1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
|
# Author: Mark Wronkiewicz <wronk@uw.edu>
#
# License: BSD-3-Clause
from contextlib import contextmanager
import os.path as op
import pathlib
import re
import numpy as np
from numpy.testing import assert_allclose, assert_array_equal
import pytest
from scipy import sparse
from scipy.special import sph_harm
import mne
from mne import compute_raw_covariance, pick_types, concatenate_raws, pick_info
from mne.annotations import _annotations_starts_stops
from mne.chpi import read_head_pos, filter_chpi
from mne.forward import _prep_meg_channels
from mne.datasets import testing
from mne.forward import use_coil_def
from mne.io import (read_raw_fif, read_info, read_raw_bti, read_raw_kit,
BaseRaw, read_raw_ctf)
from mne.io.constants import FIFF
from mne.preprocessing import (maxwell_filter, find_bad_channels_maxwell,
annotate_amplitude, compute_maxwell_basis,
maxwell_filter_prepare_emptyroom,
annotate_movement)
from mne.preprocessing.maxwell import (
_get_n_moments, _sss_basis_basic, _sh_complex_to_real,
_sh_real_to_complex, _sh_negate, _bases_complex_to_real, _trans_sss_basis,
_bases_real_to_complex, _prep_mf_coils)
from mne.rank import _get_rank_sss, _compute_rank_int, compute_rank
from mne.utils import (assert_meg_snr, catch_logging, _record_warnings,
object_diff, buggy_mkl_svd, use_log_level)
io_path = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_small_fname = op.join(io_path, 'test_raw.fif')
data_path = testing.data_path(download=False)
sss_path = op.join(data_path, 'SSS')
pre = op.join(sss_path, 'test_move_anon_')
raw_fname = pre + 'raw.fif'
sss_std_fname = pre + 'stdOrigin_raw_sss.fif'
sss_nonstd_fname = pre + 'nonStdOrigin_raw_sss.fif'
sss_bad_recon_fname = pre + 'badRecon_raw_sss.fif'
sss_reg_in_fname = pre + 'regIn_raw_sss.fif'
sss_fine_cal_fname = pre + 'fineCal_raw_sss.fif'
sss_ctc_fname = pre + 'crossTalk_raw_sss.fif'
sss_trans_default_fname = pre + 'transDefault_raw_sss.fif'
sss_trans_sample_fname = pre + 'transSample_raw_sss.fif'
sss_st1FineCalCrossTalkRegIn_fname = \
pre + 'st1FineCalCrossTalkRegIn_raw_sss.fif'
sss_st1FineCalCrossTalkRegInTransSample_fname = \
pre + 'st1FineCalCrossTalkRegInTransSample_raw_sss.fif'
sss_movecomp_fname = pre + 'movecomp_raw_sss.fif'
sss_movecomp_reg_in_fname = pre + 'movecomp_regIn_raw_sss.fif'
sss_movecomp_reg_in_st4s_fname = pre + 'movecomp_regIn_st4s_raw_sss.fif'
skip_fname = op.join(data_path, 'misc', 'intervalrecording_raw.fif')
erm_fname = pre + 'erm_raw.fif'
sss_erm_std_fname = pre + 'erm_devOrigin_raw_sss.fif'
sss_erm_reg_in_fname = pre + 'erm_regIn_raw_sss.fif'
sss_erm_fine_cal_fname = pre + 'erm_fineCal_raw_sss.fif'
sss_erm_ctc_fname = pre + 'erm_crossTalk_raw_sss.fif'
sss_erm_st_fname = pre + 'erm_st1_raw_sss.fif'
sss_erm_st1FineCalCrossTalk_fname = pre + 'erm_st1FineCalCrossTalk_raw_sss.fif'
sss_erm_st1FineCalCrossTalkRegIn_fname = \
pre + 'erm_st1FineCalCrossTalkRegIn_raw_sss.fif'
sample_fname = op.join(
data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
sss_samp_reg_in_fname = op.join(data_path, 'SSS',
'sample_audvis_trunc_regIn_raw_sss.fif')
sss_samp_fname = op.join(data_path, 'SSS', 'sample_audvis_trunc_raw_sss.fif')
pos_fname = op.join(data_path, 'SSS', 'test_move_anon_raw.pos')
bases_fname = op.join(sss_path, 'sss_data.mat')
fine_cal_fname = op.join(sss_path, 'sss_cal_3053.dat')
fine_cal_fname_3d = op.join(sss_path, 'sss_cal_3053_3d.dat')
ctc_fname = op.join(sss_path, 'ct_sparse.fif')
fine_cal_mgh_fname = op.join(sss_path, 'sss_cal_mgh.dat')
ctc_mgh_fname = op.join(sss_path, 'ct_sparse_mgh.fif')
triux_path = op.join(data_path, 'SSS', 'TRIUX')
tri_fname = op.join(triux_path, 'triux_bmlhus_erm_raw.fif')
tri_sss_fname = op.join(triux_path, 'triux_bmlhus_erm_raw_sss.fif')
tri_sss_reg_fname = op.join(triux_path, 'triux_bmlhus_erm_regIn_raw_sss.fif')
tri_sss_st4_fname = op.join(triux_path, 'triux_bmlhus_erm_st4_raw_sss.fif')
tri_sss_ctc_fname = op.join(triux_path, 'triux_bmlhus_erm_ctc_raw_sss.fif')
tri_sss_cal_fname = op.join(triux_path, 'triux_bmlhus_erm_cal_raw_sss.fif')
tri_sss_ctc_cal_fname = op.join(
triux_path, 'triux_bmlhus_erm_ctc_cal_raw_sss.fif')
tri_sss_ctc_cal_reg_in_fname = op.join(
triux_path, 'triux_bmlhus_erm_ctc_cal_regIn_raw_sss.fif')
tri_ctc_fname = op.join(triux_path, 'ct_sparse_BMLHUS.fif')
tri_cal_fname = op.join(triux_path, 'sss_cal_BMLHUS.dat')
io_dir = op.join(op.dirname(__file__), '..', '..', 'io')
fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif')
ctf_fname_continuous = op.join(data_path, 'CTF', 'testdata_ctf.ds')
# In some of the tests, use identical coil defs to what is used in
# MaxFilter
elekta_def_fname = op.join(op.dirname(mne.__file__), 'data',
'coil_def_Elekta.dat')
int_order, ext_order = 8, 3
mf_head_origin = (0., 0., 0.04)
mf_meg_origin = (0., 0.013, -0.006)
# 30 random bad MEG channels (20 grad, 10 mag) that were used in generation
bads = ['MEG0912', 'MEG1722', 'MEG2213', 'MEG0132', 'MEG1312', 'MEG0432',
'MEG2433', 'MEG1022', 'MEG0442', 'MEG2332', 'MEG0633', 'MEG1043',
'MEG1713', 'MEG0422', 'MEG0932', 'MEG1622', 'MEG1343', 'MEG0943',
'MEG0643', 'MEG0143', 'MEG2142', 'MEG0813', 'MEG2143', 'MEG1323',
'MEG0522', 'MEG1123', 'MEG0423', 'MEG2122', 'MEG2532', 'MEG0812']
def _assert_n_free(raw_sss, lower, upper=None):
"""Check the DOF."""
upper = lower if upper is None else upper
n_free = raw_sss.info['proc_history'][0]['max_info']['sss_info']['nfree']
assert lower <= n_free <= upper, \
'nfree fail: %s <= %s <= %s' % (lower, n_free, upper)
def _assert_mag_coil_type(info, coil_type):
__tracebackhide__ = True
picks = pick_types(info, meg='mag', exclude=())
coil_types = set(info['chs'][pick]['coil_type'] for pick in picks)
assert coil_types == {coil_type}
def read_crop(fname, lims=(0, None)):
"""Read and crop."""
return read_raw_fif(fname, allow_maxshield='yes').crop(*lims)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_movement_compensation(tmp_path):
"""Test movement compensation."""
