File: test_ica.py

package info (click to toggle)
python-mne 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 100,172 kB
  • sloc: python: 166,349; pascal: 3,602; javascript: 1,472; sh: 334; makefile: 236
file content (1628 lines) | stat: -rw-r--r-- 62,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
# Author: Denis Engemann <denis.engemann@gmail.com>
#         Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause

from contextlib import nullcontext
import os
import os.path as op
import shutil

import pytest
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_allclose, assert_equal)
from scipy import stats, linalg
from scipy.io import loadmat, savemat
import matplotlib.pyplot as plt

from mne import (Epochs, read_events, pick_types, create_info, EpochsArray,
                 EvokedArray, Annotations, pick_channels_regexp,
                 make_ad_hoc_cov)
from mne.cov import read_cov
from mne.preprocessing import (ICA as _ICA, ica_find_ecg_events,
                               ica_find_eog_events, read_ica)
from mne.preprocessing.ica import (get_score_funcs, corrmap, _sort_components,
                                   _ica_explained_variance, read_ica_eeglab)
from mne.io import read_raw_fif, Info, RawArray, read_raw_ctf, read_raw_eeglab
from mne.io.pick import _DATA_CH_TYPES_SPLIT, get_channel_type_constants
from mne.io.eeglab.eeglab import _check_load_mat
from mne.rank import _compute_rank_int
from mne.utils import (catch_logging, requires_sklearn, _record_warnings,
                       check_version)
from mne.datasets import testing
from mne.event import make_fixed_length_events

data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(data_dir, 'test_raw.fif')
event_name = op.join(data_dir, 'test-eve.fif')
test_cov_name = op.join(data_dir, 'test-cov.fif')

test_base_dir = testing.data_path(download=False)
ctf_fname = op.join(test_base_dir, 'CTF', 'testdata_ctf.ds')

fif_fname = op.join(test_base_dir, 'MEG', 'sample',
                    'sample_audvis_trunc_raw.fif')
eeglab_fname = op.join(test_base_dir, 'EEGLAB', 'test_raw.set')
eeglab_montage = op.join(test_base_dir, 'EEGLAB', 'test_chans.locs')

ctf_fname2 = op.join(test_base_dir, 'CTF', 'catch-alp-good-f.ds')

event_id, tmin, tmax = 1, -0.2, 0.2
# if stop is too small pca may fail in some cases, but we're okay on this file
start, stop = 0, 6
score_funcs_unsuited = ['pointbiserialr', 'ansari']
pymatreader_mark = pytest.mark.skipif(
    not check_version('pymatreader'), reason='Requires pymatreader')


def ICA(*args, **kwargs):
    """Fix the random state in tests."""
    if 'random_state' not in kwargs:
        kwargs['random_state'] = 0
    return _ICA(*args, **kwargs)


def _skip_check_picard(method):
    if method == 'picard':
        try:
            import picard  # noqa, analysis:ignore
        except Exception as exp:
            pytest.skip("Picard is not installed (%s)." % (exp,))


@requires_sklearn
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_full_data_recovery(method):
    """Test recovery of full data when no source is rejected."""
    # Most basic recovery
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
    with raw.info._unlock():
        raw.info['projs'] = []
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[:10]
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=None, preload=True)
    evoked = epochs.average()
    n_channels = 5
    data = raw._data[:n_channels].copy()
    data_epochs = epochs.get_data()
    data_evoked = evoked.data
    raw.set_annotations(Annotations([0.5], [0.5], ['BAD']))
    methods = [method]
    for method in methods:
        stuff = [(2, n_channels, True), (2, n_channels // 2, False)]
        for n_components, n_pca_components, ok in stuff:
            ica = ICA(n_components=n_components, random_state=0,
                      method=method, max_iter=1)
            kwargs = dict(exclude=[], n_pca_components=n_pca_components)
            picks = list(range(n_channels))
            with pytest.warns(UserWarning, match=None):  # sometimes warns
                ica.fit(raw, picks=picks)
            _assert_ica_attributes(ica, raw.get_data(picks))
            raw2 = ica.apply(raw.copy(), **kwargs)
            if ok:
                assert_allclose(data[:n_channels], raw2._data[:n_channels],
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(data[:n_channels] - raw2._data[:n_channels])
                assert (np.max(diff) > 1e-14)

            ica = ICA(n_components=n_components, method=method,
                      random_state=0)
            with _record_warnings():  # sometimes warns
                ica.fit(epochs, picks=picks)
            _assert_ica_attributes(ica, epochs.get_data(picks))
            epochs2 = ica.apply(epochs.copy(), **kwargs)
            data2 = epochs2.get_data()[:, :n_channels]
            if ok:
                assert_allclose(data_epochs[:, :n_channels], data2,
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(data_epochs[:, :n_channels] - data2)
                assert (np.max(diff) > 1e-14)

            evoked2 = ica.apply(evoked.copy(), **kwargs)
            data2 = evoked2.data[:n_channels]
            if ok:
                assert_allclose(data_evoked[:n_channels], data2,
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(evoked.data[:n_channels] - data2)
                assert (np.max(diff) > 1e-14)
    with pytest.raises(ValueError, match='Invalid value'):
        ICA(method='pizza-decomposision')


@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_simple(method):
    """Test that ICA recovers the unmixing matrix in a simple case."""
    if method == "fastica":
        try:
            import sklearn  # noqa: F401
        except ImportError:
            pytest.skip("scikit-learn not installed")
    _skip_check_picard(method)
    n_components = 3
    n_samples = 1000
    rng = np.random.RandomState(0)
    S = rng.laplace(size=(n_components, n_samples))
    A = rng.randn(n_components, n_components)
    data = np.dot(A, S)
    info = create_info(data.shape[-2], 1000., 'eeg')
    cov = make_ad_hoc_cov(info)
    ica = ICA(n_components=n_components, method=method, random_state=0,
              noise_cov=cov)
    with pytest.warns(RuntimeWarning, match='No average EEG.*'):
        ica.fit(RawArray(data, info))
    transform = ica.unmixing_matrix_ @ ica.pca_components_ @ A
    amari_distance = np.mean(np.sum(np.abs(transform), axis=1) /
                             np.max(np.abs(transform), axis=1) - 1.)
    assert amari_distance < 0.1


def test_warnings():
    """Test that ICA warns on certain input data conditions."""
    raw = read_raw_fif(raw_fname).crop(0, 5).load_data()
    events = read_events(event_name)
    epochs = Epochs(raw, events=events, baseline=None, preload=True)
    ica = ICA(n_components=2, max_iter=1, method='infomax', random_state=0)

    # not high-passed
    with epochs.info._unlock():
        epochs.info['highpass'] = 0.
    with pytest.warns(RuntimeWarning, match='should be high-pass filtered'):
        ica.fit(epochs)

    # baselined
    with epochs.info._unlock():
        epochs.info['highpass'] = 1.
    epochs.baseline = (epochs.tmin, 0)
    with pytest.warns(RuntimeWarning, match='epochs.*were baseline-corrected'):
        ica.fit(epochs)

    # cleaning baseline-corrected data
    with epochs.info._unlock():
        epochs.info['highpass'] = 1.
    epochs.baseline = None
    ica.fit(epochs)

    epochs.baseline = (epochs.tmin, 0)
    with pytest.warns(RuntimeWarning, match='consider baseline-correcting.*'
                                            'again'):
        ica.apply(epochs)


