1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
# -*- coding: utf-8 -*-
# Authors: Eric Larson <larson.eric.d@gmail.com>
# License: BSD-3-Clause
from collections import defaultdict
from functools import partial
import numpy as np
from ..bem import _check_origin
from ..io.pick import pick_info, pick_types
from ..io import _loc_to_coil_trans, _coil_trans_to_loc, BaseRaw
from ..transforms import _find_vector_rotation
from ..utils import (logger, verbose, check_fname, _check_fname, _pl,
_ensure_int, _check_option, _validate_type, _reg_pinv)
from .maxwell import (_col_norm_pinv, _trans_sss_basis, _prep_mf_coils,
_get_grad_point_coilsets, _read_cross_talk,
_prep_fine_cal)
@verbose
def compute_fine_calibration(raw, n_imbalance=3, t_window=10., ext_order=2,
origin=(0., 0., 0.), cross_talk=None,
calibration=None, verbose=None):
"""Compute fine calibration from empty-room data.
Parameters
----------
raw : instance of Raw
The raw data to use. Should be from an empty-room recording,
and all channels should be good.
n_imbalance : int
Can be 1 or 3 (default), indicating the number of gradiometer
imbalance components. Only used if gradiometers are present.
t_window : float
Time window to use for surface normal rotation in seconds.
Default is 10.
%(ext_order_maxwell)s
Default is 2, which is lower than the default (3) for
:func:`mne.preprocessing.maxwell_filter` because it tends to yield
more stable parameter estimates.
%(origin_maxwell)s
%(cross_talk_maxwell)s
calibration : dict | None
Dictionary with existing calibration. If provided, the magnetometer
imbalances and adjusted normals will be used and only the gradiometer
imbalances will be estimated (see step 2 in Notes below).
%(verbose)s
Returns
-------
calibration : dict
Fine calibration data.
count : int
The number of good segments used to compute the magnetometer
parameters.
See Also
--------
mne.preprocessing.maxwell_filter
Notes
-----
This algorithm proceeds in two steps, both optimizing the fit between the
data and a reconstruction of the data based only on an external multipole
expansion:
1. Estimate magnetometer normal directions and scale factors. All
coils (mag and matching grad) are rotated by the adjusted normal
direction.
2. Estimate gradiometer imbalance factors. These add point magnetometers
in just the gradiometer difference direction or in all three directions
(depending on ``n_imbalance``).
Magnetometer normal and coefficient estimation (1) is typically the most
time consuming step. Gradiometer imbalance parameters (2) can be
iteratively reestimated (for example, first using ``n_imbalance=1`` then
subsequently ``n_imbalance=3``) by passing the previous ``calibration``
output to the ``calibration`` input in the second call.
MaxFilter processes at most 120 seconds of data, so consider cropping
your raw instance prior to processing. It also checks to make sure that
there were some minimal usable ``count`` number of segments (default 5)
that were included in the estimate.
.. versionadded:: 0.21
"""
n_imbalance = _ensure_int(n_imbalance, 'n_imbalance')
_check_option('n_imbalance', n_imbalance, (1, 3))
_validate_type(raw, BaseRaw, 'raw')
ext_order = _ensure_int(ext_order, 'ext_order')
origin = _check_origin(origin, raw.info, 'meg', disp=True)
_check_option("raw.info['bads']", raw.info['bads'], ([],))
picks = pick_types(raw.info, meg=True, ref_meg=False)
if raw.info['dev_head_t'] is not None:
raise ValueError('info["dev_head_t"] is not None, suggesting that the '
'data are not from an empty-room recording')
info = pick_info(raw.info, picks) # make a copy and pick MEG channels
mag_picks = pick_types(info, meg='mag', exclude=())
