1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
# Authors: Adonay Nunes <adonay.s.nunes@gmail.com>
# Luke Bloy <luke.bloy@gmail.com>
# License: BSD-3-Clause
import numpy as np
from ..io.base import BaseRaw
from ..annotations import (Annotations, _annotations_starts_stops,
annotations_from_events, _adjust_onset_meas_date)
from ..transforms import (quat_to_rot, _average_quats, _angle_between_quats,
apply_trans, _quat_to_affine)
from ..filter import filter_data
from .. import Transform
from ..utils import (_mask_to_onsets_offsets, logger, verbose, _validate_type,
_pl)
@verbose
def annotate_muscle_zscore(raw, threshold=4, ch_type=None, min_length_good=0.1,
filter_freq=(110, 140), n_jobs=None, verbose=None):
"""Create annotations for segments that likely contain muscle artifacts.
Detects data segments containing activity in the frequency range given by
``filter_freq`` whose envelope magnitude exceeds the specified z-score
threshold, when summed across channels and divided by ``sqrt(n_channels)``.
False-positive transient peaks are prevented by low-pass filtering the
resulting z-score time series at 4 Hz. Only operates on a single channel
type, if ``ch_type`` is ``None`` it will select the first type in the list
``mag``, ``grad``, ``eeg``.
See :footcite:`Muthukumaraswamy2013` for background on choosing
``filter_freq`` and ``threshold``.
Parameters
----------
raw : instance of Raw
Data to estimate segments with muscle artifacts.
threshold : float
The threshold in z-scores for marking segments as containing muscle
activity artifacts.
ch_type : 'mag' | 'grad' | 'eeg' | None
The type of sensors to use. If ``None`` it will take the first type in
``mag``, ``grad``, ``eeg``.
min_length_good : float | None
The shortest allowed duration of "good data" (in seconds) between
adjacent annotations; shorter segments will be incorporated into the
surrounding annotations.``None`` is equivalent to ``0``.
Default is ``0.1``.
filter_freq : array-like, shape (2,)
The lower and upper frequencies of the band-pass filter.
Default is ``(110, 140)``.
%(n_jobs)s
%(verbose)s
Returns
-------
annot : mne.Annotations
Periods with muscle artifacts annotated as BAD_muscle.
scores_muscle : array
Z-score values averaged across channels for each sample.
References
----------
.. footbibliography::
"""
from scipy.stats import zscore
from scipy.ndimage import label
raw_copy = raw.copy()
if ch_type is None:
raw_ch_type = raw_copy.get_channel_types()
if 'mag' in raw_ch_type:
ch_type = 'mag'
elif 'grad' in raw_ch_type:
ch_type = 'grad'
elif 'eeg' in raw_ch_type:
ch_type = 'eeg'
else:
raise ValueError('No M/EEG channel types found, please specify a'
' ch_type or provide M/EEG sensor data')
logger.info('Using %s sensors for muscle artifact detection'
% (ch_type))
if ch_type in ('mag', 'grad'):
raw_copy.pick_types(meg=ch_type, ref_meg=False)
else:
ch_type = {'meg': False, ch_type: True}
raw_copy.pick_types(**ch_type)
raw_copy.filter(filter_freq[0], filter_freq[1], fir_design='firwin',
pad="reflect_limited", n_jobs=n_jobs)
raw_copy.apply_hilbert(envelope=True, n_jobs=n_jobs)
data = raw_copy.get_data(reject_by_annotation="NaN")
nan_mask = ~np.isnan(data[0])
sfreq = raw_copy.info['sfreq']
art_scores = zscore(data[:, nan_mask], axis=1)
art_scores = art_scores.sum(axis=0) / np.sqrt(art_scores.shape[0])
art_scores = filter_data(art_scores, sfreq, None, 4)
scores_muscle = np.zeros(data.shape[1])
scores_muscle[nan_mask] = art_scores
art_mask = scores_muscle > threshold
# return muscle scores with NaNs
scores_muscle[~nan_mask] = np.nan
# remove artifact free periods shorter than min_length_good
min_length_good = 0 if min_length_good is None else min_length_good
min_samps = min_length_good * sfreq
comps, num_comps = label(art_mask == 0)
for com in range(1, num_comps + 1):
l_idx = np.nonzero(comps == com)[0]
if len(l_idx) < min_samps:
art_mask[l_idx] = True
annot = _annotations_from_mask(raw_copy.times,
art_mask, 'BAD_muscle',
orig_time=raw.info['meas_date'])
_adjust_onset_meas_date(annot, raw)
return annot, scores_muscle
def annotate_movement(raw, pos, rotation_velocity_limit=None,
translation_velocity_limit=None,
mean_distance_limit=None, use_dev_head_trans='average'):
"""Detect segments with movement.