@requires_sklearn
@pytest.mark.parametrize('n_components', (None, 0.9999, 8, 9, 10))
@pytest.mark.parametrize('n_pca_components', [8, 9, 0.9999, 10])
@pytest.mark.filterwarnings('ignore:FastICA did not converge.*:UserWarning')
def test_ica_noop(n_components, n_pca_components, tmp_path):
    """Test that our ICA is stable even with a bad max_pca_components."""
    data = np.random.RandomState(0).randn(10, 1000)
    info = create_info(10, 1000., 'eeg')
    raw = RawArray(data, info)
    raw.set_eeg_reference()
    with raw.info._unlock():
        raw.info['highpass'] = 1.0  # fake high-pass filtering
    assert np.linalg.matrix_rank(raw.get_data()) == 9
    kwargs = dict(n_components=n_components, verbose=True)
    if isinstance(n_components, int) and \
            isinstance(n_pca_components, int) and \
            n_components > n_pca_components:
        return
    ica = ICA(**kwargs)
    ica.n_pca_components = n_pca_components  # backward compat
    if n_components == 10 and n_pca_components == 0.9999:
        with pytest.raises(RuntimeError, match='.*requires.*PCA.*'):
            ica.fit(raw)
        return
    if n_components == 10 and n_pca_components == 10:
        ctx = pytest.warns(RuntimeWarning, match='.*unstable.*integer <= 9')
        bad = True  # pinv will fail
    elif n_components == 0.9999 and n_pca_components == 8:
        ctx = pytest.raises(RuntimeError, match='requires 9 PCA values.*but')
        bad = 'exit'
    else:
        bad = False  # pinv will not fail
        ctx = nullcontext()
    with ctx:
        ica.fit(raw)
    assert ica._max_pca_components is None
    if bad == 'exit':
        return
    raw_new = ica.apply(raw.copy())
    # 8 components is not a no-op; "bad" means our pinv has failed
    if n_pca_components == 8 or bad:
        assert ica.n_pca_components == n_pca_components
        assert not np.allclose(raw.get_data(), raw_new.get_data(), atol=0)
        return
    assert_allclose(raw.get_data(), raw_new.get_data(), err_msg='Id failure')
    _assert_ica_attributes(ica, data)
    # and with I/O
    fname = tmp_path / 'temp-ica.fif'
    ica.save(fname)
    ica_new = read_ica(fname)
    raw_new = ica_new.apply(raw.copy())
    assert_allclose(raw.get_data(), raw_new.get_data(), err_msg='I/O failure')
    _assert_ica_attributes(ica_new)
    assert ica.reject_ == ica_new.reject_


@requires_sklearn
@pytest.mark.parametrize("method, max_iter_default", [("fastica", 1000),
                                                      ("infomax", 500),
                                                      ("picard", 500)])
def test_ica_max_iter_(method, max_iter_default):
    """Test that ICA.max_iter is set to the right defaults."""
    _skip_check_picard(method)
    # check that new defaults come out for 'auto'
    ica = ICA(n_components=3, method=method, max_iter='auto')
    assert ica.max_iter == max_iter_default
    # check that user input comes out unchanged
    ica = ICA(n_components=3, method=method, max_iter=2000)
    assert ica.max_iter == 2000
    with pytest.raises(ValueError, match='Invalid'):
        ICA(max_iter='foo')
    with pytest.raises(TypeError, match='must be an instance'):
        ICA(max_iter=1.)


@requires_sklearn
@pytest.mark.parametrize("method", ["infomax", "fastica", "picard"])
def test_ica_n_iter_(method, tmp_path):
    """Test that ICA.n_iter_ is set after fitting."""
    _skip_check_picard(method)

    raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
    n_components = 3
    max_iter = 1
    ica = ICA(n_components=n_components, max_iter=max_iter, method=method,
              random_state=0)

    if method == 'infomax':
        ica.fit(raw)
    else:
        with pytest.warns(UserWarning, match='did not converge'):
            ica.fit(raw)
    assert ica.method == method

    assert_equal(ica.n_iter_, max_iter)

    # Test I/O roundtrip.
    output_fname = tmp_path / 'test_ica-ica.fif'
    _assert_ica_attributes(ica, raw.get_data('data'), limits=(5, 110))
    ica.save(output_fname)
    ica = read_ica(output_fname)
    assert ica.method == method
    _assert_ica_attributes(ica)

    assert_equal(ica.n_iter_, max_iter)


@requires_sklearn
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_rank_reduction(method):
    """Test recovery ICA rank reduction."""
    _skip_check_picard(method)
    # Most basic recovery
    raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[:10]
    n_components = 5
    for n_pca_components in [6, 10]:
        with pytest.warns(UserWarning, match='did not converge'):
            ica = ICA(n_components=n_components,
                      method=method, max_iter=1).fit(raw, picks=picks)

        rank_before = _compute_rank_int(raw.copy().pick(picks), proj=False)
        assert_equal(rank_before, len(picks))
        raw_clean = ica.apply(raw.copy(), n_pca_components=n_pca_components)
        rank_after = _compute_rank_int(raw_clean.copy().pick(picks),
                                       proj=False)
        # interaction between ICA rejection and PCA components difficult
        # to preduct. Rank_after often seems to be 1 higher then
        # n_pca_components
        assert (n_components < n_pca_components <= rank_after <=
                rank_before)


# This is a lot of parameters but they interact so they matter. Also they in
# total take < 2 sec on a workstation.
@pytest.mark.parametrize('n_pca_components', (None, 0.999999))
@pytest.mark.parametrize('proj', (True, False))
@pytest.mark.parametrize('cov', (False, True))
@pytest.mark.parametrize('meg', ('mag', True, False))
@pytest.mark.parametrize('eeg', (False, True))
def test_ica_projs(n_pca_components, proj, cov, meg, eeg):
    """Test that ICA handles projections properly."""
    if cov and not proj:  # proj is always done with cov
        return
    if not meg and not eeg:  # no channels
        return
    raw = read_raw_fif(raw_fname).crop(0.5, stop).pick_types(
        meg=meg, eeg=eeg)
    raw.pick(np.arange(0, len(raw.ch_names), 5))  # just for speed
    raw.info.normalize_proj()
    assert 10 < len(raw.ch_names) < 75
    if eeg:
        raw.set_eeg_reference(projection=True)
    raw.load_data()
    raw._data -= raw._data.mean(-1, keepdims=True)
    raw_data = raw.get_data()
    assert len(raw.info['projs']) > 0
    assert not raw.proj
    raw_fit = raw.copy()
    kwargs = dict(atol=1e-12 if eeg else 1e-20, rtol=1e-8)
    if proj:
        raw_fit.apply_proj()
    fit_data = raw_fit.get_data()
    if proj:
        assert not np.allclose(raw_fit.get_data(), raw_data, **kwargs)
    else:
        assert np.allclose(raw_fit.get_data(), raw_data, **kwargs)
    assert raw_fit.proj == proj
    if cov:
        noise_cov = make_ad_hoc_cov(raw.info)
    else:
        noise_cov = None
    # infomax here just so we don't require sklearn
    ica = ICA(max_iter=1, noise_cov=noise_cov, method='infomax',
              n_components=10)
    with _record_warnings():  # convergence
        ica.fit(raw_fit)
    if cov:
        assert ica.pre_whitener_.shape == (len(raw.ch_names),) * 2
    else:
        assert ica.pre_whitener_.shape == (len(raw.ch_names), 1)
    with catch_logging() as log:
        raw_apply = ica.apply(
            raw_fit.copy(), n_pca_components=n_pca_components, verbose=True)
    log = log.getvalue()
    print(log)  # very useful for debugging, might as well leave it in
    if proj:
        assert 'Applying projection' in log
    else:
        assert 'Applying projection' not in log
    assert_allclose(raw_apply.get_data(), fit_data, **kwargs)
    raw_apply = ica.apply(raw.copy())
    apply_data = raw_apply.get_data()
    assert_allclose(apply_data, fit_data, **kwargs)
    if proj:
        assert not np.allclose(apply_data, raw_data, **kwargs)
    else:
        assert_allclose(apply_data, raw_data, **kwargs)


@requires_sklearn
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_reset(method):
    """Test ICA resetting."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[:10]

    run_time_attrs = (
        'pre_whitener_',
        'unmixing_matrix_',
        'mixing_matrix_',
        'n_components_',
        'n_samples_',
        'pca_components_',
        'pca_explained_variance_',
        'pca_mean_',
        'n_iter_'
    )

    ica = ICA(n_components=3, method=method, max_iter=1)
    assert ica.current_fit == 'unfitted'
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw, picks=picks)

    assert (all(hasattr(ica, attr) for attr in run_time_attrs))
    assert ica.labels_ is not None
    assert ica.current_fit == 'raw'

    ica._reset()
    assert (not any(hasattr(ica, attr) for attr in run_time_attrs))
    assert ica.labels_ is not None
    assert ica.current_fit == 'unfitted'