grad_picks = pick_types(info, meg='grad', exclude=())
# Get cross-talk
ctc, _ = _read_cross_talk(cross_talk, info['ch_names'])
# Check fine cal
_validate_type(calibration, (dict, None), 'calibration')
#
# 1. Rotate surface normals using magnetometer information (if present)
#
cals = np.ones(len(info['ch_names']))
time_idxs = raw.time_as_index(
np.arange(0., raw.times[-1], t_window))
if len(time_idxs) <= 1:
time_idxs = np.array([0, len(raw.times)], int)
else:
time_idxs[-1] = len(raw.times)
count = 0
locs = np.array([ch['loc'] for ch in info['chs']])
zs = locs[mag_picks, -3:].copy()
if calibration is not None:
_, calibration, _ = _prep_fine_cal(info, calibration)
for pi, pick in enumerate(mag_picks):
idx = calibration['ch_names'].index(info['ch_names'][pick])
cals[pick] = calibration['imb_cals'][idx]
zs[pi] = calibration['locs'][idx][-3:]
elif len(mag_picks) > 0:
cal_list = list()
z_list = list()
logger.info('Adjusting normals for %s magnetometers '
'(averaging over %s time intervals)'
% (len(mag_picks), len(time_idxs) - 1))
for start, stop in zip(time_idxs[:-1], time_idxs[1:]):
logger.info(' Processing interval %0.3f - %0.3f sec'
% (start / info['sfreq'], stop / info['sfreq']))
data = raw[picks, start:stop][0]
if ctc is not None:
data = ctc.dot(data)
z, cal, good = _adjust_mag_normals(info, data, origin, ext_order)
if good:
z_list.append(z)
cal_list.append(cal)
count = len(cal_list)
if count == 0:
raise RuntimeError('No usable segments found')
cals[:] = np.mean(cal_list, axis=0)
zs[:] = np.mean(z_list, axis=0)
if len(mag_picks) > 0:
for ii, new_z in enumerate(zs):
z_loc = locs[mag_picks[ii]]
# Find sensors with same NZ and R0 (should be three for VV)
idxs = _matched_loc_idx(z_loc, locs)
# Rotate the direction vectors to the plane defined by new normal
_rotate_locs(locs, idxs, new_z)
for ci, loc in enumerate(locs):
info['chs'][ci]['loc'][:] = loc
del calibration, zs
#
# 2. Estimate imbalance parameters (always done)
#
if len(grad_picks) > 0:
extra = 'X direction' if n_imbalance == 1 else ('XYZ directions')
logger.info('Computing imbalance for %s gradimeters (%s)'
% (len(grad_picks), extra))
imb_list = list()
for start, stop in zip(time_idxs[:-1], time_idxs[1:]):
logger.info(' Processing interval %0.3f - %0.3f sec'
% (start / info['sfreq'], stop / info['sfreq']))
data = raw[picks, start:stop][0]
if ctc is not None:
data = ctc.dot(data)
out = _estimate_imbalance(info, data, cals,
n_imbalance, origin, ext_order)
imb_list.append(out)
imb = np.mean(imb_list, axis=0)
else:
imb = np.zeros((len(info['ch_names']), n_imbalance))
#
# Put in output structure
#
assert len(np.intersect1d(mag_picks, grad_picks)) == 0
imb_cals = [cals[ii:ii + 1] if ii in mag_picks else imb[ii]
for ii in range(len(info['ch_names']))]
calibration = dict(ch_names=info['ch_names'], locs=locs, imb_cals=imb_cals)
return calibration, count
def _matched_loc_idx(mag_loc, all_loc):
return np.where([np.allclose(mag_loc[-3:], loc[-3:]) and
np.allclose(mag_loc[:3], loc[:3]) for loc in all_loc])[0]
def _rotate_locs(locs, idxs, new_z):
new_z = new_z / np.linalg.norm(new_z)
old_z = locs[idxs[0]][-3:]
old_z = old_z / np.linalg.norm(old_z)
rot = _find_vector_rotation(old_z, new_z)
for ci in idxs:
this_trans = _loc_to_coil_trans(locs[ci])
this_trans[:3, :3] = np.dot(rot, this_trans[:3, :3])
locs[ci][:] = _coil_trans_to_loc(this_trans)
np.testing.assert_allclose(locs[ci][-3:], new_z, atol=1e-4)
def _vector_angle(x, y):
"""Get the angle between two vectors in degrees."""
return np.abs(np.arccos(
np.clip((x * y).sum(axis=-1) /
(np.linalg.norm(x, axis=-1) *
np.linalg.norm(y, axis=-1)), -1, 1.)))