Detects segments periods further from rotation_velocity_limit,
translation_velocity_limit and mean_distance_limit. It returns an
annotation with the bad segments.
Parameters
----------
raw : instance of Raw
Data to compute head position.
pos : array, shape (N, 10)
The position and quaternion parameters from cHPI fitting. Obtained
with `mne.chpi` functions.
rotation_velocity_limit : float
Head rotation velocity limit in radians per second.
translation_velocity_limit : float
Head translation velocity limit in radians per second.
mean_distance_limit : float
Head position limit from mean recording in meters.
use_dev_head_trans : 'average' (default) | 'info'
Identify the device to head transform used to define the
fixed HPI locations for computing moving distances.
If ``average`` the average device to head transform is
computed using ``compute_average_dev_head_t``.
If ``info``, ``raw.info['dev_head_t']`` is used.
Returns
-------
annot : mne.Annotations
Periods with head motion.
hpi_disp : array
Head position over time with respect to the mean head pos.
See Also
--------
compute_average_dev_head_t
"""
sfreq = raw.info['sfreq']
hp_ts = pos[:, 0].copy() - raw.first_time
dt = np.diff(hp_ts)
hp_ts = np.concatenate([hp_ts, [hp_ts[-1] + 1. / sfreq]])
orig_time = raw.info['meas_date']
annot = Annotations([], [], [], orig_time=orig_time)
# Annotate based on rotational velocity
t_tot = raw.times[-1]
if rotation_velocity_limit is not None:
assert rotation_velocity_limit > 0
# Rotational velocity (radians / sec)
r = _angle_between_quats(pos[:-1, 1:4], pos[1:, 1:4])
r /= dt
bad_mask = (r >= np.deg2rad(rotation_velocity_limit))
onsets, offsets = _mask_to_onsets_offsets(bad_mask)
onsets, offsets = hp_ts[onsets], hp_ts[offsets]
bad_pct = 100 * (offsets - onsets).sum() / t_tot
logger.info(u'Omitting %5.1f%% (%3d segments): '
u'ω >= %5.1f°/s (max: %0.1f°/s)'
% (bad_pct, len(onsets), rotation_velocity_limit,
np.rad2deg(r.max())))
annot += _annotations_from_mask(
hp_ts, bad_mask, 'BAD_mov_rotat_vel', orig_time=orig_time)
# Annotate based on translational velocity limit
if translation_velocity_limit is not None:
assert translation_velocity_limit > 0
v = np.linalg.norm(np.diff(pos[:, 4:7], axis=0), axis=-1)
v /= dt
bad_mask = (v >= translation_velocity_limit)
onsets, offsets = _mask_to_onsets_offsets(bad_mask)
onsets, offsets = hp_ts[onsets], hp_ts[offsets]
bad_pct = 100 * (offsets - onsets).sum() / t_tot
logger.info(u'Omitting %5.1f%% (%3d segments): '
u'v >= %5.4fm/s (max: %5.4fm/s)'
% (bad_pct, len(onsets), translation_velocity_limit,
v.max()))
annot += _annotations_from_mask(
hp_ts, bad_mask, 'BAD_mov_trans_vel', orig_time=orig_time)
# Annotate based on displacement from mean head position
disp = []
if mean_distance_limit is not None:
assert mean_distance_limit > 0
# compute dev to head transform for fixed points
use_dev_head_trans = use_dev_head_trans.lower()
if use_dev_head_trans not in ['average', 'info']:
raise ValueError('use_dev_head_trans must be either' +
' \'average\' or \'info\': got \'%s\''
% (use_dev_head_trans,))
if use_dev_head_trans == 'average':
fixed_dev_head_t = compute_average_dev_head_t(raw, pos)
elif use_dev_head_trans == 'info':