@requires_sklearn
@pytest.mark.parametrize("method", ["fastica", "picard"])
@pytest.mark.parametrize('n_components', (2, 0.6))
@pytest.mark.parametrize('noise_cov', (False, True))
@pytest.mark.parametrize('n_pca_components', [20])
def test_ica_core(method, n_components, noise_cov, n_pca_components,
                  browser_backend):
    """Test ICA on raw and epochs."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(0, stop).load_data()

    # The None cases help reveal bugs but are time consuming.
    if noise_cov:
        noise_cov = read_cov(test_cov_name)
        noise_cov['projs'] = []  # avoid warnings
    else:
        noise_cov = None
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[::4]
    raw.pick(picks[::4])
    raw.del_proj()
    del picks
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax,
                    baseline=None, preload=True)

    # test essential core functionality

    # Test ICA raw
    ica = ICA(noise_cov=noise_cov, n_components=n_components,
              method=method, max_iter=1)
    with pytest.raises(ValueError, match='Cannot check for channels of t'):
        'meg' in ica

    print(ica)  # to test repr
    repr_ = ica.__repr__()
    repr_html_ = ica._repr_html_()
    assert repr_ == f'<ICA | no decomposition, method: {method}>'
    assert method in repr_html_

    # test fit checker
    with pytest.raises(RuntimeError, match='No fit available'):
        ica.get_sources(raw)
    with pytest.raises(RuntimeError, match='No fit available'):
        ica.get_sources(epochs)

    # Test error upon empty epochs fitting
    with pytest.raises(RuntimeError, match='none were found'):
        ica.fit(epochs[0:0])

    # test decomposition
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw)
    repr(ica)  # to test repr
    repr_ = ica.__repr__()
    repr_html_ = ica._repr_html_()
    assert 'raw data decomposition' in repr_
    assert f'{ica.n_components_} ICA components' in repr_
    assert 'Available PCA components' in repr_html_
    assert ('mag' in ica)  # should now work without error

    # test re-fit
    unmixing1 = ica.unmixing_matrix_
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw)
    assert_array_almost_equal(unmixing1, ica.unmixing_matrix_)

    raw_sources = ica.get_sources(raw)
    # test for #3804
    assert_equal(raw_sources._filenames, [None])
    print(raw_sources)

    # test for gh-6271 (scaling of ICA traces)
    fig = raw_sources.plot(clipping=None)
    assert len(fig.mne.traces) in (2, 6)
    for line in fig.mne.traces:
        y = line.get_ydata()
        assert np.ptp(y) < 15

    sources = raw_sources[:, :][0]
    assert (sources.shape[0] == ica.n_components_)

    # test preload filter
    raw3 = raw.copy()
    raw3.preload = False
    with pytest.raises(RuntimeError, match='to be loaded'):
        ica.apply(raw3)

    #######################################################################
    # test epochs decomposition
    ica = ICA(noise_cov=noise_cov, n_components=n_components, method=method)
    with _record_warnings():  # sometimes warns
        ica.fit(epochs)
    _assert_ica_attributes(ica, epochs.get_data(), limits=(0.2, 20))
    data = epochs.get_data()[:, 0, :]
    n_samples = np.prod(data.shape)
    assert_equal(ica.n_samples_, n_samples)
    print(ica)  # to test repr

    sources = ica.get_sources(epochs).get_data()
    assert (sources.shape[1] == ica.n_components_)

    with pytest.raises(ValueError, match='target do not have the same nu'):
        ica.score_sources(epochs, target=np.arange(1))

    # test preload filter
    epochs3 = epochs.copy()
    epochs3.preload = False
    with pytest.raises(RuntimeError, match='requires epochs data to be l'):
        ica.apply(epochs3)

    # test for bug with whitener updating
    _pre_whitener = ica.pre_whitener_.copy()
    epochs._data[:, 0, 10:15] *= 1e12
    ica.apply(epochs.copy())
    assert_array_equal(_pre_whitener, ica.pre_whitener_)

    # test expl. var threshold leading to empty sel
    ica.n_components = 0.1
    with pytest.raises(RuntimeError, match='One PCA component captures most'):
        ica.fit(epochs)

    offender = 1, 2, 3,
    with pytest.raises(ValueError, match='Data input must be of Raw'):
        ica.get_sources(offender)
    with pytest.raises(TypeError, match='must be an instance of'):
        ica.fit(offender)
    with pytest.raises(TypeError, match='must be an instance of'):
        ica.apply(offender)

    # gh-7868
    ica.n_pca_components = 3
    ica.n_components = None
    with pytest.raises(ValueError, match='pca_components.*is greater'):
        ica.fit(epochs, picks=[0, 1])
    ica.n_pca_components = None
    ica.n_components = 3
    with pytest.raises(ValueError, match='n_components.*cannot be greater'):
        ica.fit(epochs, picks=[0, 1])


@pytest.fixture
def short_raw_epochs():
    """Get small data."""
    raw = read_raw_fif(raw_fname).crop(0, 5).load_data()
    raw.pick_channels(set(raw.ch_names[::10]) | set(
        ['EOG 061', 'MEG 1531', 'MEG 1441', 'MEG 0121']))
    assert 'eog' in raw
    raw.del_proj()  # avoid warnings
    raw.set_annotations(Annotations([0.5], [0.5], ['BAD']))
    raw.resample(100)
    # XXX This breaks the tests :(
    # raw.info['bads'] = [raw.ch_names[1]]
    # Create epochs that have different channels from raw
    events = make_fixed_length_events(raw)
    picks = pick_types(raw.info, meg=True, eeg=True, eog=False)[:-1]
    epochs = Epochs(raw, events, None, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True, proj=False)
    assert len(epochs) == 3
    epochs_eog = Epochs(raw, epochs.events, event_id, tmin, tmax,
                        picks=('meg', 'eog'), baseline=(None, 0), preload=True)
    return raw, epochs, epochs_eog


@requires_sklearn
@pytest.mark.slowtest
@pytest.mark.parametrize("method", ["picard", "fastica"])
def test_ica_additional(method, tmp_path, short_raw_epochs):
    """Test additional ICA functionality."""
    _skip_check_picard(method)
    raw, epochs, epochs_eog = short_raw_epochs
    few_picks = np.arange(5)

    # test if n_components=None works
    ica = ICA(n_components=None, method=method, max_iter=1)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(epochs)
    _assert_ica_attributes(ica, epochs.get_data('data'), limits=(0.05, 20))

    test_cov = read_cov(test_cov_name)
    ica = ICA(noise_cov=test_cov, n_components=3, method=method)
    assert (ica.info is None)
    with pytest.warns(RuntimeWarning, match='normalize_proj'):
        ica.fit(raw, picks=few_picks)
    _assert_ica_attributes(ica, raw.get_data(np.arange(5)), limits=(1, 90))
    assert (isinstance(ica.info, Info))
    assert (ica.n_components_ < 5)

    ica = ICA(n_components=3, method=method, max_iter=1)
    with pytest.raises(RuntimeError, match='No fit'):
        ica.save('')

    with pytest.warns(Warning, match='converge'):
        ica.fit(raw, np.arange(1, 6))
    _assert_ica_attributes(
        ica, raw.get_data(np.arange(1, 6)))

    # check Kuiper index threshold
    assert_allclose(ica._get_ctps_threshold(), 0.5)
    with pytest.raises(TypeError, match='str or numeric'):
        ica.find_bads_ecg(raw, threshold=None)
    with pytest.warns(RuntimeWarning, match='is longer than the signal'):
        ica.find_bads_ecg(raw, threshold=0.25)
    # check invalid measure argument
    with pytest.raises(ValueError, match='Invalid value'):
        ica.find_bads_ecg(raw, method='correlation', measure='unknown',
                          threshold='auto')
    # check passing a ch_name to find_bads_ecg
    with pytest.warns(RuntimeWarning, match='longer'):
        _, scores_1 = ica.find_bads_ecg(raw, threshold='auto')
    with pytest.warns(RuntimeWarning, match='longer'):
        _, scores_2 = ica.find_bads_ecg(raw, raw.ch_names[1], threshold='auto')
    assert scores_1[0] != scores_2[0]