def _adjust_mag_normals(info, data, origin, ext_order):
"""Adjust coil normals using magnetometers and empty-room data."""
from scipy.optimize import fmin_cobyla
# in principle we could allow using just mag or mag+grad, but MF uses
# just mag so let's follow suit
mag_scale = 100.
picks_use = pick_types(info, meg='mag', exclude='bads')
picks_meg = pick_types(info, meg=True, exclude=())
picks_mag_orig = pick_types(info, meg='mag', exclude='bads')
info = pick_info(info, picks_use) # copy
data = data[picks_use]
cals = np.ones((len(data), 1))
angles = np.zeros(len(cals))
picks_mag = pick_types(info, meg='mag')
data[picks_mag] *= mag_scale
# Transform variables so we're only dealing with good mags
exp = dict(int_order=0, ext_order=ext_order, origin=origin)
all_coils = _prep_mf_coils(info, ignore_ref=True)
S_tot = _trans_sss_basis(exp, all_coils, coil_scale=mag_scale)
first_err = _data_err(data, S_tot, cals)
count = 0
# two passes: first do the worst, then do all in order
zs = np.array([ch['loc'][-3:] for ch in info['chs']])
zs /= np.linalg.norm(zs, axis=-1, keepdims=True)
orig_zs = zs.copy()
match_idx = dict()
locs = np.array([ch['loc'] for ch in info['chs']])
for pick in picks_mag:
match_idx[pick] = _matched_loc_idx(locs[pick], locs)
counts = defaultdict(lambda: 0)
for ki, kind in enumerate(('worst first', 'in order')):
logger.info(f' Magnetometer normal adjustment ({kind}) ...')
S_tot = _trans_sss_basis(exp, all_coils, coil_scale=mag_scale)
for pick in picks_mag:
err = _data_err(data, S_tot, cals, axis=1)
# First pass: do worst; second pass: do all in order (up to 3x/sen)
if ki == 0:
order = list(np.argsort(err[picks_mag]))
cal_idx = 0
while len(order) > 0:
cal_idx = picks_mag[order.pop(-1)]
if counts[cal_idx] < 3:
break
if err[cal_idx] < 2.5:
break # move on to second loop
else:
cal_idx = pick
counts[cal_idx] += 1
assert cal_idx in picks_mag
count += 1
old_z = zs[cal_idx].copy()
objective = partial(
_cal_sss_target, old_z=old_z, all_coils=all_coils,
cal_idx=cal_idx, data=data, cals=cals, match_idx=match_idx,
S_tot=S_tot, origin=origin, ext_order=ext_order)
# Figure out the additive term for z-component
zs[cal_idx] = fmin_cobyla(
objective, old_z, cons=(), rhobeg=1e-3, rhoend=1e-4,
disp=False)
# Do in-place adjustment to all_coils
cals[cal_idx] = 1. / np.linalg.norm(zs[cal_idx])
zs[cal_idx] *= cals[cal_idx]
for idx in match_idx[cal_idx]:
_rotate_coil(zs[cal_idx], old_z, all_coils, idx, inplace=True)
# Recalculate S_tot, taking into account rotations
S_tot = _trans_sss_basis(exp, all_coils)
# Reprt results
old_err = err[cal_idx]
new_err = _data_err(data, S_tot, cals, idx=cal_idx)
angles[cal_idx] = np.abs(np.rad2deg(_vector_angle(
zs[cal_idx], orig_zs[cal_idx])))
ch_name = info['ch_names'][cal_idx]
logger.debug(
f' Optimization step {count:3d} | '
f'{ch_name} ({counts[cal_idx]}) | '
f'res {old_err:5.2f}→{new_err:5.2f}% | '
f'×{cals[cal_idx, 0]:0.3f} | {angles[cal_idx]:0.2f}°')
last_err = _data_err(data, S_tot, cals)
# Chunk is usable if all angles and errors are both small
reason = list()
max_angle = np.max(angles)
if max_angle >= 5.:
reason.append(f'max angle {max_angle:0.2f} >= 5°')
each_err = _data_err(data, S_tot, cals, axis=-1)[picks_mag]
n_bad = (each_err > 5.).sum()
if n_bad:
reason.append(f'{n_bad} residual{_pl(n_bad)} > 5%')
reason = ', '.join(reason)
if reason:
reason = f' ({reason})'
good = not bool(reason)
assert np.allclose(np.linalg.norm(zs, axis=1), 1.)