fixed_dev_head_t = raw.info['dev_head_t']
# Get static head pos from file, used to convert quat to cartesian
chpi_pos = sorted([d for d in raw.info['hpi_results'][-1]
['dig_points']], key=lambda x: x['ident'])
chpi_pos = np.array([d['r'] for d in chpi_pos])
# Get head pos changes during recording
chpi_pos_mov = np.array([apply_trans(_quat_to_affine(quat), chpi_pos)
for quat in pos[:, 1:7]])
# get fixed position
chpi_pos_fix = apply_trans(fixed_dev_head_t, chpi_pos)
# get movement displacement from mean pos
hpi_disp = chpi_pos_mov - np.tile(chpi_pos_fix, (pos.shape[0], 1, 1))
# get positions above threshold distance
disp = np.sqrt((hpi_disp ** 2).sum(axis=2))
bad_mask = np.any(disp > mean_distance_limit, axis=1)
onsets, offsets = _mask_to_onsets_offsets(bad_mask)
onsets, offsets = hp_ts[onsets], hp_ts[offsets]
bad_pct = 100 * (offsets - onsets).sum() / t_tot
logger.info(u'Omitting %5.1f%% (%3d segments): '
u'disp >= %5.4fm (max: %5.4fm)'
% (bad_pct, len(onsets), mean_distance_limit, disp.max()))
annot += _annotations_from_mask(
hp_ts, bad_mask, 'BAD_mov_dist', orig_time=orig_time)
_adjust_onset_meas_date(annot, raw)
return annot, disp
def compute_average_dev_head_t(raw, pos):
"""Get new device to head transform based on good segments.
Segments starting with "BAD" annotations are not included for calculating
the mean head position.
Parameters
----------
raw : instance of Raw
Data to compute head position.
pos : array, shape (N, 10)
The position and quaternion parameters from cHPI fitting.
Returns
-------
dev_head_t : array of shape (4, 4)
New trans matrix using the averaged good head positions.
"""
sfreq = raw.info['sfreq']
seg_good = np.ones(len(raw.times))
trans_pos = np.zeros(3)
hp = pos.copy()
hp_ts = hp[:, 0] - raw._first_time
# Check rounding issues at 0 time
if hp_ts[0] < 0:
hp_ts[0] = 0
assert hp_ts[1] > 1. / sfreq
# Mask out segments if beyond scan time
mask = hp_ts <= raw.times[-1]
if not mask.all():
logger.info(
' Removing %d samples > raw.times[-1] (%s)'
% (np.sum(~mask), raw.times[-1]))
hp = hp[mask]
del mask, hp_ts
# Get time indices
ts = np.concatenate((hp[:, 0], [(raw.last_samp + 1) / sfreq]))
assert (np.diff(ts) > 0).all()
ts -= raw.first_samp / sfreq
idx = raw.time_as_index(ts, use_rounding=True)
del ts
if idx[0] == -1: # annoying rounding errors
idx[0] = 0
assert idx[1] > 0
assert (idx >= 0).all()
assert idx[-1] == len(seg_good)
assert (np.diff(idx) > 0).all()
# Mark times bad that are bad according to annotations
onsets, ends = _annotations_starts_stops(raw, 'bad')
for onset, end in zip(onsets, ends):
seg_good[onset:end] = 0
dt = np.diff(np.cumsum(np.concatenate([[0], seg_good]))[idx])
assert (dt >= 0).all()
dt = dt / sfreq
del seg_good, idx
# Get weighted head pos trans and rot
trans_pos += np.dot(dt, hp[:, 4:7])
rot_qs = hp[:, 1:4]
best_q = _average_quats(rot_qs, weights=dt)
trans = np.eye(4)
trans[:3, :3] = quat_to_rot(best_q)
trans[:3, 3] = trans_pos / dt.sum()
assert np.linalg.norm(trans[:3, 3]) < 1 # less than 1 meter is sane
dev_head_t = Transform('meg', 'head', trans)
return dev_head_t
def _annotations_from_mask(times, mask, annot_name, orig_time=None):
"""Construct annotations from boolean mask of the data."""
