1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
import numpy as np
from ..annotations import _annotations_starts_stops
from ..utils import logger, verbose, sum_squared, warn, int_like
from ..filter import filter_data
from ..epochs import Epochs, BaseEpochs
from ..io.base import BaseRaw
from ..evoked import Evoked
from ..io import RawArray
from ..io.meas_info import create_info
from ..io.pick import _picks_to_idx, pick_types, pick_channels
@verbose
def qrs_detector(sfreq, ecg, thresh_value=0.6, levels=2.5, n_thresh=3,
l_freq=5, h_freq=35, tstart=0, filter_length='10s',
verbose=None):
"""Detect QRS component in ECG channels.
QRS is the main wave on the heart beat.
Parameters
----------
sfreq : float
Sampling rate
ecg : array
ECG signal
thresh_value : float | str
qrs detection threshold. Can also be "auto" for automatic
selection of threshold.
levels : float
number of std from mean to include for detection
n_thresh : int
max number of crossings
l_freq : float
Low pass frequency
h_freq : float
High pass frequency
%(tstart_ecg)s
%(filter_length_ecg)s
%(verbose)s
Returns
-------
events : array
Indices of ECG peaks.
"""
win_size = int(round((60.0 * sfreq) / 120.0))
filtecg = filter_data(ecg, sfreq, l_freq, h_freq, None, filter_length,
0.5, 0.5, phase='zero-double', fir_window='hann',
fir_design='firwin2')
ecg_abs = np.abs(filtecg)
init = int(sfreq)
n_samples_start = int(sfreq * tstart)
ecg_abs = ecg_abs[n_samples_start:]
n_points = len(ecg_abs)
maxpt = np.empty(3)
maxpt[0] = np.max(ecg_abs[:init])
maxpt[1] = np.max(ecg_abs[init:init * 2])
maxpt[2] = np.max(ecg_abs[init * 2:init * 3])
init_max = np.mean(maxpt)
if thresh_value == 'auto':
thresh_runs = np.arange(0.3, 1.1, 0.05)
elif isinstance(thresh_value, str):
raise ValueError('threshold value must be "auto" or a float')
else:
thresh_runs = [thresh_value]
# Try a few thresholds (or just one)
clean_events = list()
for thresh_value in thresh_runs:
thresh1 = init_max * thresh_value
numcross = list()
time = list()
rms = list()
ii = 0
while ii < (n_points - win_size):
window = ecg_abs[ii:ii + win_size]
if window[0] > thresh1:
max_time = np.argmax(window)
time.append(ii + max_time)
nx = np.sum(np.diff(((window > thresh1).astype(np.int64) ==
1).astype(int)))
numcross.append(nx)
rms.append(np.sqrt(sum_squared(window) / window.size))
ii += win_size
else:
ii += 1
if len(rms) == 0:
rms.append(0.0)
time.append(0.0)
time = np.array(time)
rms_mean = np.mean(rms)
rms_std = np.std(rms)
rms_thresh = rms_mean + (rms_std * levels)
b = np.where(rms < rms_thresh)[0]
a = np.array(numcross)[b]
ce = time[b[a < n_thresh]]
ce += n_samples_start
if ce.size > 0: # We actually found an event
clean_events.append(ce)
if clean_events:
# pick the best threshold; first get effective heart rates
rates = np.array([60. * len(cev) / (len(ecg) / float(sfreq))
for cev in clean_events])
# now find heart rates that seem reasonable (infant through adult
# athlete)
idx = np.where(np.logical_and(rates <= 160., rates >= 40.))[0]
if idx.size > 0:
ideal_rate = np.median(rates[idx]) # get close to the median
else:
ideal_rate = 80. # get close to a reasonable default
idx = np.argmin(np.abs(rates - ideal_rate))
clean_events = clean_events[idx]
else:
clean_events = np.array([])
return clean_events
@verbose
def find_ecg_events(raw, event_id=999, ch_name=None, tstart=0.0,
l_freq=5, h_freq=35, qrs_threshold='auto',
filter_length='10s', return_ecg=False,
reject_by_annotation=True, verbose=None):
"""Find ECG events by localizing the R wave peaks.
Parameters
----------
raw : instance of Raw
The raw data.
%(event_id_ecg)s
%(ch_name_ecg)s
%(tstart_ecg)s
%(l_freq_ecg_filter)s
qrs_threshold : float | str
Between 0 and 1. qrs detection threshold. Can also be "auto" to
automatically choose the threshold that generates a reasonable
number of heartbeats (40-160 beats / min).
%(filter_length_ecg)s
return_ecg : bool
Return the ECG data. This is especially useful if no ECG channel
is present in the input data, so one will be synthesized. Defaults to
``False``.