logger.info(f' Fit mismatch {first_err:0.2f}→{last_err:0.2f}%')
logger.info(f' Data segment {"" if good else "un"}usable{reason}')
# Reformat zs and cals to be the n_mags (including bads)
assert zs.shape == (len(data), 3)
assert cals.shape == (len(data), 1)
imb_cals = np.ones(len(picks_meg))
imb_cals[picks_mag_orig] = cals[:, 0]
return zs, imb_cals, good
def _data_err(data, S_tot, cals, idx=None, axis=None):
if idx is None:
idx = slice(None)
S_tot = S_tot / cals
data_model = np.dot(
np.dot(S_tot[idx], _col_norm_pinv(S_tot.copy())[0]), data)
err = 100 * (np.linalg.norm(data_model - data[idx], axis=axis) /
np.linalg.norm(data[idx], axis=axis))
return err
def _rotate_coil(new_z, old_z, all_coils, idx, inplace=False):
"""Adjust coils."""
# Turn NX and NY to the plane determined by NZ
old_z = old_z / np.linalg.norm(old_z)
new_z = new_z / np.linalg.norm(new_z)
rot = _find_vector_rotation(old_z, new_z) # additional coil rotation
this_sl = all_coils[5][idx]
this_rmag = np.dot(rot, all_coils[0][this_sl].T).T
this_cosmag = np.dot(rot, all_coils[1][this_sl].T).T
if inplace:
all_coils[0][this_sl] = this_rmag
all_coils[1][this_sl] = this_cosmag
subset = (this_rmag, this_cosmag, np.zeros(this_rmag.shape[0], int),
1, all_coils[4][[idx]], {0: this_sl})
return subset
def _cal_sss_target(new_z, old_z, all_coils, cal_idx, data, cals,
S_tot, origin, ext_order, match_idx):
"""Evaluate objective function for SSS-based magnetometer calibration."""
cals[cal_idx] = 1. / np.linalg.norm(new_z)
exp = dict(int_order=0, ext_order=ext_order, origin=origin)
S_tot = S_tot.copy()
# Rotate necessary coils properly and adjust correct element in c
for idx in match_idx[cal_idx]:
this_coil = _rotate_coil(new_z, old_z, all_coils, idx)
# Replace correct row of S_tot with new value
S_tot[idx] = _trans_sss_basis(exp, this_coil)
# Get the GOF
return _data_err(data, S_tot, cals, idx=cal_idx)
def _estimate_imbalance(info, data, cals, n_imbalance, origin, ext_order):
"""Estimate gradiometer imbalance parameters."""
mag_scale = 100.