temp_dir = str(tmp_path)
lims = (0, 4)
raw = read_crop(raw_fname, lims).load_data()
head_pos = read_head_pos(pos_fname)
#
# Movement compensation, no regularization, no tSSS
#
_assert_mag_coil_type(raw.info, FIFF.FIFFV_COIL_VV_MAG_T3)
assert_allclose(raw.info['chs'][2]['cal'], 4.14e-11, rtol=1e-6)
raw.info['chs'][2]['coil_type'] = FIFF.FIFFV_COIL_VV_MAG_T2
raw_sss = maxwell_filter(raw, head_pos=head_pos, origin=mf_head_origin,
regularize=None, bad_condition='ignore')
_assert_mag_coil_type(raw_sss.info, FIFF.FIFFV_COIL_VV_MAG_T3)
assert_meg_snr(raw_sss, read_crop(sss_movecomp_fname, lims),
4.6, 12.4, chpi_med_tol=58)
# IO
temp_fname = op.join(temp_dir, 'test_raw_sss.fif')
raw_sss.save(temp_fname)
raw_sss = read_crop(temp_fname)
assert_meg_snr(raw_sss, read_crop(sss_movecomp_fname, lims),
4.6, 12.4, chpi_med_tol=58)
#
# Movement compensation, regularization, no tSSS
#
raw_sss = maxwell_filter(raw, head_pos=head_pos, origin=mf_head_origin)
assert_meg_snr(raw_sss, read_crop(sss_movecomp_reg_in_fname, lims),
0.5, 1.9, chpi_med_tol=121)
#
# Movement compensation, regularization, tSSS at the end
#
raw_nohpi = filter_chpi(raw.copy(), t_window=0.2)
with pytest.warns(RuntimeWarning, match='untested'):
raw_sss_mv = maxwell_filter(raw_nohpi, head_pos=head_pos,
st_duration=4., origin=mf_head_origin,
st_fixed=False)
# Neither match is particularly good because our algorithm actually differs
assert_meg_snr(raw_sss_mv, read_crop(sss_movecomp_reg_in_st4s_fname, lims),
0.6, 1.3)
tSSS_fname = op.join(sss_path, 'test_move_anon_st4s_raw_sss.fif')
assert_meg_snr(raw_sss_mv, read_crop(tSSS_fname, lims),
0.6, 1.0, chpi_med_tol=None)
assert_meg_snr(read_crop(sss_movecomp_reg_in_st4s_fname),
read_crop(tSSS_fname), 0.8, 1.0, chpi_med_tol=None)
#
# Movement compensation, regularization, tSSS at the beginning
#
raw_sss_mc = maxwell_filter(raw_nohpi, head_pos=head_pos, st_duration=4.,
origin=mf_head_origin)
assert_meg_snr(raw_sss_mc, read_crop(tSSS_fname, lims),
0.6, 1.0, chpi_med_tol=None)
assert_meg_snr(raw_sss_mc, raw_sss_mv, 0.6, 1.4)
# some degenerate cases
raw_erm = read_crop(erm_fname)
with pytest.raises(ValueError, match='positions can only be used'):
maxwell_filter(raw_erm, coord_frame='meg',
head_pos=head_pos)
with pytest.raises(ValueError, match=r'of shape \(N, 10\)'):
maxwell_filter(raw, head_pos=head_pos[:, :9])
with pytest.raises(TypeError, match='instance of ndarray'):
maxwell_filter(raw, head_pos='foo')
with pytest.raises(ValueError, match='ascending'):
maxwell_filter(raw, head_pos=head_pos[::-1])
head_pos_bad = head_pos.copy()
head_pos_bad[0, 0] = raw._first_time - 1e-2
with pytest.raises(ValueError, match='greater than'):
maxwell_filter(raw, head_pos=head_pos_bad)
head_pos_bad = head_pos.copy()
head_pos_bad[0, 4] = 1. # off by more than 1 m
with pytest.warns(RuntimeWarning, match='greater than 1 m'):
maxwell_filter(raw.copy().crop(0, 0.1), head_pos=head_pos_bad,
bad_condition='ignore')
# make sure numerical error doesn't screw it up, though
head_pos_bad = head_pos.copy()
head_pos_bad[0, 0] = raw._first_time - 5e-4
raw_sss_tweak = maxwell_filter(
raw.copy().crop(0, 0.05), head_pos=head_pos_bad, origin=mf_head_origin)
assert_meg_snr(raw_sss_tweak, raw_sss.copy().crop(0, 0.05), 1.4, 8.,
chpi_med_tol=5)
@pytest.mark.slowtest
def test_other_systems():
"""Test Maxwell filtering on KIT, BTI, and CTF files."""
# KIT
kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
sqd_path = op.join(kit_dir, 'test.sqd')
mrk_path = op.join(kit_dir, 'test_mrk.sqd')
elp_path = op.join(kit_dir, 'test_elp.txt')
hsp_path = op.join(kit_dir, 'test_hsp.txt')
raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
with pytest.warns(RuntimeWarning, match='fit'):
pytest.raises(RuntimeError, maxwell_filter, raw_kit)
with catch_logging() as log:
raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
ignore_ref=True, verbose=True)
assert '12/15 out' in log.getvalue() # homogeneous fields removed
_assert_n_free(raw_sss, 65, 65)
raw_sss_auto = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
ignore_ref=True, mag_scale='auto')
assert_allclose(raw_sss._data, raw_sss_auto._data)
# The KIT origin fit is terrible
with pytest.warns(RuntimeWarning, match='more than 20 mm'):
with catch_logging() as log:
pytest.raises(RuntimeError, maxwell_filter, raw_kit,
ignore_ref=True, regularize=None) # bad condition
raw_sss = maxwell_filter(raw_kit, origin='auto',
ignore_ref=True, bad_condition='info',
verbose=True)
log = log.getvalue()
assert 'badly conditioned' in log
assert 'more than 20 mm from' in log
# fits can differ slightly based on scipy version, so be lenient here
_assert_n_free(raw_sss, 28, 34) # bad origin == brutal reg
# Let's set the origin
with catch_logging() as log:
raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
ignore_ref=True, bad_condition='info',
regularize=None, verbose=True)
log = log.getvalue()
assert 'badly conditioned' in log
assert '80/80 in, 12/15 out' in log
_assert_n_free(raw_sss, 80)
# Now with reg
with catch_logging() as log:
raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
ignore_ref=True, verbose=True)
log = log.getvalue()
assert 'badly conditioned' not in log
assert '12/15 out' in log
_assert_n_free(raw_sss, 65)
# BTi
bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
bti_pdf = op.join(bti_dir, 'test_pdf_linux')
bti_config = op.join(bti_dir, 'test_config_linux')
bti_hs = op.join(bti_dir, 'test_hs_linux')
raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
picks = pick_types(raw_bti.info, meg='mag', exclude=())
power = np.sqrt(np.sum(raw_bti[picks][0] ** 2))
raw_sss = maxwell_filter(raw_bti)
_assert_n_free(raw_sss, 70)
_assert_shielding(raw_sss, power, 0.5)
raw_sss_auto = maxwell_filter(raw_bti, mag_scale='auto', verbose=True)
_assert_shielding(raw_sss_auto, power, 0.7)
# CTF
raw_ctf = read_crop(fname_ctf_raw)
assert raw_ctf.compensation_grade == 3
with pytest.raises(RuntimeError, match='compensated'):
maxwell_filter(raw_ctf)
raw_ctf.apply_gradient_compensation(0)
with pytest.raises(ValueError, match='digitization points'):
maxwell_filter(raw_ctf)
raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
_assert_n_free(raw_sss, 68)
_assert_shielding(raw_sss, raw_ctf, 1.8)
with catch_logging() as log:
raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04),
ignore_ref=True, verbose=True)
assert ', 12/15 out' in log.getvalue() # homogeneous fields removed
_assert_n_free(raw_sss, 70)
_assert_shielding(raw_sss, raw_ctf, 12)
raw_sss_auto = maxwell_filter(raw_ctf, origin=(0., 0., 0.04),
ignore_ref=True, mag_scale='auto')
assert_allclose(raw_sss._data, raw_sss_auto._data)
with catch_logging() as log:
maxwell_filter(raw_ctf, origin=(0., 0., 0.04), regularize=None,
ignore_ref=True, verbose=True)
assert '80/80 in, 12/15 out' in log.getvalue() # homogeneous fields
def test_spherical_conversions():
"""Test spherical harmonic conversions."""