%(reject_by_annotation_all)s
.. versionadded:: 0.18
%(verbose)s
Returns
-------
ecg_events : array
The events corresponding to the peaks of the R waves.
ch_ecg : string
Name of channel used.
average_pulse : float
The estimated average pulse. If no ECG events could be found, this will
be zero.
ecg : array | None
The ECG data of the synthesized ECG channel, if any. This will only
be returned if ``return_ecg=True`` was passed.
See Also
--------
create_ecg_epochs
compute_proj_ecg
"""
skip_by_annotation = ('edge', 'bad') if reject_by_annotation else ()
del reject_by_annotation
idx_ecg = _get_ecg_channel_index(ch_name, raw)
if idx_ecg is not None:
logger.info('Using channel %s to identify heart beats.'
% raw.ch_names[idx_ecg])
ecg = raw.get_data(picks=idx_ecg)
else:
ecg, _ = _make_ecg(raw, start=None, stop=None)
assert ecg.ndim == 2 and ecg.shape[0] == 1
ecg = ecg[0]
# Deal with filtering the same way we do in raw, i.e. filter each good
# segment
onsets, ends = _annotations_starts_stops(
raw, skip_by_annotation, 'reject_by_annotation', invert=True)
ecgs = list()
max_idx = (ends - onsets).argmax()
for si, (start, stop) in enumerate(zip(onsets, ends)):
# Only output filter params once (for info level), and only warn
# once about the length criterion (longest segment is too short)
use_verbose = verbose if si == max_idx else 'error'
ecgs.append(filter_data(
ecg[start:stop], raw.info['sfreq'], l_freq, h_freq, [0],
filter_length, 0.5, 0.5, 1, 'fir', None, copy=False,
phase='zero-double', fir_window='hann', fir_design='firwin2',
verbose=use_verbose))
ecg = np.concatenate(ecgs)
# detecting QRS and generating events. Since not user-controlled, don't
# output filter params here (hardcode verbose=False)
ecg_events = qrs_detector(raw.info['sfreq'], ecg, tstart=tstart,
thresh_value=qrs_threshold, l_freq=None,
h_freq=None, verbose=False)
# map ECG events back to original times
remap = np.empty(len(ecg), int)
offset = 0
for start, stop in zip(onsets, ends):
this_len = stop - start
assert this_len >= 0
remap[offset:offset + this_len] = np.arange(start, stop)
offset += this_len
assert offset == len(ecg)
if ecg_events.size > 0:
ecg_events = remap[ecg_events]
else:
ecg_events = np.array([])
n_events = len(ecg_events)
duration_sec = len(ecg) / raw.info['sfreq'] - tstart
duration_min = duration_sec / 60.
average_pulse = n_events / duration_min
logger.info("Number of ECG events detected : %d (average pulse %d / "
"min.)" % (n_events, average_pulse))
ecg_events = np.array([ecg_events + raw.first_samp,
np.zeros(n_events, int),
event_id * np.ones(n_events, int)]).T
out = (ecg_events, idx_ecg, average_pulse)
ecg = ecg[np.newaxis] # backward compat output 2D
if return_ecg:
out += (ecg,)
return out
def _get_ecg_channel_index(ch_name, inst):
"""Get ECG channel index, if no channel found returns None."""
if ch_name is None:
ecg_idx = pick_types(inst.info, meg=False, eeg=False, stim=False,
eog=False, ecg=True, emg=False, ref_meg=False,
exclude='bads')
else:
if ch_name not in inst.ch_names:
raise ValueError('%s not in channel list (%s)' %
(ch_name, inst.ch_names))
ecg_idx = pick_channels(inst.ch_names, include=[ch_name])
if len(ecg_idx) == 0:
return None
# raise RuntimeError('No ECG channel found. Please specify ch_name '
# 'parameter e.g. MEG 1531')
if len(ecg_idx) > 1:
warn('More than one ECG channel found. Using only %s.'
% inst.ch_names[ecg_idx[0]])
return ecg_idx[0]
@verbose
def create_ecg_epochs(raw, ch_name=None, event_id=999, picks=None, tmin=-0.5,
tmax=0.5, l_freq=8, h_freq=16, reject=None, flat=None,
baseline=None, preload=True, keep_ecg=False,
reject_by_annotation=True, decim=1, verbose=None):
"""Conveniently generate epochs around ECG artifact events.
%(create_ecg_epochs)s
.. note:: Filtering is only applied to the ECG channel while finding
events. The resulting ``ecg_epochs`` will have no filtering
applied (i.e., have the same filter properties as the input
``raw`` instance).
Parameters
----------
raw : instance of Raw
The raw data.