    # test corrmap
    ica2 = ica.copy()
    ica3 = ica.copy()
    corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
            ch_type="mag")
    with pytest.raises(RuntimeError, match='No component detected'):
        corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False,)
    corrmap([ica, ica2], (0, 0), threshold=0.5, plot=False, show=False)
    assert (ica.labels_["blinks"] == ica2.labels_["blinks"])
    assert (0 in ica.labels_["blinks"])
    # test retrieval of component maps as arrays
    components = ica.get_components()
    template = components[:, 0]
    EvokedArray(components, ica.info, tmin=0.).plot_topomap([0], time_unit='s')

    corrmap([ica, ica3], template, threshold='auto', label='blinks', plot=True,
            ch_type="mag")
    assert (ica2.labels_["blinks"] == ica3.labels_["blinks"])

    plt.close('all')

    # No match
    bad_ica = ica2.copy()
    bad_ica.mixing_matrix_[:] = 0.
    with pytest.warns(RuntimeWarning, match='divide'):
        with catch_logging() as log:
            corrmap([ica, bad_ica], (0, 0), threshold=0.5, plot=False,
                    show=False, verbose=True)
    log = log.getvalue()
    assert 'No maps selected' in log

    # make sure a single threshold in a list works
    corrmap([ica, ica3], template, threshold=[0.5], label='blinks', plot=False,
            ch_type="mag")

    ica_different_channels = ICA(n_components=2, max_iter=1)
    with pytest.warns(Warning, match='converge'):
        ica_different_channels.fit(raw, picks=[2, 3, 4, 5])
    with pytest.raises(ValueError, match='Not all ICA instances have the'):
        corrmap([ica_different_channels, ica], (0, 0))

    # test warnings on bad filenames
    ica_badname = tmp_path / 'test-bad-name.fif.gz'
    with pytest.warns(RuntimeWarning, match='-ica.fif'):
        ica.save(ica_badname)
    with pytest.warns(RuntimeWarning, match='-ica.fif'):
        read_ica(ica_badname)

    # test decim
    ica = ICA(n_components=3, method=method, max_iter=1)
    raw_ = raw.copy()
    for _ in range(3):
        raw_.append(raw_)
    n_samples = raw_._data.shape[1]
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw, picks=few_picks)
    _assert_ica_attributes(ica)
    assert raw_._data.shape[1] == n_samples

    # test expl var
    with pytest.raises(ValueError, match=r".*1.0 \(exclusive\).*"):
        ICA(n_components=1., method=method)
    with pytest.raises(ValueError, match="Selecting one component"):
        ICA(n_components=1, method=method)
    ica = ICA(n_components=4, method=method, max_iter=1)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw)
    _assert_ica_attributes(ica)
    assert ica.n_components_ == 4
    ica_var = _ica_explained_variance(ica, raw, normalize=True)
    assert (np.all(ica_var[:-1] >= ica_var[1:]))

    # test ica sorting
    ica.exclude = [0]
    ica.labels_ = dict(blink=[0], think=[1])
    ica_sorted = _sort_components(ica, [3, 2, 1, 0], copy=True)
    assert_equal(ica_sorted.exclude, [3])
    assert_equal(ica_sorted.labels_, dict(blink=[3], think=[2]))

    # epochs extraction from raw fit
    with pytest.warns(RuntimeWarning, match='could not be picked'), \
         pytest.raises(RuntimeError, match="match fitted data"):
        ica.get_sources(epochs)

    # test filtering
    ica_raw = ica.get_sources(raw)
    d1 = ica_raw._data[0].copy()
    ica_raw.filter(4, 20, fir_design='firwin2')
    assert_equal(ica_raw.info['lowpass'], 20.)
    assert_equal(ica_raw.info['highpass'], 4.)
    assert ((d1 != ica_raw._data[0]).any())
    d1 = ica_raw._data[0].copy()
    ica_raw.notch_filter([10], trans_bandwidth=10, fir_design='firwin')
    assert ((d1 != ica_raw._data[0]).any())

    test_ica_fname = tmp_path / 'test-ica.fif'
    ica.n_pca_components = 2
    ica.method = 'fake'
    ica.save(test_ica_fname)
    ica_read = read_ica(test_ica_fname)
    assert (ica.n_pca_components == ica_read.n_pca_components)
    assert_equal(ica.method, ica_read.method)
    assert_equal(ica.labels_, ica_read.labels_)

    # check type consistency
    attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ '
             'pca_explained_variance_ pre_whitener_')

    def f(x, y):
        return getattr(x, y).dtype

    for attr in attrs.split():
        assert_equal(f(ica_read, attr), f(ica, attr))

    ica.n_pca_components = 4
    ica_read.n_pca_components = 4

    ica.exclude = []
    ica.save(test_ica_fname, overwrite=True)  # also testing overwrite
    ica_read = read_ica(test_ica_fname)
    for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_',
                 'pca_mean_', 'pca_explained_variance_',
                 'pre_whitener_']:
        assert_array_almost_equal(getattr(ica, attr), getattr(ica_read, attr))

    assert (ica.ch_names == ica_read.ch_names)
    assert (isinstance(ica_read.info, Info))

    sources = ica.get_sources(raw)[:, :][0]
    sources2 = ica_read.get_sources(raw)[:, :][0]
    assert_array_almost_equal(sources, sources2)

    _raw1 = ica.apply(raw.copy(), exclude=[1])
    _raw2 = ica_read.apply(raw.copy(), exclude=[1])
    assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])

    ica = ICA(n_components=2, method=method, max_iter=1)
    with _record_warnings():  # ICA does not converge
        ica.fit(raw, picks=few_picks)

    # check score funcs
    for name, func in get_score_funcs().items():
        if name in score_funcs_unsuited:
            continue
        scores = ica.score_sources(raw, target='EOG 061', score_func=func,
                                   start=0, stop=10)
        assert (ica.n_components_ == len(scores))

    # check univariate stats
    scores = ica.score_sources(raw, start=0, stop=50, score_func=stats.skew)
    # check exception handling
    with pytest.raises(ValueError, match='Sources and target do not have'):
        ica.score_sources(raw, target=np.arange(1))

    evoked = epochs.average()
    evoked_data = evoked.data.copy()
    raw_data = raw[:][0].copy()
    epochs_data = epochs.get_data().copy()

    with pytest.warns(RuntimeWarning, match='longer'):
        idx, scores = ica.find_bads_ecg(raw, method='ctps', threshold='auto',
                                        start=0, stop=raw.times.size)
    assert_equal(len(scores), ica.n_components_)
    with pytest.warns(RuntimeWarning, match='longer'):
        idx, scores = ica.find_bads_ecg(raw, method='correlation',
                                        threshold='auto')
    assert_equal(len(scores), ica.n_components_)

    with pytest.warns(RuntimeWarning, match='longer'):
        idx, scores = ica.find_bads_eog(raw)
    assert_equal(len(scores), ica.n_components_)

    with pytest.raises(ValueError, match='integer .* start and stop'):
        idx, scores = ica.find_bads_ecg(epochs, start=0, stop=1000)

    idx, scores = ica.find_bads_ecg(epochs, method='ctps', threshold='auto',
                                    start=epochs.times[0],
                                    stop=epochs.times[-1])

    assert_equal(len(scores), ica.n_components_)
    with pytest.raises(ValueError, match='only Raw and Epochs input'):
        ica.find_bads_ecg(epochs.average(), method='ctps', threshold='auto')
    with pytest.raises(ValueError, match='Invalid value'):
        ica.find_bads_ecg(raw, method='crazy-coupling')

    with pytest.warns(RuntimeWarning, match='longer'):
        idx, scores = ica.find_bads_eog(raw)
    assert_equal(len(scores), ica.n_components_)

    raw.info['chs'][raw.ch_names.index('EOG 061') - 1]['kind'] = 202
    with pytest.warns(RuntimeWarning, match='longer'):
        idx, scores = ica.find_bads_eog(raw)
    assert (isinstance(scores, list))
    assert_equal(len(scores[0]), ica.n_components_)

    idx, scores = ica.find_bads_eog(evoked, ch_name='MEG 1441')
    assert_equal(len(scores), ica.n_components_)

    with pytest.raises(ValueError, match='integer .* start and stop'):
        idx, scores = ica.find_bads_ecg(evoked, start=0, stop=1000)

    idx, scores = ica.find_bads_ecg(evoked, method='correlation',
                                    threshold='auto')
    assert_equal(len(scores), ica.n_components_)

    assert_array_equal(raw_data, raw[:][0])
    assert_array_equal(epochs_data, epochs.get_data())
    assert_array_equal(evoked_data, evoked.data)