# Test our real<->complex conversion functions
az, pol = np.meshgrid(np.linspace(0, 2 * np.pi, 30),
np.linspace(0, np.pi, 20))
for degree in range(1, int_order):
for order in range(0, degree + 1):
sph = sph_harm(order, degree, az, pol)
# ensure that we satisfy the conjugation property
assert_allclose(_sh_negate(sph, order),
sph_harm(-order, degree, az, pol))
# ensure our conversion functions work
sph_real_pos = _sh_complex_to_real(sph, order)
sph_real_neg = _sh_complex_to_real(sph, -order)
sph_2 = _sh_real_to_complex([sph_real_pos, sph_real_neg], order)
assert_allclose(sph, sph_2, atol=1e-7)
@testing.requires_testing_data
def test_multipolar_bases():
"""Test multipolar moment basis calculation using sensor information."""
from scipy.io import loadmat
# Test our basis calculations
info = read_info(raw_fname)
with use_coil_def(elekta_def_fname):
coils = _prep_meg_channels(info, do_es=True)['defs']
# Check against a known benchmark
sss_data = loadmat(bases_fname)
exp = dict(int_order=int_order, ext_order=ext_order)
for origin in ((0, 0, 0.04), (0, 0.02, 0.02)):
o_str = ''.join('%d' % (1000 * n) for n in origin)
exp.update(origin=origin)
S_tot = _sss_basis_basic(exp, coils, method='alternative')
# Test our real<->complex conversion functions
S_tot_complex = _bases_real_to_complex(S_tot, int_order, ext_order)
S_tot_round = _bases_complex_to_real(S_tot_complex,
int_order, ext_order)
assert_allclose(S_tot, S_tot_round, atol=1e-7)
S_tot_mat = np.concatenate([sss_data['Sin' + o_str],
sss_data['Sout' + o_str]], axis=1)
S_tot_mat_real = _bases_complex_to_real(S_tot_mat,
int_order, ext_order)
S_tot_mat_round = _bases_real_to_complex(S_tot_mat_real,
int_order, ext_order)
assert_allclose(S_tot_mat, S_tot_mat_round, atol=1e-7)
assert_allclose(S_tot_complex, S_tot_mat, rtol=1e-4, atol=1e-8)
assert_allclose(S_tot, S_tot_mat_real, rtol=1e-4, atol=1e-8)
# Now normalize our columns
S_tot /= np.sqrt(np.sum(S_tot * S_tot, axis=0))[np.newaxis]
S_tot_complex /= np.sqrt(np.sum(
(S_tot_complex * S_tot_complex.conj()).real, axis=0))[np.newaxis]
# Check against a known benchmark
S_tot_mat = np.concatenate([sss_data['SNin' + o_str],
sss_data['SNout' + o_str]], axis=1)
# Check this roundtrip
S_tot_mat_real = _bases_complex_to_real(S_tot_mat,
int_order, ext_order)
S_tot_mat_round = _bases_real_to_complex(S_tot_mat_real,
int_order, ext_order)
assert_allclose(S_tot_mat, S_tot_mat_round, atol=1e-7)
assert_allclose(S_tot_complex, S_tot_mat, rtol=1e-4, atol=1e-8)
# Now test our optimized version
S_tot = _sss_basis_basic(exp, coils)
with use_coil_def(elekta_def_fname):
S_tot_fast = _trans_sss_basis(
exp, all_coils=_prep_mf_coils(info), trans=info['dev_head_t'])
# there are some sign differences for columns (order/degrees)
# in here, likely due to Condon-Shortley. Here we use a
# Magnetometer channel to figure out the flips because the
# gradiometer channels have effectively zero values for first three
# external components (i.e., S_tot[grad_picks, 80:83])
flips = (np.sign(S_tot_fast[2]) != np.sign(S_tot[2]))
flips = 1 - 2 * flips
assert_allclose(S_tot, S_tot_fast * flips, atol=1e-16)
@testing.requires_testing_data
def test_basic():
"""Test Maxwell filter basic version."""
# Load testing data (raw, SSS std origin, SSS non-standard origin)
raw = read_crop(raw_fname, (0., 1.))
raw_err = read_crop(raw_fname).apply_proj()
raw_erm = read_crop(erm_fname)
with pytest.raises(RuntimeError, match='cannot be applied'):
maxwell_filter(raw_err)
with pytest.raises(TypeError, match='instance of BaseRaw'):
maxwell_filter(1.)
with pytest.raises(ValueError, match='Number of requested bases'):
maxwell_filter(raw, int_order=20) # too many
n_int_bases = int_order ** 2 + 2 * int_order
n_ext_bases = ext_order ** 2 + 2 * ext_order
nbases = n_int_bases + n_ext_bases
# Check number of bases computed correctly
assert _get_n_moments([int_order, ext_order]).sum() == nbases
# Test SSS computation at the standard head origin
assert len(raw.info['projs']) == 12 # 11 MEG projs + 1 AVG EEG
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert len(raw_sss.info['projs']) == 1 # avg EEG
assert raw_sss.info['projs'][0]['desc'] == 'Average EEG reference'
assert_meg_snr(raw_sss, read_crop(sss_std_fname), 200., 1000.)
py_cal = raw_sss.info['proc_history'][0]['max_info']['sss_cal']
assert len(py_cal) == 0
py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
assert len(py_ctc) == 0
py_st = raw_sss.info['proc_history'][0]['max_info']['max_st']
assert len(py_st) == 0
with pytest.raises(RuntimeError, match='cannot reapply'):
maxwell_filter(raw_sss)
# Test SSS computation at non-standard head origin
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, origin=[0., 0.02, 0.02], regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, read_crop(sss_nonstd_fname), 250., 700.)
# Test SSS computation at device origin
sss_erm_std = read_crop(sss_erm_std_fname)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg',
origin=mf_meg_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, sss_erm_std, 70., 260.)
for key in ('job', 'frame'):
vals = [x.info['proc_history'][0]['max_info']['sss_info'][key]
for x in [raw_sss, sss_erm_std]]
assert vals[0] == vals[1]
# Two equivalent things: at device origin in device coords (0., 0., 0.)
# and at device origin at head coords info['dev_head_t'][:3, 3]
raw_sss_meg = maxwell_filter(
raw, coord_frame='meg', origin=(0., 0., 0.))
raw_sss_head = maxwell_filter(
raw, origin=raw.info['dev_head_t']['trans'][:3, 3])
assert_meg_snr(raw_sss_meg, raw_sss_head, 100., 900.)
# Check against SSS functions from proc_history
assert _get_n_moments(int_order) == _get_rank_sss(raw_sss)
# Degenerate cases
with pytest.raises(ValueError, match='Invalid value'):
maxwell_filter(raw, coord_frame='foo')
with pytest.raises(ValueError, match='numerical array'):
maxwell_filter(raw, origin='foo')
with pytest.raises(ValueError, match='3-element array'):
maxwell_filter(raw, origin=[0] * 4)
with pytest.raises(ValueError, match='must be a float'):
maxwell_filter(raw, mag_scale='foo')
raw_missing = raw.copy().load_data()
raw_missing.info['bads'] = ['MEG0111']
raw_missing.pick_types(meg=True) # will be missing the bad
maxwell_filter(raw_missing)
with pytest.warns(RuntimeWarning, match='not in data'):
maxwell_filter(raw_missing, calibration=fine_cal_fname)
@testing.requires_testing_data
def test_maxwell_filter_additional(tmp_path):
"""Test processing of Maxwell filtered data."""
# TODO: Future tests integrate with mne/io/tests/test_proc_history
# Load testing data (raw, SSS std origin, SSS non-standard origin)
file_name = 'test_move_anon'
raw_fname = op.join(data_path, 'SSS', file_name + '_raw.fif')
# Use 2.0 seconds of data to get stable cov. estimate
raw = read_crop(raw_fname, (0., 2.))
# Get MEG channels, compute Maxwell filtered data
raw.load_data()
raw.pick_types(meg=True, eeg=False)
int_order = 8
raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None,
bad_condition='ignore')
# Test io on processed data
tempdir = str(tmp_path)
test_outname = op.join(tempdir, 'test_raw_sss.fif')
raw_sss.save(test_outname)
raw_sss_loaded = read_crop(test_outname).load_data()
# Some numerical imprecision since save uses 'single' fmt
assert_allclose(raw_sss_loaded[:][0], raw_sss[:][0],
rtol=1e-6, atol=1e-20)
# Test rank of covariance matrices for raw and SSS processed data
cov_raw = compute_raw_covariance(raw)
cov_sss = compute_raw_covariance(raw_sss)
scalings = None
cov_raw_rank = _compute_rank_int(
cov_raw, scalings=scalings, info=raw.info, proj=False)
cov_sss_rank = _compute_rank_int(
cov_sss, scalings=scalings, info=raw_sss.info, proj=False)
assert cov_raw_rank == raw.info['nchan']
assert cov_sss_rank == _get_n_moments(int_order)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_bads_reconstruction():
"""Test Maxwell filter reconstruction of bad channels."""
raw = read_crop(raw_fname, (0., 1.))
raw.info['bads'] = bads
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, read_crop(sss_bad_recon_fname), 300.)
@pytest.mark.slowtest
@buggy_mkl_svd
@testing.requires_testing_data
def test_spatiotemporal():
"""Test Maxwell filter (tSSS) spatiotemporal processing."""
# Load raw testing data
raw = read_crop(raw_fname)
# Test that window is less than length of data
with pytest.raises(ValueError, match='must be'):
maxwell_filter(raw, st_duration=1000.)
