1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
"""Parallel util function."""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: Simplified BSD
import logging
import multiprocessing
import os
from . import get_config
from .utils import (logger, verbose, warn, ProgressBar, _validate_type,
_ensure_int)
@verbose
def parallel_func(func, n_jobs, max_nbytes='auto', pre_dispatch='n_jobs',
total=None, prefer=None, *, max_jobs=None, verbose=None):
"""Return parallel instance with delayed function.
Util function to use joblib only if available
Parameters
----------
func : callable
A function.
%(n_jobs)s
max_nbytes : int, str, or None
Threshold on the minimum size of arrays passed to the workers that
triggers automated memory mapping. Can be an int in Bytes,
or a human-readable string, e.g., '1M' for 1 megabyte.
Use None to disable memmaping of large arrays. Use 'auto' to
use the value set using mne.set_memmap_min_size.
pre_dispatch : int, or str, optional
See :class:`joblib.Parallel`.
total : int | None
If int, use a progress bar to display the progress of dispatched
jobs. This should only be used when directly iterating, not when
using ``split_list`` or :func:`np.array_split`.
If None (default), do not add a progress bar.
prefer : str | None
If str, can be "processes" or "threads". See :class:`joblib.Parallel`.
.. versionadded:: 0.18
max_jobs : int | None
The upper limit of jobs to use. This is useful when you know ahead
of a the maximum number of calls into :class:`joblib.Parallel` that
you will possibly want or need, and the returned ``n_jobs`` should not
exceed this value regardless of how many jobs the user requests.
%(verbose)s INFO or DEBUG
will print parallel status, others will not.
Returns
-------
parallel: instance of joblib.Parallel or list
The parallel object.
my_func: callable
``func`` if not parallel or delayed(func).
n_jobs: int
Number of jobs >= 1.
"""
should_print = (logger.level <= logging.INFO)
# for a single job, we don't need joblib
_validate_type(n_jobs, ('int-like', None))
if n_jobs != 1:
try:
from joblib import Parallel, delayed
except ImportError:
if n_jobs is not None:
warn('joblib not installed. Cannot run in parallel.')
n_jobs = 1
if n_jobs == 1:
n_jobs = 1
my_func = func
parallel = list
else:
# check if joblib is recent enough to support memmaping
cache_dir = get_config('MNE_CACHE_DIR', None)
if isinstance(max_nbytes, str) and max_nbytes == 'auto':
max_nbytes = get_config('MNE_MEMMAP_MIN_SIZE', None)
if max_nbytes is not None and cache_dir is None:
logger.info(
'joblib supports memapping pool but "MNE_CACHE_DIR" '
'is not set in MNE-Python config. To enable it, use, '
'e.g., mne.set_cache_dir(\'/tmp/shm\'). This will '
'store temporary files under /dev/shm and can result '
'in large memory savings.')
# create keyword arguments for Parallel
kwargs = {'verbose': 5 if should_print and total is None else 0}
kwargs['pre_dispatch'] = pre_dispatch
kwargs['prefer'] = prefer
if cache_dir is None:
max_nbytes = None # disable memmaping
kwargs['temp_folder'] = cache_dir
kwargs['max_nbytes'] = max_nbytes
parallel = Parallel(n_jobs, **kwargs)
n_jobs = _check_n_jobs(parallel.n_jobs)
if max_jobs is not None:
n_jobs = min(n_jobs, max(_ensure_int(max_jobs, 'max_jobs'), 1))
my_func = delayed(func)
if total is not None:
def parallel_progress(op_iter):
return parallel(ProgressBar(iterable=op_iter, max_value=total))
parallel_out = parallel_progress
else:
parallel_out = parallel
return parallel_out, my_func, n_jobs
def _check_n_jobs(n_jobs):
n_jobs = _ensure_int(n_jobs, 'n_jobs', must_be='an int or None')
if os.getenv('MNE_FORCE_SERIAL', '').lower() in ('true', '1') and \
n_jobs != 1:
n_jobs = 1
logger.info('... MNE_FORCE_SERIAL set. Processing in forced '
'serial mode.')
elif n_jobs <= 0:
n_cores = multiprocessing.cpu_count()
n_jobs_orig = n_jobs
n_jobs = min(n_cores + n_jobs + 1, n_cores)
if n_jobs <= 0:
raise ValueError(
f'If n_jobs has a non-positive value ({n_jobs_orig}) it must '
f'not be less than the number of CPUs present ({n_cores})')
return n_jobs
|