    # check score funcs
    for name, func in get_score_funcs().items():
        if name in score_funcs_unsuited:
            continue
        scores = ica.score_sources(epochs_eog, target='EOG 061',
                                   score_func=func)
        assert (ica.n_components_ == len(scores))

    # check univariate stats
    scores = ica.score_sources(epochs, score_func=stats.skew)

    # check exception handling
    with pytest.raises(ValueError, match='Sources and target do not have'):
        ica.score_sources(epochs, target=np.arange(1))

    # ecg functionality
    ecg_scores = ica.score_sources(raw, target='MEG 1531',
                                   score_func='pearsonr')

    with pytest.warns(RuntimeWarning, match='longer'):
        ecg_events = ica_find_ecg_events(
            raw, sources[np.abs(ecg_scores).argmax()])
    assert (ecg_events.ndim == 2)

    # eog functionality
    eog_scores = ica.score_sources(raw, target='EOG 061',
                                   score_func='pearsonr')
    with pytest.warns(RuntimeWarning, match='longer'):
        eog_events = ica_find_eog_events(
            raw, sources[np.abs(eog_scores).argmax()])
    assert (eog_events.ndim == 2)

    # Test ica fiff export
    assert raw.last_samp - raw.first_samp + 1 == raw.n_times
    assert raw.n_times > 100
    ica_raw = ica.get_sources(raw, start=100, stop=200)
    assert ica_raw.first_samp == raw.first_samp + 100
    assert ica_raw.n_times == 100
    assert ica_raw.last_samp - ica_raw.first_samp + 1 == 100
    assert ica_raw._data.shape[1] == 100
    assert_equal(len(ica_raw._filenames), 1)  # API consistency
    ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch]
    assert (ica.n_components_ == len(ica_chans))
    test_ica_fname = op.join(op.abspath(op.curdir), 'test-ica_raw.fif')
    ica.n_components = np.int32(ica.n_components)
    ica_raw.save(test_ica_fname, overwrite=True)
    ica_raw2 = read_raw_fif(test_ica_fname, preload=True)
    assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4)
    ica_raw2.close()
    os.remove(test_ica_fname)

    # Test ica epochs export
    ica_epochs = ica.get_sources(epochs)
    assert (ica_epochs.events.shape == epochs.events.shape)
    ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch]
    assert (ica.n_components_ == len(ica_chans))
    assert (ica.n_components_ == ica_epochs.get_data().shape[1])
    assert (ica_epochs._raw is None)
    assert (ica_epochs.preload is True)

    # test float n pca components
    ica.pca_explained_variance_ = np.array([0.2] * 5)
    ica.n_components_ = 0
    for ncomps, expected in [[0.3, 2], [0.9, 5], [1, 1]]:
        ncomps_ = ica._check_n_pca_components(ncomps)
        assert (ncomps_ == expected)

    ica = ICA(method=method)
    with _record_warnings():  # sometimes does not converge
        ica.fit(raw, picks=few_picks)
    _assert_ica_attributes(ica, raw.get_data(few_picks))
    with pytest.warns(RuntimeWarning, match='longer'):
        ica.find_bads_ecg(raw, threshold='auto')
    ica.find_bads_eog(epochs, ch_name='MEG 0121')
    assert_array_equal(raw_data, raw[:][0])

    raw.drop_channels(raw.ch_names[:2])
    with pytest.raises(RuntimeError, match='match fitted'):
        with pytest.warns(RuntimeWarning, match='longer'):
            ica.find_bads_eog(raw)
    with pytest.raises(RuntimeError, match='match fitted'):
        with pytest.warns(RuntimeWarning, match='longer'):
            ica.find_bads_ecg(raw, threshold='auto')

    # test passing picks including the marked bad channels
    raw_ = raw.copy()
    raw_.pick_types(eeg=True)
    raw_.info['bads'] = [raw_.ch_names[0]]
    picks = pick_types(raw_.info, eeg=True, exclude=[])
    ica = ICA(n_components=0.99, max_iter='auto')
    ica.fit(raw_, picks=picks, reject_by_annotation=True)


@requires_sklearn
def test_get_explained_variance_ratio(tmp_path, short_raw_epochs):
    """Test ICA.get_explained_variance_ratio()."""
    raw, epochs, _ = short_raw_epochs
    ica = ICA(max_iter=1)

    # Unfitted ICA should raise an exception
    with pytest.raises(ValueError, match='ICA must be fitted first'):
        ica.get_explained_variance_ratio(epochs)

    with pytest.warns(RuntimeWarning, match='were baseline-corrected'):
        ica.fit(epochs)

    # components = int, ch_type = None
    explained_var_comp_0 = ica.get_explained_variance_ratio(
        epochs, components=0
    )
    # components = int, ch_type = str
    explained_var_comp_0_eeg = ica.get_explained_variance_ratio(
        epochs, components=0, ch_type='eeg'
    )
    # components = int, ch_type = list of str
    explained_var_comp_0_eeg_mag = ica.get_explained_variance_ratio(
        epochs, components=0, ch_type=['eeg', 'mag']
    )
    # components = list of int, single element, ch_type = None
    explained_var_comp_1 = ica.get_explained_variance_ratio(
        epochs, components=[1]
    )
    # components = list of int, multiple elements, ch_type = None
    explained_var_comps_01 = ica.get_explained_variance_ratio(
        epochs, components=[0, 1]
    )
    # components = None, i.e., all components, ch_type = None
    explained_var_comps_all = ica.get_explained_variance_ratio(
        epochs, components=None
    )

    assert 'grad' in explained_var_comp_0
    assert 'mag' in explained_var_comp_0
    assert 'eeg' in explained_var_comp_0

    assert len(explained_var_comp_0_eeg) == 1
    assert 'eeg' in explained_var_comp_0_eeg

    assert 'mag' in explained_var_comp_0_eeg_mag
    assert 'eeg' in explained_var_comp_0_eeg_mag
    assert 'grad' not in explained_var_comp_0_eeg_mag

    assert round(explained_var_comp_0['grad'], 4) == 0.1784
    assert round(explained_var_comp_0['mag'], 4) == 0.0259
    assert round(explained_var_comp_0['eeg'], 4) == 0.0229

    assert np.isclose(
        explained_var_comp_0['eeg'],
        explained_var_comp_0_eeg['eeg']
    )
    assert np.isclose(
        explained_var_comp_0['mag'],
        explained_var_comp_0_eeg_mag['mag']
    )
    assert np.isclose(
        explained_var_comp_0['eeg'],
        explained_var_comp_0_eeg_mag['eeg']
    )

    assert round(explained_var_comp_1['eeg'], 4) == 0.0231
    assert round(explained_var_comps_01['eeg'], 4) == 0.0459
    assert (
        explained_var_comps_all['grad'] ==
        explained_var_comps_all['mag'] ==
        explained_var_comps_all['eeg'] ==
        1
    )