# We could check both 4 and 10 seconds because Elekta handles them
# differently (to ensure that std/non-std tSSS windows are correctly
# handled), but the 4-sec case should hopefully be sufficient.
st_durations = [4.] # , 10.]
tols = [(80, 100)] # , 200.]
kwargs = dict(origin=mf_head_origin, regularize=None,
bad_condition='ignore')
for st_duration, tol in zip(st_durations, tols):
# Load tSSS data depending on st_duration and get data
tSSS_fname = op.join(sss_path,
'test_move_anon_st%0ds_raw_sss.fif' % st_duration)
tsss_bench = read_crop(tSSS_fname)
# Because Elekta's tSSS sometimes(!) lumps the tail window of data
# onto the previous buffer if it's shorter than st_duration, we have to
# crop the data here to compensate for Elekta's tSSS behavior.
# if st_duration == 10.:
# tsss_bench.crop(0, st_duration)
# raw.crop(0, st_duration)
# Test sss computation at the standard head origin. Same cropping issue
# as mentioned above.
raw_tsss = maxwell_filter(
raw, st_duration=st_duration, **kwargs)
assert _compute_rank_int(raw_tsss, proj=False) == 140
assert_meg_snr(raw_tsss, tsss_bench, *tol)
py_st = raw_tsss.info['proc_history'][0]['max_info']['max_st']
assert (len(py_st) > 0)
assert py_st['buflen'] == st_duration
assert py_st['subspcorr'] == 0.98
# Degenerate cases
with pytest.raises(ValueError, match='Need 0 < st_correlation'):
maxwell_filter(raw, st_duration=10., st_correlation=0.)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_spatiotemporal_only():
"""Test tSSS-only processing."""
# Load raw testing data
tmax = 0.5
raw = read_crop(raw_fname, (0, tmax)).load_data()
picks = pick_types(raw.info, meg=True, exclude='bads')[::2]
raw.pick_channels([raw.ch_names[pick] for pick in picks])
mag_picks = pick_types(raw.info, meg='mag', exclude=())
power = np.sqrt(np.sum(raw[mag_picks][0] ** 2))
# basics
raw_tsss = maxwell_filter(raw, st_duration=tmax / 2., st_only=True)
assert len(raw.info['projs']) == len(raw_tsss.info['projs'])
assert _compute_rank_int(raw_tsss, proj=False) == len(picks)
_assert_shielding(raw_tsss, power, 9)
# with movement
head_pos = read_head_pos(pos_fname)
raw_tsss = maxwell_filter(raw, st_duration=tmax / 2., st_only=True,
head_pos=head_pos)
assert _compute_rank_int(raw_tsss, proj=False) == len(picks)
_assert_shielding(raw_tsss, power, 9)
with pytest.warns(RuntimeWarning, match='st_fixed'):
raw_tsss = maxwell_filter(raw, st_duration=tmax / 2., st_only=True,
head_pos=head_pos, st_fixed=False)
assert _compute_rank_int(raw_tsss, proj=False) == len(picks)
_assert_shielding(raw_tsss, power, 9)
# should do nothing
raw_tsss = maxwell_filter(raw, st_duration=tmax, st_correlation=1.,
st_only=True)
assert_allclose(raw[:][0], raw_tsss[:][0])
# degenerate
pytest.raises(ValueError, maxwell_filter, raw, st_only=True) # no ST
# two-step process equivalent to single-step process
raw_tsss = maxwell_filter(raw, st_duration=tmax, st_only=True)
raw_tsss = maxwell_filter(raw_tsss)
raw_tsss_2 = maxwell_filter(raw, st_duration=tmax)
assert_meg_snr(raw_tsss, raw_tsss_2, 1e5)
# now also with head movement, and a bad MEG channel
assert len(raw.info['bads']) == 0
bads = [raw.ch_names[0]]
raw.info['bads'] = list(bads)
raw_tsss = maxwell_filter(raw, st_duration=tmax, st_only=True,
head_pos=head_pos)
assert raw.info['bads'] == bads
assert raw_tsss.info['bads'] == bads # don't reset
raw_tsss = maxwell_filter(raw_tsss, head_pos=head_pos)
assert raw_tsss.info['bads'] == [] # do reset MEG bads
raw_tsss_2 = maxwell_filter(raw, st_duration=tmax, head_pos=head_pos)
assert raw_tsss_2.info['bads'] == []
assert_meg_snr(raw_tsss, raw_tsss_2, 1e5)
@testing.requires_testing_data
def test_fine_calibration():
"""Test Maxwell filter fine calibration."""
# Load testing data (raw, SSS std origin, SSS non-standard origin)
raw = read_crop(raw_fname, (0., 1.))
sss_fine_cal = read_crop(sss_fine_cal_fname)
# Test 1D SSS fine calibration
with use_coil_def(elekta_def_fname):
with catch_logging() as log:
raw_sss = maxwell_filter(raw, calibration=fine_cal_fname,
origin=mf_head_origin, regularize=None,
bad_condition='ignore', verbose=True)
log = log.getvalue()
assert 'Using fine calibration' in log
assert op.basename(fine_cal_fname) in log
assert_meg_snr(raw_sss, sss_fine_cal, 82, 611)
py_cal = raw_sss.info['proc_history'][0]['max_info']['sss_cal']
assert (py_cal is not None)
assert (len(py_cal) > 0)
mf_cal = sss_fine_cal.info['proc_history'][0]['max_info']['sss_cal']
# we identify these differently
mf_cal['cal_chans'][mf_cal['cal_chans'][:, 1] == 3022, 1] = 3024
assert_allclose(py_cal['cal_chans'], mf_cal['cal_chans'])
assert_allclose(py_cal['cal_corrs'], mf_cal['cal_corrs'],
rtol=1e-3, atol=1e-3)
# with missing channels
raw_missing = raw.copy().load_data()
raw_missing.info['bads'] = ['MEG0111', 'MEG0943'] # 1 mag, 1 grad
raw_missing.info._check_consistency()
raw_sss_bad = maxwell_filter(
raw_missing, calibration=fine_cal_fname, origin=mf_head_origin,
regularize=None, bad_condition='ignore')
raw_missing.pick_types(meg=True) # actually remove bads
raw_sss_bad.pick_channels(raw_missing.ch_names) # remove them here, too
with pytest.warns(RuntimeWarning, match='cal channels not in data'):
raw_sss_missing = maxwell_filter(
raw_missing, calibration=fine_cal_fname, origin=mf_head_origin,
regularize=None, bad_condition='ignore')
assert_meg_snr(raw_sss_missing, raw_sss_bad, 1000., 10000.)
# Test 3D SSS fine calibration (no equivalent func in MaxFilter yet!)
# very low SNR as proc differs, eventually we should add a better test
raw_sss_3D = maxwell_filter(raw, calibration=fine_cal_fname_3d,
origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss_3D, sss_fine_cal, 1.0, 6.)
raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0)
pytest.raises(RuntimeError, maxwell_filter, raw_ctf, origin=(0., 0., 0.04),
calibration=fine_cal_fname)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_regularization():
"""Test Maxwell filter regularization."""
# Load testing data (raw, SSS std origin, SSS non-standard origin)
min_tols = (20., 2.6, 1.0)
med_tols = (200., 21., 3.7)
origins = ((0., 0., 0.04), (0.,) * 3, (0., 0.02, 0.02))
coord_frames = ('head', 'meg', 'head')
raw_fnames = (raw_fname, erm_fname, sample_fname)
sss_fnames = (sss_reg_in_fname, sss_erm_reg_in_fname,
sss_samp_reg_in_fname)
comp_tols = [0, 1, 4]
for ii, rf in enumerate(raw_fnames):
raw = read_crop(rf, (0., 1.))
sss_reg_in = read_crop(sss_fnames[ii])
# Test "in" regularization
raw_sss = maxwell_filter(raw, coord_frame=coord_frames[ii],
origin=origins[ii])
assert_meg_snr(raw_sss, sss_reg_in, min_tols[ii], med_tols[ii], msg=rf)
# check components match
_check_reg_match(raw_sss, sss_reg_in, comp_tols[ii])
def _check_reg_match(sss_py, sss_mf, comp_tol):
"""Check regularization."""
info_py = sss_py.info['proc_history'][0]['max_info']['sss_info']
assert (info_py is not None)
assert (len(info_py) > 0)
info_mf = sss_mf.info['proc_history'][0]['max_info']['sss_info']
n_in = None
for inf in (info_py, info_mf):
if n_in is None:
n_in = _get_n_moments(inf['in_order'])
else:
assert n_in == _get_n_moments(inf['in_order'])
assert inf['components'][:n_in].sum() == inf['nfree']
assert_allclose(info_py['nfree'], info_mf['nfree'],
atol=comp_tol, err_msg=sss_py._filenames[0])
@testing.requires_testing_data
def test_cross_talk(tmp_path):
"""Test Maxwell filter cross-talk cancellation."""
raw = read_crop(raw_fname, (0., 1.))
raw.info['bads'] = bads
sss_ctc = read_crop(sss_ctc_fname)
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, cross_talk=pathlib.Path(ctc_fname),
origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, sss_ctc, 275.)