from scipy.ndimage import distance_transform_edt
from scipy.signal import find_peaks
mask_tf = distance_transform_edt(mask)
# Overcome the shortcoming of find_peaks
# in finding a marginal peak, by
# inserting 0s at the front and the
# rear, then subtracting in index
ins_mask_tf = np.concatenate((np.zeros(1), mask_tf, np.zeros(1)))
left_midpt_index = find_peaks(ins_mask_tf)[0] - 1
right_midpt_index = np.flip(len(ins_mask_tf) - 1 - find_peaks(
ins_mask_tf[::-1])[0]) - 1
onsets_index = left_midpt_index - mask_tf[left_midpt_index].astype(int) + 1
ends_index = right_midpt_index + mask_tf[right_midpt_index].astype(int)
# Ensure onsets_index >= 0,
# otherwise the duration starts from the beginning
onsets_index[onsets_index < 0] = 0
# Ensure ends_index < len(times),
# otherwise the duration is to the end of times
if len(times) == len(mask):
ends_index[ends_index >= len(times)] = len(times) - 1
# To be consistent with the original code,
# possibly a bug in tests code
else:
ends_index[ends_index >= len(mask)] = len(mask)
onsets = times[onsets_index]
ends = times[ends_index]
durations = ends - onsets
desc = [annot_name] * len(durations)
return Annotations(onsets, durations, desc, orig_time=orig_time)
@verbose
def annotate_break(raw, events=None,
min_break_duration=15.,
t_start_after_previous=5.,
t_stop_before_next=5.,
ignore=('bad', 'edge'),
*,
verbose=None):
"""Create `~mne.Annotations` for breaks in an ongoing recording.
This function first searches for segments in the data that are not
annotated or do not contain any events and are at least
``min_break_duration`` seconds long, and then proceeds to creating
annotations for those break periods.
Parameters
----------
raw : instance of Raw
The continuous data to analyze.
events : None | array, shape (n_events, 3)
If ``None`` (default), operate based solely on the annotations present
in ``raw``. If an events array, ignore any annotations in the raw data,
and operate based on these events only.
min_break_duration : float
The minimum time span in seconds between the offset of one and the
onset of the subsequent annotation (if ``events`` is ``None``) or
between two consecutive events (if ``events`` is an array) to consider
this period a "break". Defaults to 15 seconds.
.. note:: This value defines the minimum duration of a break period in
the data, **not** the minimum duration of the generated
annotations! See also ``t_start_after_previous`` and
``t_stop_before_next`` for details.
t_start_after_previous, t_stop_before_next : float
Specifies how far the to-be-created "break" annotation extends towards
the two annotations or events spanning the break. This can be used to
ensure e.g. that the break annotation doesn't start and end immediately
with a stimulation event. If, for example, your data contains a break
of 30 seconds between two stimuli, and ``t_start_after_previous`` is
set to ``5`` and ``t_stop_before_next`` is set to ``3``, the break
annotation will start 5 seconds after the first stimulus, and end 3
seconds before the second stimulus, yielding an annotated break of
``30 - 5 - 3 = 22`` seconds. Both default to 5 seconds.
.. note:: The beginning and the end of the recording will be annotated
as breaks, too, if the period from recording start until the
first annotation or event (or from last annotation or event
until recording end) is at least ``min_break_duration``
seconds long.
ignore : iterable of str
Annotation descriptions starting with these strings will be ignored by
the break-finding algorithm. The string comparison is case-insensitive,
i.e., ``('bad',)`` and ``('BAD',)`` are equivalent. By default, all
annotation descriptions starting with "bad" and annotations
indicating "edges" (produced by data concatenation) will be
ignored. Pass an empty list or tuple to take all existing annotations
into account. If ``events`` is passed, this parameter has no effect.
%(verbose)s
Returns
-------
break_annotations : instance of Annotations
The break annotations, each with the description ``'BAD_break'``. If
no breaks could be found given the provided function parameters, an
empty `~mne.Annotations` object will be returned.
