dir,
reg % hemi_from, reg % hemi_to)
for hemi_from, hemi_to in hemis]
def _make_morph_map_hemi(subject_from, subject_to, subjects_dir, reg_from,
reg_to):
"""Construct morph map for one hemisphere."""
from scipy.sparse import csr_matrix, eye as speye
# add speedy short-circuit for self-maps
if subject_from == subject_to and reg_from == reg_to:
fname = op.join(subjects_dir, subject_from, 'surf', reg_from)
n_pts = len(read_surface(fname, verbose=False)[0])
return speye(n_pts, n_pts, format='csr')
# load surfaces and normalize points to be on unit sphere
fname = op.join(subjects_dir, subject_from, 'surf', reg_from)
from_rr, from_tri = read_surface(fname, verbose=False)
fname = op.join(subjects_dir, subject_to, 'surf', reg_to)
to_rr = read_surface(fname, verbose=False)[0]
_normalize_vectors(from_rr)
_normalize_vectors(to_rr)
# from surface: get nearest neighbors, find triangles for each vertex
nn_pts_idx = _compute_nearest(from_rr, to_rr, method='cKDTree')
from_pt_tris = _triangle_neighbors(from_tri, len(from_rr))
from_pt_tris = [from_pt_tris[pt_idx].astype(int) for pt_idx in nn_pts_idx]
from_pt_lens = np.cumsum([0] + [len(x) for x in from_pt_tris])
from_pt_tris = np.concatenate(from_pt_tris)
assert from_pt_tris.ndim == 1
assert from_pt_lens[-1] == len(from_pt_tris)
# find triangle in which point lies and assoc. weights
tri_inds = []
weights = []
tri_geom = _get_tri_supp_geom(dict(rr=from_rr, tris=from_tri))
weights, tri_inds = _find_nearest_tri_pts(
to_rr, from_pt_tris, from_pt_lens, run_all=False, reproject=False,
**tri_geom)
nn_idx = from_tri[tri_inds]
weights = np.array(weights)
row_ind = np.repeat(np.arange(len(to_rr)), 3)
this_map = csr_matrix((weights.ravel(), (row_ind, nn_idx.ravel())),
shape=(len(to_rr), len(from_rr)))
return this_map
|