py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
assert (len(py_ctc) > 0)
with pytest.raises(TypeError, match='path-like'):
maxwell_filter(raw, cross_talk=raw)
pytest.raises(ValueError, maxwell_filter, raw, cross_talk=raw_fname)
mf_ctc = sss_ctc.info['proc_history'][0]['max_info']['sss_ctc']
del mf_ctc['block_id'] # we don't write this
assert isinstance(py_ctc['decoupler'], sparse.csc_matrix)
assert isinstance(mf_ctc['decoupler'], sparse.csc_matrix)
assert_array_equal(py_ctc['decoupler'].toarray(),
mf_ctc['decoupler'].toarray())
# I/O roundtrip
tempdir = str(tmp_path)
fname = op.join(tempdir, 'test_sss_raw.fif')
sss_ctc.save(fname)
sss_ctc_read = read_raw_fif(fname)
mf_ctc_read = sss_ctc_read.info['proc_history'][0]['max_info']['sss_ctc']
assert isinstance(mf_ctc_read['decoupler'], sparse.csc_matrix)
assert_array_equal(mf_ctc_read['decoupler'].toarray(),
mf_ctc['decoupler'].toarray())
assert object_diff(py_ctc, mf_ctc) == ''
raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0)
raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
_assert_n_free(raw_sss, 68)
raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True)
_assert_n_free(raw_sss, 70)
raw_missing = raw.copy().crop(0, 0.1).load_data().pick_channels(
[raw.ch_names[pi] for pi in pick_types(raw.info, meg=True,
exclude=())[3:]])
with pytest.warns(RuntimeWarning, match='Not all cross-talk channels'):
maxwell_filter(raw_missing, cross_talk=ctc_fname)
# MEG channels not in cross-talk
pytest.raises(RuntimeError, maxwell_filter, raw_ctf, origin=(0., 0., 0.04),
cross_talk=ctc_fname)
@testing.requires_testing_data
def test_head_translation():
"""Test Maxwell filter head translation."""
raw = read_crop(raw_fname, (0., 1.))
# First try with an unchanged destination
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(raw, destination=raw_fname,
origin=mf_head_origin, regularize=None,
bad_condition='ignore')
assert_meg_snr(raw_sss, read_crop(sss_std_fname, (0., 1.)), 200.)
# Now with default
with use_coil_def(elekta_def_fname):
with pytest.warns(RuntimeWarning, match='over 25 mm'):
raw_sss = maxwell_filter(raw, destination=mf_head_origin,
origin=mf_head_origin, regularize=None,
bad_condition='ignore', verbose=True)
assert_meg_snr(raw_sss, read_crop(sss_trans_default_fname), 125.)
destination = np.eye(4)
destination[2, 3] = 0.04
assert_allclose(raw_sss.info['dev_head_t']['trans'], destination)
# Now to sample's head pos
with pytest.warns(RuntimeWarning, match='= 25.6 mm'):
raw_sss = maxwell_filter(raw, destination=sample_fname,
origin=mf_head_origin, regularize=None,
bad_condition='ignore', verbose=True)
assert_meg_snr(raw_sss, read_crop(sss_trans_sample_fname), 13., 100.)
assert_allclose(raw_sss.info['dev_head_t']['trans'],
read_info(sample_fname)['dev_head_t']['trans'])
# Degenerate cases
pytest.raises(RuntimeError, maxwell_filter, raw,
destination=mf_head_origin, coord_frame='meg')
pytest.raises(ValueError, maxwell_filter, raw, destination=[0.] * 4)
# TODO: Eventually add simulation tests mirroring Taulu's original paper
# that calculates the localization error:
# http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1495874
def _assert_shielding(raw_sss, erm_power, min_factor, max_factor=np.inf,
meg='mag'):
"""Assert a minimum shielding factor using empty-room power."""
__tracebackhide__ = True
picks = pick_types(raw_sss.info, meg=meg, ref_meg=False)
if isinstance(erm_power, BaseRaw):
picks_erm = pick_types(raw_sss.info, meg=meg, ref_meg=False)
assert_allclose(picks, picks_erm)
erm_power = np.sqrt((erm_power[picks_erm][0] ** 2).sum())
sss_power = raw_sss[picks][0].ravel()
sss_power = np.sqrt(np.sum(sss_power * sss_power))
factor = erm_power / sss_power
assert min_factor <= factor < max_factor, (
'Shielding factor not %0.3f <= %0.3f < %0.3f'
% (min_factor, factor, max_factor))
@buggy_mkl_svd
@testing.requires_testing_data
@pytest.mark.parametrize('regularize', ('in', None))
@pytest.mark.parametrize('bads', ([], ['MEG0111']))
def test_esss(regularize, bads):
"""Test extended-basis SSS."""
# Make some fake "projectors" that actually contain external SSS bases
raw_erm = read_crop(erm_fname).load_data().pick_types(meg=True)
raw_erm.info['bads'] = bads
proj_sss = mne.compute_proj_raw(raw_erm, meg='combined', verbose='error',
n_mag=15, n_grad=15)
good_info = pick_info(raw_erm.info, pick_types(raw_erm.info, meg=True))
S_tot = _trans_sss_basis(
dict(int_order=0, ext_order=3, origin=(0., 0., 0.)),
all_coils=_prep_mf_coils(good_info), coil_scale=1., trans=None)
assert S_tot.shape[-1] == len(proj_sss)
for a, b in zip(proj_sss, S_tot.T):
a['data']['data'][:] = b
with catch_logging() as log:
raw_sss = maxwell_filter(raw_erm, coord_frame='meg',
regularize=regularize, verbose=True)
log = log.getvalue()
assert 'xtend' not in log
with catch_logging() as log:
raw_sss_2 = maxwell_filter(raw_erm, coord_frame='meg',
regularize=regularize, ext_order=0,
extended_proj=proj_sss, verbose=True)
log = log.getvalue()
assert 'Extending external SSS basis using 15 projection' in log
assert_allclose(raw_sss_2._data, raw_sss._data, atol=1e-20)
# This should work, as the projectors should be a superset
raw_erm.info['bads'] = raw_erm.info['bads'] + ['MEG0112']
maxwell_filter(raw_erm, coord_frame='meg', extended_proj=proj_sss)
# Degenerate condititons
proj_sss = proj_sss[:2]
proj_sss[0]['data']['col_names'] = proj_sss[0]['data']['col_names'][:-1]
with pytest.raises(ValueError, match='were missing'):
maxwell_filter(raw_erm, coord_frame='meg', extended_proj=proj_sss)
proj_sss[0] = 1.
with pytest.raises(TypeError, match=r'extended_proj\[0\] must be an inst'):
maxwell_filter(raw_erm, coord_frame='meg', extended_proj=proj_sss)
with pytest.raises(TypeError, match='extended_proj must be an inst'):
maxwell_filter(raw_erm, coord_frame='meg', extended_proj=1.)
@contextmanager
def get_n_projected():
"""Get the number of projected tSSS components from the log."""
count = list()
with use_log_level(True):
with catch_logging() as log:
yield count
log = log.getvalue()
assert 'Processing data using tSSS' in log
log = log.splitlines()
reg = re.compile(r'\s+Projecting\s+([0-9])+\s+intersecting tSSS .*')
for line in log:
m = reg.match(line)
if m:
count.append(int(m.group(1)))
@buggy_mkl_svd
@pytest.mark.slowtest
@testing.requires_testing_data
def test_shielding_factor(tmp_path):
"""Test Maxwell filter shielding factor using empty room."""
raw_erm = read_crop(erm_fname).load_data().pick_types(meg=True)
erm_power = raw_erm[pick_types(raw_erm.info, meg='mag')][0]
erm_power = np.sqrt(np.sum(erm_power * erm_power))
erm_power_grad = raw_erm[pick_types(raw_erm.info, meg='grad')][0]
erm_power_grad = np.sqrt(np.sum(erm_power * erm_power))
# Vanilla SSS (second value would be for meg=True instead of meg='mag')
_assert_shielding(read_crop(sss_erm_std_fname), erm_power, 10) # 1.5)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None)
_assert_shielding(raw_sss, erm_power, 12, 13) # 1.5)
_assert_shielding(raw_sss, erm_power_grad, 0.45, 0.55, 'grad') # 1.5)
# No external basis
raw_sss_0 = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
ext_order=0)
_assert_shielding(raw_sss_0, erm_power, 1.0, 1.1)
del raw_sss_0
# Regularization
_assert_shielding(read_crop(sss_erm_std_fname), erm_power, 10) # 1.5)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg')
_assert_shielding(raw_sss, erm_power, 14.5, 15.5)
#
# Extended (eSSS)
#
# Show that using empty-room projectors increase shielding factor
proj = mne.compute_proj_raw(raw_erm, meg='combined', verbose='error',
n_mag=15, n_grad=15)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
extended_proj=proj[:3])
_assert_shielding(raw_sss, erm_power, 38, 39)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
extended_proj=proj)
_assert_shielding(raw_sss, erm_power, 49, 51)
# Now with reg
raw_sss = maxwell_filter(raw_erm, coord_frame='meg',
extended_proj=proj[:3])
_assert_shielding(raw_sss, erm_power, 42, 44)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg',
extended_proj=proj)
_assert_shielding(raw_sss, erm_power, 59, 61)
#
# Different mag_scale values
#
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
mag_scale='auto')
_assert_shielding(raw_sss, erm_power, 12, 13)
_assert_shielding(raw_sss, erm_power_grad, 0.48, 0.58, 'grad')
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
mag_scale=1.) # not a good choice
_assert_shielding(raw_sss, erm_power, 7.3, 8.)