n_iterations = 3
mag_picks = pick_types(info, meg='mag', exclude=())
grad_picks = pick_types(info, meg='grad', exclude=())
data = data.copy()
data[mag_picks, :] *= mag_scale
del mag_picks
grad_imb = np.zeros((len(grad_picks), n_imbalance))
exp = dict(origin=origin, int_order=0, ext_order=ext_order)
all_coils = _prep_mf_coils(info, ignore_ref=True)
grad_point_coils = _get_grad_point_coilsets(
info, n_imbalance, ignore_ref=True)
S_orig = _trans_sss_basis(exp, all_coils, coil_scale=mag_scale)
S_orig /= cals[:, np.newaxis]
# Compute point gradiometers for each grad channel
this_cs = np.array([mag_scale], float)
S_pt = np.array([_trans_sss_basis(exp, coils, None, this_cs)
for coils in grad_point_coils])
for k in range(n_iterations):
S_tot = S_orig.copy()
# In theory we could zero out the homogeneous components with:
# S_tot[grad_picks, :3] = 0
# But in practice it doesn't seem to matter
S_recon = S_tot[grad_picks]
# Add influence of point magnetometers
S_tot[grad_picks, :] += np.einsum('ij,ijk->jk', grad_imb.T, S_pt)
# Compute multipolar moments
mm = np.dot(_col_norm_pinv(S_tot.copy())[0], data)
# Use good channels to recalculate
prev_imb = grad_imb.copy()
data_recon = np.dot(S_recon, mm)
assert S_pt.shape == (n_imbalance, len(grad_picks), S_tot.shape[1])
khi_pts = (S_pt @ mm).transpose(1, 2, 0)
assert khi_pts.shape == (len(grad_picks), data.shape[1], n_imbalance)
residual = data[grad_picks] - data_recon
assert residual.shape == (len(grad_picks), data.shape[1])
d = (residual[:, np.newaxis, :] @ khi_pts)[:, 0]
assert d.shape == (len(grad_picks), n_imbalance)
dinv, _, _ = _reg_pinv(khi_pts.swapaxes(-1, -2) @ khi_pts, rcond=1e-6)
assert dinv.shape == (len(grad_picks), n_imbalance, n_imbalance)
grad_imb[:] = (d[:, np.newaxis] @ dinv)[:, 0]
# This code is equivalent but hits a np.linalg.pinv bug on old NumPy:
# grad_imb[:] = np.sum( # dot product across the time dim
# np.linalg.pinv(khi_pts) * residual[:, np.newaxis], axis=-1)
deltas = (np.linalg.norm(grad_imb - prev_imb) /
max(np.linalg.norm(grad_imb), np.linalg.norm(prev_imb)))
logger.debug(f' Iteration {k + 1}/{n_iterations}: '
f'max ∆ = {100 * deltas.max():7.3f}%')
imb = np.zeros((len(data), n_imbalance))
imb[grad_picks] = grad_imb
return imb
def read_fine_calibration(fname):
"""Read fine calibration information from a .dat file.
The fine calibration typically includes improved sensor locations,
calibration coefficients, and gradiometer imbalance information.
Parameters
----------
fname : str
The filename.
Returns
-------
calibration : dict
Fine calibration information. Key-value pairs are:
- ``ch_names``
List of str of the channel names.
- ``locs``
Coil location and orientation parameters.
- ``imb_cals``
For magnetometers, the calibration coefficients.
For gradiometers, one or three imbalance parameters.
"""
# Read new sensor locations
fname = _check_fname(fname, overwrite='read', must_exist=True)
check_fname(fname, 'cal', ('.dat',))
ch_names, locs, imb_cals = list(), list(), list()
with open(fname, 'r') as fid:
for line in fid:
if line[0] in '#\n':
continue
vals = line.strip().split()
if len(vals) not in [14, 16]:
raise RuntimeError('Error parsing fine calibration file, '
'should have 14 or 16 entries per line '
'but found %s on line:\n%s'
% (len(vals), line))
# `vals` contains channel number
ch_name = vals[0]
if len(ch_name) in (3, 4): # heuristic for Neuromag fix
try:
ch_name = int(ch_name)
except ValueError: # something other than e.g. 113 or 2642
pass
else:
ch_name = 'MEG' + '%04d' % ch_name
# (x, y, z), x-norm 3-vec, y-norm 3-vec, z-norm 3-vec
# and 1 or 3 imbalance terms
ch_names.append(ch_name)
locs.append(np.array(vals[1:13], float))
imb_cals.append(np.array(vals[13:], float))
locs = np.array(locs)
return dict(ch_names=ch_names, locs=locs, imb_cals=imb_cals)
def write_fine_calibration(fname, calibration):
"""Write fine calibration information to a .dat file.
Parameters
----------
fname : str
The filename to write out.
calibration : dict
Fine calibration information.
"""
fname = _check_fname(fname, overwrite=True)
check_fname(fname, 'cal', ('.dat',))
keys = ('ch_names', 'locs', 'imb_cals')
with open(fname, 'wb') as cal_file:
for ch_name, loc, imb_cal in zip(*(calibration[key] for key in keys)):
cal_line = np.concatenate([loc, imb_cal]).round(6)
cal_line = ' '.join(f'{c:0.6f}' for c in cal_line)
cal_file.write(f'{ch_name} {cal_line}\n'.encode('ASCII'))
|