    # Test Raw
    ica.get_explained_variance_ratio(raw)
    # Test Evoked
    evoked = epochs.average()
    ica.get_explained_variance_ratio(evoked)
    # Test Evoked without baseline correction
    evoked.baseline = None
    ica.get_explained_variance_ratio(evoked)

    # Test invalid ch_type
    with pytest.raises(ValueError, match='only the following channel types'):
        ica.get_explained_variance_ratio(raw, ch_type='foobar')


@requires_sklearn
@pytest.mark.slowtest
@pytest.mark.parametrize('method, cov', [
    ('picard', None),
    ('picard', test_cov_name),
    ('fastica', None),
])
def test_ica_cov(method, cov, tmp_path, short_raw_epochs):
    """Test ICA with cov."""
    _skip_check_picard(method)
    raw, epochs, epochs_eog = short_raw_epochs
    if cov is not None:
        cov = read_cov(cov)

    # test reading and writing
    test_ica_fname = tmp_path / 'test-ica.fif'
    kwargs = dict(n_pca_components=4)

    ica = ICA(noise_cov=cov, n_components=2, method=method, max_iter=1)
    with _record_warnings():  # ICA does not converge
        ica.fit(raw, picks=np.arange(10))
    _assert_ica_attributes(ica)
    sources = ica.get_sources(epochs).get_data()
    assert (ica.mixing_matrix_.shape == (2, 2))
    assert (ica.unmixing_matrix_.shape == (2, 2))
    assert (ica.pca_components_.shape == (10, 10))
    assert (sources.shape[1] == ica.n_components_)

    for exclude in [[], [0], np.array([1, 2, 3])]:
        ica.exclude = exclude
        ica.labels_ = {'foo': [0]}
        ica.save(test_ica_fname, overwrite=True)
        ica_read = read_ica(test_ica_fname)
        assert (list(ica.exclude) == ica_read.exclude)
        assert_equal(ica.labels_, ica_read.labels_)
        ica.apply(raw.copy(), **kwargs)
        ica.exclude = []
        ica.apply(raw.copy(), exclude=[1], **kwargs)
        assert (ica.exclude == [])

        ica.exclude = [0, 1]
        ica.apply(raw.copy(), exclude=[1], **kwargs)
        assert (ica.exclude == [0, 1])

        ica_raw = ica.get_sources(raw)
        assert (ica.exclude == [ica_raw.ch_names.index(e) for e in
                                ica_raw.info['bads']])


@requires_sklearn
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_reject_buffer(method):
    """Test ICA data raw buffer rejection."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    raw._data[2, 1000:1005] = 5e-12
    ica = ICA(n_components=3, method=method)
    with catch_logging() as drop_log:
        ica.fit(raw, picks[:5], reject=dict(mag=2.5e-12), decim=2,
                tstep=0.01, verbose=True, reject_by_annotation=False)
        assert (raw._data[:5, ::2].shape[1] - 4 == ica.n_samples_)
    log = [line for line in drop_log.getvalue().split('\n')
           if 'detected' in line]
    assert_equal(len(log), 1)
    _assert_ica_attributes(ica)


@requires_sklearn
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_ica_twice(method):
    """Test running ICA twice."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    raw.pick(raw.ch_names[::10])
    picks = pick_types(raw.info, meg='grad', exclude='bads')
    n_components = 0.99
    n_pca_components = 0.9999
    if method == 'fastica':
        ctx = _record_warnings  # convergence, sometimes
    else:
        ctx = nullcontext
    ica1 = ICA(n_components=n_components, method=method)

    with ctx():
        ica1.fit(raw, picks=picks, decim=3)
    raw_new = ica1.apply(raw, n_pca_components=n_pca_components)
    ica2 = ICA(n_components=n_components, method=method)
    with ctx():
        ica2.fit(raw_new, picks=picks, decim=3)
    assert_equal(ica1.n_components_, ica2.n_components_)


@requires_sklearn
@pytest.mark.parametrize("method", ["fastica", "picard", "infomax"])
def test_fit_methods(method, tmp_path):
    """Test fit_params for ICA."""
    _skip_check_picard(method)
    fit_params = {}
    # test no side effects
    ICA(fit_params=fit_params, method=method)
    assert fit_params == {}

    # Test I/O roundtrip.
    # Only picard and infomax support the "extended" keyword, so limit the
    # tests to those.
    if method in ['picard', 'infomax']:
        tmp_path = str(tmp_path)
        output_fname = op.join(tmp_path, 'test_ica-ica.fif')

        raw = read_raw_fif(raw_fname).crop(0.5, stop).load_data()
        n_components = 3
        max_iter = 1
        fit_params = dict(extended=True)
        ica = ICA(fit_params=fit_params, n_components=n_components,
                  max_iter=max_iter, method=method)
        fit_params_after_instantiation = ica.fit_params

        if method == 'infomax':
            ica.fit(raw)
        else:
            with pytest.warns(UserWarning, match='did not converge'):
                ica.fit(raw)

        ica.save(output_fname)
        ica = read_ica(output_fname)

        assert ica.fit_params == fit_params_after_instantiation


@pytest.mark.parametrize(
    ('param_name', 'param_val'),
    (
        ('start', 0),
        ('stop', 500),
        ('reject', dict(eeg=500e-6)),
        ('flat', dict(eeg=1e-6))
    )
)
def test_fit_params_epochs_vs_raw(param_name, param_val, tmp_path):
    """Check that we get a warning when passing parameters that get ignored."""
    method = 'infomax'
    n_components = 3
    max_iter = 1

    raw = read_raw_fif(raw_fname).pick_types(meg=False, eeg=True)
    events = read_events(event_name)
    reject = param_val if param_name == 'reject' else None
    epochs = Epochs(raw, events=events, reject=reject)
    ica = ICA(n_components=n_components, max_iter=max_iter, method=method)

    fit_params = {param_name: param_val}
    with pytest.warns(RuntimeWarning, match='parameters.*will be ignored'):
        ica.fit(inst=epochs, **fit_params)
    assert ica.reject_ == reject
    _assert_ica_attributes(ica)
    tmp_fname = tmp_path / 'test-ica.fif'
    ica.save(tmp_fname)
    ica = read_ica(tmp_fname)
    assert ica.reject_ == reject
    _assert_ica_attributes(ica)


@requires_sklearn
@pytest.mark.parametrize("method", ["fastica", "picard"])
@pytest.mark.parametrize("allow_ref_meg", [True, False])
def test_bad_channels(method, allow_ref_meg):
    """Test exception when unsupported channels are used."""
    _skip_check_picard(method)
    chs = list(get_channel_type_constants())
    info = create_info(len(chs), 500, chs)
    rng = np.random.RandomState(0)
    data = rng.rand(len(chs), 50)
    raw = RawArray(data, info)
    data = rng.rand(100, len(chs), 50)
    epochs = EpochsArray(data, info)

    # fake high-pass filtering
    with raw.info._unlock():
        raw.info['highpass'] = 1.0
    with epochs.info._unlock():
        epochs.info['highpass'] = 1.0

    n_components = 0.9
    data_chs = list(_DATA_CH_TYPES_SPLIT + ('eog',))
    if allow_ref_meg:
        data_chs.append('ref_meg')
    chs_bad = list(set(chs) - set(data_chs))
    ica = ICA(n_components=n_components, method=method,
              allow_ref_meg=allow_ref_meg)
    for inst in [raw, epochs]:
        for ch in chs_bad:
            if allow_ref_meg:
                # Test case for only bad channels
                picks_bad1 = pick_types(inst.info, meg=False,
                                        ref_meg=False,
                                        **{str(ch): True})
                # Test case for good and bad channels
                picks_bad2 = pick_types(inst.info, meg=True,
                                        ref_meg=True,
                                        **{str(ch): True})
            else:
                # Test case for only bad channels
                picks_bad1 = pick_types(inst.info, meg=False,
                                        **{str(ch): True})
                # Test case for good and bad channels
                picks_bad2 = pick_types(inst.info, meg=True,
                                        **{str(ch): True})

            with pytest.raises(ValueError, match='Invalid channel type'):
                ica.fit(inst, picks=picks_bad1)
                ica.fit(inst, picks=picks_bad2)
        with pytest.raises(ValueError, match='No appropriate channels found'):
            ica.fit(inst, picks=[])