_assert_shielding(raw_sss, erm_power_grad, 0.2, 0.3, 'grad')
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
mag_scale=1000., bad_condition='ignore')
_assert_shielding(raw_sss, erm_power, 4.0, 5.0)
_assert_shielding(raw_sss, erm_power_grad, 0.1, 0.2, 'grad')
#
# Fine cal
#
_assert_shielding(read_crop(sss_erm_fine_cal_fname), erm_power, 12) # 2.0)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
origin=mf_meg_origin,
calibration=pathlib.Path(fine_cal_fname))
_assert_shielding(raw_sss, erm_power, 12, 13) # 2.0)
#
# Crosstalk
#
_assert_shielding(read_crop(sss_erm_ctc_fname), erm_power, 12) # 2.1)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
origin=mf_meg_origin,
cross_talk=ctc_fname)
_assert_shielding(raw_sss, erm_power, 12, 13) # 2.1)
# Fine cal + Crosstalk
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin,
cross_talk=ctc_fname)
_assert_shielding(raw_sss, erm_power, 13, 14) # 2.2)
# Fine cal + Crosstalk + Extended
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin,
cross_talk=ctc_fname, extended_proj=proj)
_assert_shielding(raw_sss, erm_power, 28, 30)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin,
cross_talk=ctc_fname, extended_proj=proj[:3])
_assert_shielding(raw_sss, erm_power, 25, 27)
# tSSS
_assert_shielding(read_crop(sss_erm_st_fname), erm_power, 37) # 5.8)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
origin=mf_meg_origin, st_duration=1.)
_assert_shielding(raw_sss, erm_power, 37, 38) # 5.8)
# Crosstalk + tSSS
with get_n_projected() as counts:
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
cross_talk=ctc_fname, origin=mf_meg_origin,
st_duration=1.)
_assert_shielding(raw_sss, erm_power, 38, 39) # 5.91)
assert counts[0] == 4
# Fine cal + tSSS
with get_n_projected() as counts:
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin, st_duration=1.)
_assert_shielding(raw_sss, erm_power, 38, 39) # 5.98)
assert counts[0] == 4
# Extended + tSSS
with get_n_projected() as counts:
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
origin=mf_meg_origin, st_duration=1.,
extended_proj=proj)
_assert_shielding(raw_sss, erm_power, 40, 42)
assert counts[0] == 0
with get_n_projected() as counts:
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
origin=mf_meg_origin, st_duration=1.,
extended_proj=proj[:3])
_assert_shielding(raw_sss, erm_power, 35, 37)
assert counts[0] == 1
# Fine cal + Crosstalk + tSSS
_assert_shielding(read_crop(sss_erm_st1FineCalCrossTalk_fname),
erm_power, 39, 40) # 6.07)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
calibration=fine_cal_fname, origin=mf_meg_origin,
cross_talk=ctc_fname, st_duration=1.)
_assert_shielding(raw_sss, erm_power, 39, 40) # 6.05)
# Fine cal + Crosstalk + tSSS + Extended (a bit worse)
_assert_shielding(read_crop(sss_erm_st1FineCalCrossTalk_fname),
erm_power, 39, 40) # 6.07)
raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None,
calibration=fine_cal_fname, origin=mf_meg_origin,
cross_talk=ctc_fname, st_duration=1.,
extended_proj=proj[:3])
_assert_shielding(raw_sss, erm_power, 34, 36)
# Fine cal + Crosstalk + tSSS + Reg-in
_assert_shielding(read_crop(sss_erm_st1FineCalCrossTalkRegIn_fname),
erm_power, 57, 58) # 6.97)
raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname,
cross_talk=ctc_fname, st_duration=1.,
origin=mf_meg_origin,
coord_frame='meg', regularize='in')
_assert_shielding(raw_sss, erm_power, 53, 54) # 6.64)
with get_n_projected() as counts:
raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname,
cross_talk=ctc_fname, st_duration=1.,
coord_frame='meg', regularize='in')
_assert_shielding(raw_sss, erm_power, 58, 59) # 7.0)
_assert_shielding(raw_sss, erm_power_grad, 1.6, 1.7, 'grad')
assert counts[0] == 4
with get_n_projected() as counts:
raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname,
cross_talk=ctc_fname, st_duration=1.,
coord_frame='meg', regularize='in',
mag_scale='auto')
_assert_shielding(raw_sss, erm_power, 51, 52)
_assert_shielding(raw_sss, erm_power_grad, 1.5, 1.6, 'grad')
assert counts[0] == 3
with get_n_projected() as counts:
with _record_warnings(): # SVD convergence on arm64
raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname_3d,
cross_talk=ctc_fname, st_duration=1.,
coord_frame='meg', regularize='in')
# Our 3D cal has worse defaults for this ERM than the 1D file
_assert_shielding(raw_sss, erm_power, 57, 58)
assert counts[0] == 3
# Show it by rewriting the 3D as 1D and testing it
temp_dir = str(tmp_path)
temp_fname = op.join(temp_dir, 'test_cal.dat')
with open(fine_cal_fname_3d, 'r') as fid:
with open(temp_fname, 'w') as fid_out:
for line in fid:
fid_out.write(' '.join(line.strip().split(' ')[:14]) + '\n')
with get_n_projected() as counts:
with _record_warnings(): # SVD convergence sometimes
raw_sss = maxwell_filter(raw_erm, calibration=temp_fname,
cross_talk=ctc_fname, st_duration=1.,
coord_frame='meg', regularize='in')
# Our 3D cal has worse defaults for this ERM than the 1D file
_assert_shielding(raw_sss, erm_power, 44, 45)
assert counts[0] == 3
# Fine cal + Crosstalk + tSSS + Reg-in + Extended
with get_n_projected() as counts:
raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname,
cross_talk=ctc_fname, st_duration=1.,
coord_frame='meg', regularize='in',
extended_proj=proj[:3])
_assert_shielding(raw_sss, erm_power, 48, 50)
assert counts[0] == 1
@pytest.mark.slowtest
@testing.requires_testing_data
def test_all():
"""Test maxwell filter using all options."""
raw_fnames = (raw_fname, raw_fname, erm_fname, sample_fname)
sss_fnames = (sss_st1FineCalCrossTalkRegIn_fname,
sss_st1FineCalCrossTalkRegInTransSample_fname,
sss_erm_st1FineCalCrossTalkRegIn_fname,
sss_samp_fname)
fine_cals = (fine_cal_fname,
fine_cal_fname,
fine_cal_fname,
fine_cal_mgh_fname)
coord_frames = ('head', 'head', 'meg', 'head')
ctcs = (ctc_fname, ctc_fname, ctc_fname, ctc_mgh_fname)
mins = (3.5, 3.5, 1.2, 0.9)
meds = (10.8, 10.4, 3.2, 6.)
st_durs = (1., 1., 1., None)
destinations = (None, sample_fname, None, None)
origins = (mf_head_origin,
mf_head_origin,
mf_meg_origin,
mf_head_origin)
for ii, rf in enumerate(raw_fnames):
raw = read_crop(rf, (0., 1.))
with _record_warnings(): # sometimes the fit is bad
sss_py = maxwell_filter(
raw, calibration=fine_cals[ii], cross_talk=ctcs[ii],
st_duration=st_durs[ii], coord_frame=coord_frames[ii],
destination=destinations[ii], origin=origins[ii])
sss_mf = read_crop(sss_fnames[ii])
assert_meg_snr(sss_py, sss_mf, mins[ii], meds[ii], msg=rf)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_triux():
"""Test TRIUX system support."""