%(ch_name_ecg)s
%(event_id_ecg)s
%(picks_all)s
tmin : float
Start time before event.
tmax : float
End time after event.
%(l_freq_ecg_filter)s
%(reject_epochs)s
%(flat)s
%(baseline_epochs)s
preload : bool
Preload epochs or not (default True). Must be True if
keep_ecg is True.
keep_ecg : bool
When ECG is synthetically created (after picking), should it be added
to the epochs? Must be False when synthetic channel is not used.
Defaults to False.
%(reject_by_annotation_epochs)s
.. versionadded:: 0.14.0
%(decim)s
.. versionadded:: 0.21.0
%(verbose)s
Returns
-------
ecg_epochs : instance of Epochs
Data epoched around ECG R wave peaks.
See Also
--------
find_ecg_events
compute_proj_ecg
Notes
-----
If you already have a list of R-peak times, or want to compute R-peaks
outside MNE-Python using a different algorithm, the recommended approach is
to call the :class:`~mne.Epochs` constructor directly, with your R-peaks
formatted as an :term:`events` array (here we also demonstrate the relevant
default values)::
mne.Epochs(raw, r_peak_events_array, tmin=-0.5, tmax=0.5,
baseline=None, preload=True, proj=False) # doctest: +SKIP
"""
has_ecg = 'ecg' in raw or ch_name is not None
if keep_ecg and (has_ecg or not preload):
raise ValueError('keep_ecg can be True only if the ECG channel is '
'created synthetically and preload=True.')
events, _, _, ecg = find_ecg_events(
raw, ch_name=ch_name, event_id=event_id, l_freq=l_freq, h_freq=h_freq,
return_ecg=True, reject_by_annotation=reject_by_annotation)
picks = _picks_to_idx(raw.info, picks, 'all', exclude=())
# create epochs around ECG events and baseline (important)
ecg_epochs = Epochs(raw, events=events, event_id=event_id,
tmin=tmin, tmax=tmax, proj=False, flat=flat,
picks=picks, reject=reject, baseline=baseline,
reject_by_annotation=reject_by_annotation,
preload=preload, decim=decim)
if keep_ecg:
# We know we have created a synthetic channel and epochs are preloaded
ecg_raw = RawArray(
ecg, create_info(ch_names=['ECG-SYN'],
sfreq=raw.info['sfreq'], ch_types=['ecg']),
first_samp=raw.first_samp)
with ecg_raw.info._unlock():
ignore = ['ch_names', 'chs', 'nchan', 'bads']
for k, v in raw.info.items():
if k not in ignore:
ecg_raw.info[k] = v
syn_epochs = Epochs(ecg_raw, events=ecg_epochs.events,
event_id=event_id, tmin=tmin, tmax=tmax,
proj=False, picks=[0], baseline=baseline,
decim=decim, preload=True)
ecg_epochs = ecg_epochs.add_channels([syn_epochs])
return ecg_epochs
@verbose
def _make_ecg(inst, start, stop, reject_by_annotation=False, verbose=None):
"""Create ECG signal from cross channel average."""
if not any(c in inst for c in ['mag', 'grad']):
raise ValueError('Unable to generate artificial ECG channel')
for ch in ['mag', 'grad']:
if ch in inst:
break
logger.info('Reconstructing ECG signal from {}'
.format({'mag': 'Magnetometers',
'grad': 'Gradiometers'}[ch]))
picks = pick_types(inst.info, meg=ch, eeg=False, ref_meg=False)
# Handle start/stop
msg = ('integer arguments for the start and stop parameters are '
'not supported for Epochs and Evoked objects. Please '
'consider using float arguments specifying start and stop '
'time in seconds.')
begin_param_name = 'tmin'
if isinstance(start, int_like):
if isinstance(inst, BaseRaw):
# Raw has start param, can just use int
begin_param_name = 'start'
else:
raise ValueError(msg)
end_param_name = 'tmax'
if isinstance(start, int_like):
if isinstance(inst, BaseRaw):
# Raw has stop param, can just use int
end_param_name = 'stop'
else:
raise ValueError(msg)
kwargs = {begin_param_name: start, end_param_name: stop}
if isinstance(inst, BaseRaw):
reject_by_annotation = 'omit' if reject_by_annotation else None
ecg, times = inst.get_data(picks, return_times=True, **kwargs,
reject_by_annotation=reject_by_annotation)
elif isinstance(inst, BaseEpochs):
ecg = np.hstack(inst.copy().get_data(picks, **kwargs))
times = inst.times
elif isinstance(inst, Evoked):
ecg = inst.get_data(picks, **kwargs)
times = inst.times
return ecg.mean(0, keepdims=True), times
|