@requires_sklearn
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_eog_channel(method):
    """Test that EOG channel is included when performing ICA."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname, preload=True)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=True, ecg=False,
                       eog=True, exclude='bads')
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=None, preload=True, proj=False)
    n_components = 0.9
    ica = ICA(n_components=n_components, method=method)
    # Test case for MEG and EOG data. Should have EOG channel
    for inst in [raw, epochs]:
        picks1a = pick_types(inst.info, meg=True, stim=False, ecg=False,
                             eog=False, exclude='bads')[:4]
        picks1b = pick_types(inst.info, meg=False, stim=False, ecg=False,
                             eog=True, exclude='bads')
        picks1 = np.append(picks1a, picks1b)
        ica.fit(inst, picks=picks1)
        assert (any('EOG' in ch for ch in ica.ch_names))
        _assert_ica_attributes(ica, inst.get_data(picks1), limits=(0.8, 600))
    # Test case for MEG data. Should have no EOG channel
    for inst in [raw, epochs]:
        picks1 = pick_types(inst.info, meg=True, stim=False, ecg=False,
                            eog=False, exclude='bads')[:5]
        ica.fit(inst, picks=picks1)
        _assert_ica_attributes(ica)
        assert not any('EOG' in ch for ch in ica.ch_names)


@requires_sklearn
@pytest.mark.parametrize("method", ["fastica", "picard"])
def test_n_components_none(method, tmp_path):
    """Test n_components=None."""
    _skip_check_picard(method)
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    events = read_events(event_name)
    picks = pick_types(raw.info, eeg=True, meg=False)[::5]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True)

    n_components = None
    random_state = 12345

    output_fname = tmp_path / 'test_ica-ica.fif'
    ica = ICA(method=method, n_components=n_components,
              random_state=random_state)
    with _record_warnings():
        ica.fit(epochs)
    _assert_ica_attributes(ica)
    ica.save(output_fname)

    ica = read_ica(output_fname)
    _assert_ica_attributes(ica)
    assert ica.n_pca_components is None
    assert ica.n_components is None
    assert ica.n_components_ == len(picks)


@pytest.mark.slowtest
@requires_sklearn
@testing.requires_testing_data
def test_ica_ctf():
    """Test run ICA computation on ctf data with/without compensation."""
    method = 'fastica'
    raw = read_raw_ctf(ctf_fname).crop(0, 3).load_data()
    picks = sorted(set(range(0, len(raw.ch_names), 10)) |
                   set(pick_types(raw.info, ref_meg=True)))
    raw.pick(picks)
    events = make_fixed_length_events(raw, 99999)
    for comp in [0, 1]:
        raw.apply_gradient_compensation(comp)
        epochs = Epochs(raw, events=events, tmin=-0.2, tmax=0.2, baseline=None,
                        preload=True)
        evoked = epochs.average()

        # test fit
        for inst in [raw, epochs]:
            ica = ICA(n_components=2, max_iter=2, method=method)
            with _record_warnings():  # convergence sometimes
                ica.fit(inst)
            _assert_ica_attributes(ica)

        # test apply and get_sources
        for inst in [raw, epochs, evoked]:
            ica.apply(inst.copy())
            ica.get_sources(inst)

    # test mixed compensation case
    raw.apply_gradient_compensation(0)
    ica = ICA(n_components=2, max_iter=2, method=method)
    with _record_warnings():  # convergence sometimes
        ica.fit(raw)
    _assert_ica_attributes(ica)
    raw.apply_gradient_compensation(1)
    epochs = Epochs(raw, events=events, tmin=-0.2, tmax=0.2, baseline=None,
                    preload=True)
    evoked = epochs.average()
    for inst in [raw, epochs, evoked]:
        with pytest.raises(RuntimeError, match='Compensation grade of ICA'):
            ica.apply(inst.copy())
        with pytest.raises(RuntimeError, match='Compensation grade of ICA'):
            ica.get_sources(inst)


@requires_sklearn
@testing.requires_testing_data
def test_ica_labels():
    """Test ICA labels."""
    # The CTF data are uniquely well suited to testing the ICA.find_bads_
    # methods
    raw = read_raw_ctf(ctf_fname, preload=True)
    raw.pick_channels(raw.ch_names[:300:10] + raw.ch_names[300:])

    # set the appropriate EEG channels to EOG and ECG
    rename = {'EEG057': 'eog', 'EEG058': 'eog', 'EEG059': 'ecg'}
    for key in rename:
        assert key in raw.ch_names
    raw.set_channel_types(rename)
    ica = ICA(n_components=4, max_iter=2, method='fastica', allow_ref_meg=True)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw)
    _assert_ica_attributes(ica)

    ica.find_bads_eog(raw, l_freq=None, h_freq=None)
    picks = list(pick_types(raw.info, meg=False, eog=True))
    for idx, ch in enumerate(picks):
        assert '{}/{}/{}'.format('eog', idx, raw.ch_names[ch]) in ica.labels_
    assert 'eog' in ica.labels_
    for key in ('ecg', 'ref_meg', 'ecg/ECG-MAG'):
        assert key not in ica.labels_

    ica.find_bads_ecg(raw, l_freq=None, h_freq=None, method='correlation',
                      threshold='auto')
    picks = list(pick_types(raw.info, meg=False, ecg=True))
    for idx, ch in enumerate(picks):
        assert '{}/{}/{}'.format('ecg', idx, raw.ch_names[ch]) in ica.labels_
    for key in ('ecg', 'eog'):
        assert key in ica.labels_
    for key in ('ref_meg', 'ecg/ECG-MAG'):
        assert key not in ica.labels_

    # derive reference ICA components and append them to raw
    ica_rf = ICA(n_components=2, max_iter=2, allow_ref_meg=True)
    with pytest.warns(UserWarning, match='did not converge'):
        ica_rf.fit(raw.copy().pick_types(meg=False, ref_meg=True))
    icacomps = ica_rf.get_sources(raw)
    # rename components so they are auto-detected by find_bads_ref
    icacomps.rename_channels({c: 'REF_' + c for c in icacomps.ch_names})
    # and add them to raw
    raw.add_channels([icacomps])
    ica.find_bads_ref(raw, l_freq=None, h_freq=None, method="separate")
    picks = pick_channels_regexp(raw.ch_names, 'REF_ICA*')
    for idx, ch in enumerate(picks):
        assert '{}/{}/{}'.format('ref_meg', idx,
                                 raw.ch_names[ch]) in ica.labels_
    ica.find_bads_ref(raw, l_freq=None, h_freq=None, method="together")
    assert 'ref_meg' in ica.labels_

    for key in ('ecg', 'eog', 'ref_meg'):
        assert key in ica.labels_
    assert 'ecg/ECG-MAG' not in ica.labels_

    ica.find_bads_ecg(raw, l_freq=None, h_freq=None, threshold='auto')
    for key in ('ecg', 'eog', 'ref_meg', 'ecg/ECG-MAG'):
        assert key in ica.labels_

    scores = ica.find_bads_muscle(raw)[1]
    assert 'muscle' in ica.labels_
    assert ica.labels_['muscle'] == [0]
    assert_allclose(scores, [0.56, 0.01, 0.03, 0.00], atol=0.03)

    events = np.array([[6000, 0, 0], [8000, 0, 0]])
    epochs = Epochs(raw, events=events, baseline=None, preload=True)
    # move up threhsold more noise because less data
    scores = ica.find_bads_muscle(epochs, threshold=0.8)[1]
    assert 'muscle' in ica.labels_
    assert ica.labels_['muscle'] == [0]
    assert_allclose(scores, [0.81, 0.14, 0.37, 0.05], atol=0.03)

    ica = ICA(n_components=4, max_iter=2, method='fastica', allow_ref_meg=True)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw, picks="eeg")
    ica.find_bads_muscle(raw)
    assert 'muscle' in ica.labels_