raw = read_crop(tri_fname, (0, 0.999))
_assert_mag_coil_type(raw.info, FIFF.FIFFV_COIL_VV_MAG_T1)
assert_allclose(raw.info['chs'][2]['cal'], 1.33e-10, rtol=1e-6)
# standard
with use_coil_def(elekta_def_fname):
sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None)
_assert_mag_coil_type(sss_py.info, FIFF.FIFFV_COIL_VV_MAG_T3)
assert_meg_snr(sss_py, read_crop(tri_sss_fname), 37, 700)
# cross-talk
sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None,
cross_talk=tri_ctc_fname)
assert_meg_snr(sss_py, read_crop(tri_sss_ctc_fname), 31, 250)
# fine cal
sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None,
calibration=tri_cal_fname)
assert_meg_snr(sss_py, read_crop(tri_sss_cal_fname), 22, 200)
# ctc+cal
sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None,
calibration=tri_cal_fname,
cross_talk=tri_ctc_fname)
assert_meg_snr(sss_py, read_crop(tri_sss_ctc_cal_fname), 28, 200)
# regularization
sss_py = maxwell_filter(raw, coord_frame='meg', regularize='in')
sss_mf = read_crop(tri_sss_reg_fname)
assert_meg_snr(sss_py, sss_mf, 0.6, 9)
_check_reg_match(sss_py, sss_mf, 1)
# all three
sss_py = maxwell_filter(raw, coord_frame='meg', regularize='in',
calibration=tri_cal_fname,
cross_talk=tri_ctc_fname)
sss_mf = read_crop(tri_sss_ctc_cal_reg_in_fname)
assert_meg_snr(sss_py, sss_mf, 0.6, 9)
_check_reg_match(sss_py, sss_mf, 1)
# tSSS
raw = read_crop(tri_fname).fix_mag_coil_types()
with use_coil_def(elekta_def_fname):
sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None,
st_duration=4., verbose=True)
assert_meg_snr(sss_py, read_crop(tri_sss_st4_fname), 700., 1600)
@testing.requires_testing_data
def test_MGH_cross_talk():
"""Test cross-talk."""
raw = read_crop(raw_fname, (0., 1.))
raw_sss = maxwell_filter(raw, cross_talk=ctc_mgh_fname)
py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
assert (len(py_ctc) > 0)
@testing.requires_testing_data
def test_mf_skips():
"""Test processing of data with skips."""
raw = read_raw_fif(skip_fname, preload=True)
raw.fix_mag_coil_types()
raw.pick_channels(raw.ch_names[:50]) # fast and inaccurate
kwargs = dict(st_only=True, coord_frame='meg', int_order=4, ext_order=3)
# smoke test that this runs
maxwell_filter(raw, st_duration=17., skip_by_annotation=(), **kwargs)
# and this one, too, which will process some all-zero data
maxwell_filter(raw, st_duration=2., skip_by_annotation=(), **kwargs)
with pytest.raises(ValueError, match='duration'):
# skips decrease acceptable duration
maxwell_filter(raw, st_duration=17., **kwargs)
onsets, ends = _annotations_starts_stops(
raw, ('edge', 'bad_acq_skip'), invert=True)
assert (ends - onsets).min() / raw.info['sfreq'] == 2.
assert (ends - onsets).max() / raw.info['sfreq'] == 3.
for st_duration in (2., 3.):
raw_sss = maxwell_filter(raw, st_duration=st_duration, **kwargs)
for start, stop in zip(onsets, ends):
orig_data = raw[:, start:stop][0]
new_data = raw_sss[:, start:stop][0]
if (stop - start) / raw.info['sfreq'] >= st_duration:
# Should be modified
assert not np.allclose(new_data, orig_data, atol=1e-20)
else:
# Should not be modified
assert_allclose(new_data, orig_data, atol=1e-20)
# Processing an individual file and concat should be equivalent to
# concat then process
raw.crop(0, 1)
raw_sss = maxwell_filter(raw, st_duration=1., **kwargs)
raw_sss_concat = concatenate_raws([raw_sss, raw_sss.copy()])
raw_concat = concatenate_raws([raw.copy(), raw.copy()])
raw_concat_sss = maxwell_filter(raw_concat, st_duration=1., **kwargs)
raw_concat_sss_bad = maxwell_filter(raw_concat, st_duration=1.,
skip_by_annotation=(), **kwargs)
data_c = raw_concat[:][0]
data_sc = raw_sss_concat[:][0]
data_cs = raw_concat_sss[:][0]
data_csb = raw_concat_sss_bad[:][0]
assert not np.allclose(data_cs, data_c, atol=1e-20)
assert not np.allclose(data_cs, data_csb, atol=1e-20)
assert_allclose(data_sc, data_cs, atol=1e-20)
@testing.requires_testing_data
@pytest.mark.parametrize(
('fname', 'bads', 'annot', 'add_ch', 'ignore_ref', 'want_bads',
'return_scores', 'h_freq', 'meas_date'), [
# Neuromag data tested against MF
(sample_fname, [], False, False, False, ['MEG 2443'], False, None,
'raw'),
# add 0111 to test picking, add annot to test it, and prepend chs for
# idx
(sample_fname, ['MEG 0111'], True, True, False, ['MEG 2443'], False,
None, 'raw'),
# CTF data seems to be sensitive to linalg lib (?) because some
# channels are very close to the limit, so we just check that one shows
# up
(ctf_fname_continuous, [], False, False, False, {'BR1-4304'}, False,
None, 'raw'),
# faked
(ctf_fname_continuous, [], False, False, True, ['MLC24-4304'], False,
None, 'raw'),
# For `return_scores=True`
(sample_fname, ['MEG 0111'], True, True, False, ['MEG 2443'], True,
50, 'raw'),
(sample_fname, ['MEG 0111'], True, True, False, ['MEG 2443'], True,
50, None),
])
def test_find_bad_channels_maxwell(fname, bads, annot, add_ch, ignore_ref,
want_bads, return_scores, h_freq,
meas_date):
"""Test automatic bad channel detection."""
if fname.endswith('.ds'):
raw = read_raw_ctf(fname).load_data()
flat_idx = 33
else:
raw = read_raw_fif(fname)
raw.fix_mag_coil_types().load_data().pick_types(meg=True, exclude=())
flat_idx = 1
if meas_date is None:
raw.set_meas_date(None)
else:
assert meas_date == 'raw'
raw.filter(None, 40)
raw.info['bads'] = bads
raw._data[flat_idx] = 0 # MaxFilter didn't have this but doesn't affect it
want_flats = [raw.ch_names[flat_idx]]
raw.apply_gradient_compensation(0)
min_count = 5
if add_ch:
raw_eeg = read_raw_fif(fname)
raw_eeg.pick_types(meg=False, eeg=True, exclude=()).load_data()
with raw_eeg.info._unlock():
raw_eeg.info['lowpass'] = 40.
raw = raw_eeg.add_channels([raw]) # prepend the EEG channels
assert 0 in pick_types(raw.info, meg=False, eeg=True)
if ignore_ref:
# Fake a bad one, otherwise we don't find any
assert 42 in pick_types(raw.info, meg=True, ref_meg=False)
assert raw.ch_names[42:43] == want_bads
raw._data[42] += np.random.RandomState(0).randn(len(raw.times))
# maxfilter -autobad on -v -f test_raw.fif -force -cal off -ctc off -regularize off -list -o test_raw.fif -f ~/mne_data/MNE-testing-data/MEG/sample/sample_audvis_trunc_raw.fif # noqa: E501
if annot:
# do a problematic one (gh-7741): exactly one "step" unit
step = int(round(raw.info['sfreq'] * 5.))
dt = 1. / raw.info['sfreq']
assert step == 1502
raw.annotations.append(step * dt + raw._first_time, dt, 'BAD')
with catch_logging() as log:
return_vals = find_bad_channels_maxwell(
raw, origin=(0., 0., 0.04), regularize=None,
bad_condition='ignore', skip_by_annotation='BAD', verbose=True,
ignore_ref=ignore_ref, min_count=min_count,
return_scores=return_scores, h_freq=h_freq)
if return_scores:
assert len(return_vals) == 3
got_bads, got_flats, got_scores = return_vals
else:
assert len(return_vals) == 2
got_bads, got_flats = return_vals
if isinstance(want_bads, list):
assert got_bads == want_bads # from MaxFilter
else:
assert want_bads.intersection(set(got_bads))
assert got_flats == want_flats
log = log.getvalue()
assert 'Interval 1: 0.00' in log
assert 'Interval 2: 5.00' in log
if h_freq is not None and h_freq > raw.info['lowpass']:
assert 'data has already been low-pass filtered' in log
if return_scores:
meg_chs = raw.copy().pick_types(meg=True, exclude=[]).ch_names
ch_types = raw.get_channel_types(meg_chs)
assert list(got_scores['ch_names']) == meg_chs
assert list(got_scores['ch_types']) == ch_types
# Check that time is monotonically increasing.
assert (np.diff(got_scores['bins'].flatten()) >= 0).all()
assert (got_scores['scores_flat'].shape ==
got_scores['scores_noisy'].shape ==
(len(meg_chs), len(got_scores['bins'])))
assert (got_scores['limits_flat'].shape ==
got_scores['limits_noisy'].shape ==
(len(meg_chs), 1))
# Check "flat" scores.
scores_flat = got_scores['scores_flat']
limits_flat = got_scores['limits_flat']
# Deal with NaN's in the scores (can't use np.less directly because of
# https://github.com/numpy/numpy/issues/17198)
scores_flat[np.isnan(scores_flat)] = np.inf
limits_flat[np.isnan(limits_flat)] = -np.inf
n_segments_below_limit = (scores_flat < limits_flat).sum(-1)
ch_idx = np.where(n_segments_below_limit >=
min(min_count, len(got_scores['bins'])))
flats = set(got_scores['ch_names'][ch_idx])
assert flats == set(want_flats)
# Check "noisy" scores.
scores_noisy = got_scores['scores_noisy']
limits_noisy = got_scores['limits_noisy']
scores_noisy[np.isnan(scores_noisy)] = -np.inf
limits_noisy[np.isnan(limits_noisy)] = np.inf
n_segments_beyond_limit = (scores_noisy > limits_noisy).sum(-1)
ch_idx = np.where(n_segments_beyond_limit >=
min(min_count, len(got_scores['bins'])))
bads = set(got_scores['ch_names'][ch_idx])
assert bads == set(want_bads)
def test_find_bads_maxwell_flat():
"""Test find_bads_maxwell when there are flat channels."""