Notes
-----
.. versionadded:: 0.24
"""
_validate_type(item=raw, item_name='raw', types=BaseRaw, type_name='Raw')
_validate_type(item=events, item_name='events', types=(None, np.ndarray))
if min_break_duration - t_start_after_previous - t_stop_before_next <= 0:
annot_dur = (min_break_duration - t_start_after_previous -
t_stop_before_next)
raise ValueError(
f'The result of '
f'min_break_duration - t_start_after_previous - '
f't_stop_before_next must be greater than 0, but it is: '
f'{annot_dur}'
)
if events is not None and events.size == 0:
raise ValueError('The events array must not be empty.')
if events is not None or not ignore:
ignore = tuple()
else:
ignore = tuple(ignore)
for item in ignore:
_validate_type(item=item, types='str',
item_name='All elements of "ignore"')
if events is None:
annotations = raw.annotations.copy()
if ignore:
logger.info(f'Ignoring annotations with descriptions starting '
f'with: {", ".join(ignore)}')
else:
annotations = annotations_from_events(
events=events,
sfreq=raw.info['sfreq'],
orig_time=raw.info['meas_date']
)
if not annotations:
raise ValueError('Could not find (or generate) any annotations in '
'your data.')
# Only keep annotations of interest and extract annotated time periods
# Ignore case
ignore = tuple(i.lower() for i in ignore)
keep_mask = [True] * len(annotations)
for idx, description in enumerate(annotations.description):
description = description.lower()
if any(description.startswith(i) for i in ignore):
keep_mask[idx] = False
annotated_intervals = [
[onset, onset + duration] for onset, duration in
zip(annotations.onset[keep_mask], annotations.duration[keep_mask])
]
# Merge overlapping annotation intervals
# Pre-load `merged_intervals` with the first interval to simplify
# processing
merged_intervals = [annotated_intervals[0]]
for interval in annotated_intervals:
merged_interval_stop = merged_intervals[-1][1]
interval_start, interval_stop = interval
if interval_stop < merged_interval_stop:
# Current interval ends sooner than the merged one; skip it
continue
elif (interval_start <= merged_interval_stop and
interval_stop >= merged_interval_stop):
# Expand duration of the merged interval
merged_intervals[-1][1] = interval_stop
else:
# No overlap between the current interval and the existing merged
# time period; proceed to the next interval
merged_intervals.append(interval)
merged_intervals = np.array(merged_intervals)
merged_intervals -= raw.first_time # work in zero-based time
# Now extract the actual break periods
break_onsets = []
break_durations = []
# Handle the time period up until the first annotation
if (0 < merged_intervals[0][0] and
merged_intervals[0][0] >= min_break_duration):
onset = 0 # don't add t_start_after_previous here
offset = merged_intervals[0][0] - t_stop_before_next
duration = offset - onset
break_onsets.append(onset)
break_durations.append(duration)
# Handle the time period between first and last annotation
for idx, _ in enumerate(merged_intervals[1:, :], start=1):
this_start = merged_intervals[idx, 0]
previous_stop = merged_intervals[idx - 1, 1]
if this_start - previous_stop < min_break_duration:
continue
onset = previous_stop + t_start_after_previous
offset = this_start - t_stop_before_next
duration = offset - onset
break_onsets.append(onset)
break_durations.append(duration)
# Handle the time period after the last annotation
if (raw.times[-1] > merged_intervals[-1][1] and
raw.times[-1] - merged_intervals[-1][1] >= min_break_duration):
onset = merged_intervals[-1][1] + t_start_after_previous
offset = raw.times[-1] # don't subtract t_stop_before_next here
duration = offset - onset
break_onsets.append(onset)
break_durations.append(duration)
# Finally, create the break annotations
break_annotations = Annotations(
onset=break_onsets,
duration=break_durations,
description=['BAD_break'],
orig_time=raw.info['meas_date'],
)
# Log some info
n_breaks = len(break_annotations)
break_times = [
f'{o:.1f} – {o+d:.1f} sec [{d:.1f} sec]'
for o, d in zip(break_annotations.onset,
break_annotations.duration)
]
break_times = '\n '.join(break_times)
total_break_dur = sum(break_annotations.duration)
fraction_breaks = total_break_dur / raw.times[-1]
logger.info(f'\nDetected {n_breaks} break period{_pl(n_breaks)} of >= '
f'{min_break_duration} sec duration:\n {break_times}\n'
f'In total, {round(100 * fraction_breaks, 1):.1f}% of the '
f'data ({round(total_break_dur, 1):.1f} sec) have been marked '
f'as a break.\n')
_adjust_onset_meas_date(break_annotations, raw)
return break_annotations
|