@requires_sklearn
@testing.requires_testing_data
@pytest.mark.parametrize('fname, grade', [
    (fif_fname, None),
    pytest.param(eeglab_fname, None, marks=pymatreader_mark),
    (ctf_fname2, 0),
    (ctf_fname2, 1),
])
def test_ica_eeg(fname, grade):
    """Test ICA on EEG."""
    method = 'fastica'
    if fname.endswith('.fif'):
        raw = read_raw_fif(fif_fname)
        raw.pick(raw.ch_names[::5]).load_data()
        raw.info.normalize_proj()
    elif fname.endswith('.set'):
        raw = read_raw_eeglab(input_fname=eeglab_fname, preload=True)
    else:
        with pytest.warns(RuntimeWarning, match='MISC channel'):
            raw = read_raw_ctf(ctf_fname2)
        raw.pick(raw.ch_names[:30] + raw.ch_names[30::10]).load_data()
    if grade is not None:
        raw.apply_gradient_compensation(grade)

    events = make_fixed_length_events(raw, 99999, start=0, stop=0.3,
                                      duration=0.1)
    picks_meg = pick_types(raw.info, meg=True, eeg=False, ref_meg=False)[:2]
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2]
    picks_all = []
    picks_all.extend(picks_meg)
    picks_all.extend(picks_eeg)
    epochs = Epochs(raw, events=events, tmin=-0.1, tmax=0.1, baseline=None,
                    preload=True, proj=False)
    evoked = epochs.average()

    for picks in [picks_meg, picks_eeg, picks_all]:
        if len(picks) == 0:
            continue
        # test fit
        for inst in [raw, epochs]:
            ica = ICA(n_components=2, max_iter=2, method=method)
            with _record_warnings():
                ica.fit(inst, picks=picks, verbose=True)
            _assert_ica_attributes(ica)

        # test apply and get_sources
        for inst in [raw, epochs, evoked]:
            ica.apply(inst)
            ica.get_sources(inst)


@pymatreader_mark
@testing.requires_testing_data
def test_read_ica_eeglab():
    """Test read_ica_eeglab function."""
    fname = op.join(test_base_dir, "EEGLAB", "test_raw.set")
    fname_cleaned_matlab = op.join(test_base_dir, "EEGLAB",
                                   "test_raw.cleaned.set")

    raw = read_raw_eeglab(fname, preload=True)
    raw_eeg = _check_load_mat(fname, None)
    raw_cleaned_matlab = read_raw_eeglab(fname_cleaned_matlab,
                                         preload=True)

    mark_to_remove = ["manual"]
    comp_info = raw_eeg.marks["comp_info"]

    if len(comp_info["flags"].shape) > 1:
        ind_comp_to_drop = [np.where(flags)[0]
                            for flags, label in zip(comp_info["flags"],
                                                    comp_info["label"])
                            if label in mark_to_remove]
        ind_comp_to_drop = np.unique(np.concatenate(ind_comp_to_drop))
    else:
        ind_comp_to_drop = np.where(comp_info["flags"])[0]

    ica = read_ica_eeglab(fname)
    _assert_ica_attributes(ica)
    raw_cleaned = ica.apply(raw.copy(), exclude=ind_comp_to_drop)

    assert_allclose(raw_cleaned_matlab.get_data(), raw_cleaned.get_data(),
                    rtol=1e-05, atol=1e-08)


@pymatreader_mark
@testing.requires_testing_data
def test_read_ica_eeglab_mismatch(tmp_path):
    """Test read_ica_eeglab function when there is a mismatch."""
    fname_orig = op.join(test_base_dir, "EEGLAB", "test_raw.set")
    base = op.basename(fname_orig)[:-3]
    shutil.copyfile(fname_orig[:-3] + 'fdt', tmp_path / (base + 'fdt'))
    fname = tmp_path / base
    data = loadmat(fname_orig)
    w = data['EEG']['icaweights'][0][0]
    w[:] = np.random.RandomState(0).randn(*w.shape)
    savemat(str(fname), data, appendmat=False)
    assert op.isfile(fname)
    with pytest.warns(RuntimeWarning, match='Mismatch.*removal.*icawinv.*'):
        ica = read_ica_eeglab(fname)
    _assert_ica_attributes(ica)
    ica_correct = read_ica_eeglab(fname_orig)
    attrs = [attr for attr in dir(ica_correct)
             if attr.endswith('_') and not attr.startswith('_')]
    assert 'mixing_matrix_' in attrs
    assert 'unmixing_matrix_' in attrs
    assert ica.labels_ == ica_correct.labels_ == {}
    attrs.pop(attrs.index('labels_'))
    attrs.pop(attrs.index('reject_'))
    for attr in attrs:
        a, b = getattr(ica, attr), getattr(ica_correct, attr)
        assert_allclose(a, b, rtol=1e-12, atol=1e-12, err_msg=attr)


def _assert_ica_attributes(ica, data=None, limits=(1.0, 70)):
    """Assert some attributes of ICA objects."""
    __tracebackhide__ = True
    # This tests properties, but also serves as documentation of
    # the shapes these arrays can obtain and how they obtain them

    # Pre-whitener
    n_ch = len(ica.ch_names)
    assert ica.pre_whitener_.shape == (
        n_ch, n_ch if ica.noise_cov is not None else 1)

    # PCA
    n_pca = ica.pca_components_.shape[0]
    assert ica.pca_components_.shape == (n_pca, n_ch), 'PCA shape'
    assert_allclose(np.dot(ica.pca_components_, ica.pca_components_.T),
                    np.eye(n_pca), atol=1e-6, err_msg='PCA orthogonality')
    assert ica.pca_mean_.shape == (n_ch,)

    # Mixing/unmixing
    assert ica.unmixing_matrix_.shape == (ica.n_components_,) * 2, \
        'Unmixing shape'
    assert ica.mixing_matrix_.shape == (ica.n_components_,) * 2, \
        'Mixing shape'
    mix_unmix = np.dot(ica.mixing_matrix_, ica.unmixing_matrix_)
    s = linalg.svdvals(ica.unmixing_matrix_)
    nz = len(s) - (s > s[0] * 1e-12).sum()
    want = np.eye(ica.n_components_)
    want[:nz] = 0
    assert_allclose(mix_unmix, want, atol=1e-6, err_msg='Mixing as pinv')
    assert ica.pca_explained_variance_.shape[0] >= \
        ica.unmixing_matrix_.shape[1]
    # our PCA components should be unit vectors (the variances get put into
    # the unmixing_matrix_ to make it a whitener)
    norms = np.linalg.norm(ica.pca_components_, axis=1)
    assert_allclose(norms, 1.)
    # let's check the whitening
    if data is not None:
        if data.ndim == 3:
            data = data.transpose(1, 0, 2).reshape(data.shape[1], -1)
        data = ica._transform_raw(RawArray(data, ica.info), 0, None)
        norms = np.linalg.norm(data, axis=1)
        # at least close to normal
        assert norms.min() > limits[0], 'Not roughly unity'
        assert norms.max() < limits[1], 'Not roughly unity'
    assert hasattr(ica, 'reject_')


@pytest.mark.parametrize("ch_type", ["dbs", "seeg"])
def test_ica_ch_types(ch_type):
    """Test ica with different channel types."""
    # gh-8739
    data = np.random.RandomState(0).randn(10, 1000)
    info = create_info(10, 1000., ch_type)
    raw = RawArray(data, info)
    events = make_fixed_length_events(raw, 99999, start=0, stop=0.3,
                                      duration=0.1)
    epochs = Epochs(raw, events=events, tmin=-0.1, tmax=0.1, baseline=None,
                    preload=True, proj=False)
    evoked = epochs.average()
    # test fit
    method = 'infomax'
    for inst in [raw, epochs]:
        ica = ICA(n_components=2, max_iter=2, method=method)
        with _record_warnings():
            ica.fit(inst, verbose=True)
        _assert_ica_attributes(ica)
    # test apply and get_sources
    for inst in [raw, epochs, evoked]:
        ica.apply(inst)
        ica.get_sources(inst)