# See gh-9479
raw = mne.io.read_raw_fif(raw_small_fname).load_data()
assert_allclose(raw.times[-1], 23.97, atol=1e-2)
noisy, flat = find_bad_channels_maxwell(raw, min_count=1)
assert noisy == ['MEG 1032', 'MEG 2313', 'MEG 2443']
assert flat == []
n = int(round(raw.info['sfreq'] * 10))
assert (len(raw.times) - n) / raw.info['sfreq'] > 10 # at least 10 sec
with catch_logging() as log:
want_noisy, want_flat = find_bad_channels_maxwell(
raw.copy().crop(n / raw.info['sfreq'], None), min_count=1,
verbose='debug')
log = log.getvalue()
assert 'in 2 intervals ' in log
assert want_noisy == ['MEG 2313', 'MEG 2443']
assert want_flat == []
raw._data[:, :n] = 0
with pytest.warns(RuntimeWarning, match='All-flat segment detected'):
with catch_logging() as log:
noisy, flat = find_bad_channels_maxwell(
raw, min_count=1, verbose='debug')
log = log.getvalue()
assert ' in 4 intervals ' in log
assert flat == raw.ch_names[:306]
assert noisy == [] # none found because all flat
# now do what we suggest in the warning
annot, _ = annotate_amplitude(raw, flat=0., bad_percent=100,
min_duration=1.)
assert_allclose(annot.duration, 10., atol=1e-2) # not even divisor sfreq
raw.info['bads'] = []
raw.set_annotations(annot)
data_good = raw.get_data(reject_by_annotation='omit')
assert data_good.shape[1] / raw.info['sfreq'] / 5. > 2 # at least 10 sec
with catch_logging() as log:
noisy, flat = find_bad_channels_maxwell(
raw, min_count=1, skip_by_annotation='bad_flat', verbose='debug')
log = log.getvalue()
assert ' in 2 intervals ' in log, log
assert flat == want_flat
assert noisy == want_noisy
@pytest.mark.parametrize('regularize, n', [
(None, 80),
('in', 71),
])
def test_compute_maxwell_basis(regularize, n):
"""Test compute_maxwell_basis."""
raw = read_raw_fif(raw_small_fname).crop(0, 2)
assert raw.info['bads'] == []
raw.del_proj()
rank = compute_rank(raw)['meg']
assert rank == 306
raw.info['bads'] = ['MEG 2443']
kwargs = dict(regularize=regularize, verbose=True)
raw_sss = maxwell_filter(raw, **kwargs)
want = raw_sss.get_data('meg')
rank = compute_rank(raw_sss)['meg']
assert rank == n
S, pS, reg_moments, n_use_in = compute_maxwell_basis(raw.info, **kwargs)
assert n_use_in == n
assert n_use_in == len(reg_moments) - 15 # no externals removed
xform = S[:, :n_use_in] @ pS[:n_use_in]
got = xform @ raw.pick_types(meg=True, exclude='bads').get_data()
assert_allclose(got, want)
@testing.requires_testing_data
@pytest.mark.parametrize('bads', ('from_raw', 'union', 'keep'))
def test_prepare_emptyroom_bads(bads):
"""Test prepare_emptyroom."""
raw = read_raw_fif(raw_fname, allow_maxshield='yes', verbose=False)
names = [name for name in raw.ch_names if 'EEG' not in name]
raw.pick_channels(names)
raw_er = read_raw_fif(erm_fname, allow_maxshield='yes', verbose=False)
raw_er.pick_channels(names)
assert raw.ch_names == raw_er.ch_names
assert raw_er.info['dev_head_t'] is None
assert raw.info['dev_head_t'] is not None
raw_er.set_montage(None)
if bads == 'from_raw':
raw_bads_orig = ['MEG0113', 'MEG2313']
raw_er_bads_orig = []
elif bads == 'union':
raw_bads_orig = ['MEG0113']
raw_er_bads_orig = ['MEG2313']
elif bads == 'keep':
raw_bads_orig = []
raw_er_bads_orig = ['MEG0113', 'MEG2313']
raw.info['bads'] = raw_bads_orig
raw_er.info['bads'] = raw_er_bads_orig
raw_er_prepared = maxwell_filter_prepare_emptyroom(
raw_er=raw_er,
raw=raw,
bads=bads
)
assert raw_er_prepared.info['bads'] == ['MEG0113', 'MEG2313']
assert raw_er_prepared.info['dev_head_t'] == raw.info['dev_head_t']
montage_expected = raw.copy().pick_types(meg=True).get_montage()
assert raw_er_prepared.get_montage() == montage_expected
# Ensure the originals were not modified
assert raw.info['bads'] == raw_bads_orig
assert raw_er.info['bads'] == raw_er_bads_orig
assert raw_er.info['dev_head_t'] is None
assert raw_er.get_montage() is None
@testing.requires_testing_data
@pytest.mark.slowtest # lots of params
@pytest.mark.parametrize('set_annot_when', ('before', 'after'))
@pytest.mark.parametrize('raw_meas_date', ('orig', None))
@pytest.mark.parametrize('raw_er_meas_date', ('orig', None))
def test_prepare_emptyroom_annot_first_samp(set_annot_when, raw_meas_date,
raw_er_meas_date):
"""Test prepare_emptyroom."""
raw = read_raw_fif(raw_fname, allow_maxshield='yes', verbose=False)
raw_er = read_raw_fif(erm_fname, allow_maxshield='yes', verbose=False)
names = raw.ch_names[:3] # make it faster
raw.pick_channels(names)
raw_er.pick_channels(names)
assert raw.ch_names == raw_er.ch_names
assert raw.info['meas_date'] != raw_er.info['meas_date']
if raw_meas_date is None:
raw.set_meas_date(None)
if raw_er_meas_date is None:
raw_er.set_meas_date(None)
# to make life easier, make it the same duration
n_rep = max(int(np.ceil(len(raw.times) / len(raw_er.times))), 1)
raw_er = mne.concatenate_raws([raw_er] * n_rep).crop(0, raw.times[-1])
assert_allclose(raw.times, raw_er.times)
raw_er_first_samp_orig = raw_er.first_samp
assert len(raw.annotations) == 0
pos = mne.chpi.read_head_pos(pos_fname)
annot, _ = annotate_movement(raw, pos, 1.)
# Add an annotation right at the beginning and end to make sure nothing
# gets cropped
onset = raw.times[[0, -1]]
duration = 1. / raw.info['sfreq']
annot.append(onset + raw.first_time * (raw.info['meas_date'] is not None),
duration, ['BAD_CUSTOM'])
want_annot = 7 # 5 from annotate_movement plus our first and last samps
if set_annot_when == 'before':
raw.set_annotations(annot)
meas_date = 'keep'
want_date = raw_er.info['meas_date']
else:
assert set_annot_when == 'after'
meas_date = 'from_raw'
want_date = raw.info['meas_date']
raw_er_prepared = maxwell_filter_prepare_emptyroom(
raw_er=raw_er, raw=raw, meas_date=meas_date, emit_warning=True)
assert raw_er.first_samp == raw_er_first_samp_orig
assert raw_er_prepared.info['meas_date'] == want_date
assert raw_er_prepared.first_samp == raw.first_samp
# Ensure (movement) annotations carry over regardless of whether they're
# set before or after preparation
assert len(annot) == want_annot
if set_annot_when == 'after':
raw.set_annotations(annot)
raw_er_prepared.set_annotations(annot)
assert len(raw.annotations) == want_annot
prop_bad = np.isnan(
raw.get_data([0], reject_by_annotation='nan')).mean()
assert 0.3 < prop_bad < 0.4
assert len(raw_er_prepared.annotations) == want_annot
prop_bad_er = np.isnan(
raw_er_prepared.get_data([0], reject_by_annotation='nan')).mean()
assert_allclose(prop_bad, prop_bad_er)
|